Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.073
Filter
1.
Proc Natl Acad Sci U S A ; 121(33): e2404883121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102535

ABSTRACT

Transcription factor ELONGATED HYPOCOTYL5 (HY5) is the central hub for seedling photomorphogenesis. E3 ubiquitin (Ub) ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) inhibits HY5 protein accumulation through ubiquitination. However, the process of HY5 deubiquitination, which antagonizes E3 ligase-mediated ubiquitination to maintain HY5 homeostasis has never been studied. Here, we identified that Arabidopsis thaliana deubiquitinating enzyme, Ub-SPECIFIC PROTEASE 14 (UBP14) physically interacts with HY5 and enhances its protein stability by deubiquitination. The da3-1 mutant lacking UBP14 function exhibited a long hypocotyl phenotype, and UBP14 deficiency led to the failure of rapid accumulation of HY5 during dark to light. In addition, UBP14 preferred to stabilize nonphosphorylated form of HY5 which is more readily bound to downstream target genes. HY5 promoted the expression and protein accumulation of UBP14 for positive feedback to facilitate photomorphogenesis. Our findings thus established a mechanism by which UBP14 stabilizes HY5 protein by deubiquitination to promote photomorphogenesis in A. thaliana.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic-Leucine Zipper Transcription Factors , Gene Expression Regulation, Plant , Ubiquitination , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Protein Stability/radiation effects , Light , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hypocotyl/growth & development , Hypocotyl/metabolism , Hypocotyl/genetics
2.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125592

ABSTRACT

The ethylene-regulated hypocotyl elongation of Arabidopsis thaliana involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1's promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ethylenes , Gene Expression Regulation, Plant , Hypocotyl , Promoter Regions, Genetic , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ethylenes/metabolism , Hypocotyl/growth & development , Hypocotyl/genetics , Hypocotyl/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Signal Transduction , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Peptide Termination Factors , Trans-Activators
3.
Planta ; 260(2): 42, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958765

ABSTRACT

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Hypocotyl , Nitrogen Dioxide , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Hypocotyl/growth & development , Hypocotyl/genetics , Hypocotyl/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Nitrogen Dioxide/pharmacology , Nitrogen Dioxide/metabolism , Promoter Regions, Genetic/genetics , Indoleacetic Acids/metabolism , Mutation
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928189

ABSTRACT

Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.


Subject(s)
Exons , Gene Expression Regulation, Plant , Glycine max , Hypocotyl , Photosynthesis , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Photosynthesis/genetics , Exons/genetics , Hypocotyl/genetics , Hypocotyl/growth & development , Sequence Deletion , Plant Proteins/genetics , Plant Proteins/metabolism , Gibberellins/metabolism , Gene Expression Profiling , Phenotype
5.
Plant Mol Biol ; 114(4): 72, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874897

ABSTRACT

The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyBY276H (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHBG767R variant in transgenic Arabidopsis seedlings. We show that YHBG767R elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHBG767R. However, as expected for a cytoplasm-tethered phyB, YHBG767R elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHBG767R also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytosol , Phytochrome B , Signal Transduction , Phytochrome B/metabolism , Phytochrome B/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/radiation effects , Cytosol/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Hypocotyl/growth & development , Hypocotyl/genetics , Hypocotyl/metabolism , Hypocotyl/radiation effects , Plants, Genetically Modified , Light , Mutation , Gene Expression Regulation, Plant , Seedlings/genetics , Seedlings/growth & development , Seedlings/radiation effects , Seedlings/metabolism , Phenotype
6.
Plant Cell Environ ; 47(8): 3253-3265, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38736429

ABSTRACT

Day length modulates hypocotyl elongation in seedlings to optimize their overall fitness. Variations in cell growth-associated genes are regulated by several transcription factors. However, the specific transcription factors through which the plant clock increases plant fitness are still being elucidated. In this study, we identified the no apical meristem, Arabidopsis thaliana-activating factor (ATAF-1/2), and cup-shaped cotyledon (NAC) family transcription factor ATAF1 as a novel repressor of hypocotyl elongation under a short-day (SD) photoperiod. Variations in day length profoundly affected the transcriptional and protein levels of ATAF1. ATAF1-deficient mutant exhibited increased hypocotyl length and cell growth-promoting gene expression under SD conditions. Moreover, ATAF1 directly targeted and repressed the expression of the cycling Dof factor 1/5 (CDF1/5), two key transcription factors involved in hypocotyl elongation under SD conditions. Additionally, ATAF1 interacted with and negatively modulated the effects of phytochrome-interacting factor (PIF), thus inhibiting PIF-promoted gene expression and hypocotyl elongation. Taken together, our results revealed ATAF1-PIF as a crucial pair modulating the expression of key transcription factors to facilitate plant growth during day/night cycles under fluctuating light conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Photoperiod , Transcription Factors , Hypocotyl/growth & development , Hypocotyl/genetics , Hypocotyl/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/physiology , Transcription Factors/metabolism , Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
7.
Plant J ; 119(2): 645-657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761364

ABSTRACT

The interplay between microRNAs (miRNAs) and phytohormones allows plants to integrate multiple internal and external signals to optimize their survival of different environmental conditions. Here, we report that miR394 and its target gene LEAF CURLING RESPONSIVENESS (LCR), which are transcriptionally responsive to BR, participate in BR signaling to regulate hypocotyl elongation in Arabidopsis thaliana. Phenotypic analysis of various transgenic and mutant lines revealed that miR394 negatively regulates BR signaling during hypocotyl elongation, whereas LCR positively regulates this process. Genetically, miR394 functions upstream of BRASSINOSTEROID INSENSITIVE2 (BIN2), BRASSINAZOLEs RESISTANT1 (BZR1), and BRI1-EMS-SUPPRESSOR1 (BES1), but interacts with BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1 SUPRESSOR PROTEIN (BSU1). RNA-sequencing analysis suggested that miR394 inhibits BR signaling through BIN2, as miR394 regulates a significant number of genes in common with BIN2. Additionally, miR394 increases the accumulation of BIN2 but decreases the accumulation of BZR1 and BES1, which are phosphorylated by BIN2. MiR394 also represses the transcription of PACLOBUTRAZOL RESISTANCE1/5/6 and EXPANSIN8, key genes that regulate hypocotyl elongation and are targets of BZR1/BES1. These findings reveal a new role for a miRNA in BR signaling in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassinosteroids , Gene Expression Regulation, Plant , Hypocotyl , MicroRNAs , Signal Transduction , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Brassinosteroids/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Hypocotyl/growth & development , Hypocotyl/genetics , Hypocotyl/metabolism , Plants, Genetically Modified , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Plant Growth Regulators/metabolism , Protein Kinases
8.
Plant Biotechnol J ; 22(9): 2596-2611, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38762905

ABSTRACT

Higher-order chromatin structure is critical for regulation of gene expression. In plants, light profoundly affects the morphogenesis of emerging seedlings as well as global gene expression to ensure optimal adaptation to environmental conditions. However, the changes and functional significance of chromatin organization in response to light during seedling development are not well documented. We constructed Hi-C contact maps for the cotyledon, apical hook and hypocotyl of soybean subjected to dark and light conditions. The resulting high-resolution Hi-C contact maps identified chromosome territories, A/B compartments, A/B sub-compartments, TADs (Topologically Associated Domains) and chromatin loops in each organ. We observed increased chromatin compaction under light and we found that domains that switched from B sub-compartments in darkness to A sub-compartments under light contained genes that were activated during photomorphogenesis. At the local scale, we identified a group of TADs constructed by gene clusters consisting of different numbers of Small Auxin-Upregulated RNAs (SAURs), which exhibited strict co-expression in the hook and hypocotyl in response to light stimulation. In the hypocotyl, RNA polymerase II (RNAPII) regulated the transcription of a SAURs cluster under light via TAD condensation. Our results suggest that the 3D genome is involved in the regulation of light-related gene expression in a tissue-specific manner.


Subject(s)
Chromatin , Gene Expression Regulation, Plant , Glycine max , Hypocotyl , Light , Glycine max/genetics , Glycine max/metabolism , Glycine max/growth & development , Chromatin/metabolism , Chromatin/genetics , Hypocotyl/genetics , Hypocotyl/growth & development , Hypocotyl/metabolism , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/metabolism , Cotyledon/radiation effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/radiation effects
9.
Mol Plant ; 17(7): 1054-1072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38807366

ABSTRACT

Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs mediate karrikin and strigolactone signaling by directly binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetectable or weak transcriptional repression activities but still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of the smax1 smxl2 mutant. SMAX1 and SMXL2 directly interact with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 to enhance their protein stability by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were then identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1, which is independent of the EAR motif, had a global effect on gene expression. Taken together, these results indicate that non-transcriptional regulatory activities of SMAX1 and SMXL2 mediate karrikin-regulated seedling response to red light.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Furans , Gene Expression Regulation, Plant , Light , Seedlings , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Seedlings/genetics , Seedlings/radiation effects , Seedlings/growth & development , Seedlings/metabolism , Gene Expression Regulation, Plant/radiation effects , Furans/pharmacology , Furans/metabolism , Pyrans/pharmacology , Pyrans/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Hypocotyl/genetics , Hypocotyl/growth & development , Hypocotyl/metabolism , Mutation , Red Light , Intracellular Signaling Peptides and Proteins
10.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38718571

ABSTRACT

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Light , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Hypocotyl/growth & development , Hypocotyl/metabolism , Hypocotyl/radiation effects , Hypocotyl/genetics , Cryptochromes/metabolism , Cryptochromes/genetics , DNA Repair/radiation effects , Transcription Factors/metabolism , Transcription Factors/genetics , Morphogenesis/radiation effects , Blue Light
11.
Sci Rep ; 14(1): 11603, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773236

ABSTRACT

Zikui (Camellia sinensis cv. Zikui) is a recently discovered cultivar of local purple tea in Guizhou, China. It is a purple leaf bud mutation material of Meitan Taicha (Camellia sinensis cv. 'Meitan-taicha') 'N61' strain, which is an important local germplasm resource in Guizhou. It is also a model plant for the study of anthocyanins, but the limited germplasm resources and the limitation of traditional reproduction hinder its application. Here, an efficient regeneration system is established by using hypocotyl as explants for the first time. Different plant growth regulators (PGRs) are evaluated during different regeneration processes including callus and root induction. According to our findings, using the optimal disinfection conditions, the seed embryo contamination rate is 17.58%. Additionally, the mortality rate is 9.69%, while the survival rate is measured as 72.73%. Moreover, the highest germination rate of 93.64% is observed under MS + 2.40 mg/L GA3 medium conditions. The optimal callus induction rate is 95.19%, while the optimal adventitious bud differentiation rate is 20.74%, Medium with 1.6 mg/L IBA achieved 68.6% rooting of the adventitious shoots. The survival rate is more than 65% after 6 days growth in the cultivated matrix. In summary, our research aims to establish a regeneration system for Zikui tea plants and design a transformation system for tea plant tissue seedlings. This will enable transfer of the target gene and ultimately facilitate the cultivation of new tea varieties with unique characteristics.


Subject(s)
Camellia sinensis , Hypocotyl , Plant Growth Regulators , Regeneration , Hypocotyl/growth & development , Camellia sinensis/growth & development , Camellia sinensis/physiology , Camellia sinensis/genetics , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/growth & development , Germination , Tea
12.
Methods Mol Biol ; 2795: 17-23, 2024.
Article in English | MEDLINE | ID: mdl-38594523

ABSTRACT

Hypocotyl elongation in Arabidopsis is widely utilized as a readout for phytochrome B (phyB) signaling and thermomorphogenesis. Hypocotyl elongation is gated by the circadian clock and, therefore, it occurs at distinct times depending on day length or seasonal cues. In short-day conditions, hypocotyl elongation occurs mainly at the end of nighttime when phyB reverts to the inactive form. In contrast, in long-day conditions, hypocotyl elongation occurs during the daytime when phyB is in the photoactivated form. Warm temperatures can induce hypocotyl growth in both long-day and short-day conditions. However, the corresponding daytime and nighttime temperature responses reflect distinct underpinning mechanisms. Here, we describe assays for dissecting the mechanisms between daytime and nighttime thermoresponsive hypocotyl elongation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/metabolism , Hypocotyl , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Phytochrome B/metabolism , Light
13.
Methods Mol Biol ; 2795: 3-16, 2024.
Article in English | MEDLINE | ID: mdl-38594522

ABSTRACT

Temperature-induced elongation of hypocotyls, petioles, and roots, together with hyponastic leaf responses, constitute key model phenotypes that can be used to assess a plant's capacity for thermomorphogenesis. Phenotypic responses are often quantified at a single time point during seedling development at different temperatures. However, to capture growth dynamics, several time points need to be assessed, and ideally continuous measurements are taken. Here we describe a general experimental setup and technical solutions for recording and measuring seedling phenotypes at single and multiple time points. Furthermore, we present an R-package called "rootdetectR," which allows easy processing of hypocotyl, root or petiole length, and growth rate data and provides different options of data presentation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Seedlings/metabolism , Arabidopsis Proteins/metabolism , Vernalization , Hypocotyl , Gene Expression Regulation, Plant
14.
Methods Mol Biol ; 2795: 75-81, 2024.
Article in English | MEDLINE | ID: mdl-38594529

ABSTRACT

Plants exhibit an impressive capability to detect and respond to neighboring plants by closely monitoring changes in the light spectrum. They possess the ability to perceive adjustments in the ratio of red (R) to far-red (FR) light (R/FR) triggered by the presence of nearby plants, even before experiencing complete shading. When the R/FR ratio falls below 1, plants activate a shade avoidance response that manifests as hypocotyl elongation. Furthermore, elevated ambient temperatures can also stimulate hypocotyl elongation. As hypocotyl elongation is a visible characteristic, it is a valuable indicator for monitoring shade avoidance response, warm ambient temperature response, and the interplay between the two.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Temperature , Hypocotyl/metabolism , Light , Gene Expression Regulation, Plant
15.
Methods Mol Biol ; 2795: 247-261, 2024.
Article in English | MEDLINE | ID: mdl-38594544

ABSTRACT

Increased day lengths and warm conditions inversely affect plant growth by directly modulating nuclear phyB, ELF3, and COP1 levels. Quantitative measures of the hypocotyl length have been key to gaining a deeper understanding of this complex regulatory network, while similar quantitative data are the foundation for many studies in plant biology. Here, we explore the application of mathematical modeling, specifically ordinary differential equations (ODEs), to understand plant responses to these environmental cues. We provide a comprehensive guide to constructing, simulating, and fitting these models to data, using the law of mass action to study the evolution of molecular species. The fundamental principles of these models are introduced, highlighting their utility in deciphering complex plant physiological interactions and testing hypotheses. This brief introduction will not allow experimentalists without a mathematical background to run their own simulations overnight, but it will help them grasp modeling principles and communicate with more theory-inclined colleagues.


Subject(s)
Models, Theoretical , Vernalization , Plants , Hypocotyl/physiology
16.
Plant Cell ; 36(8): 2778-2797, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38593049

ABSTRACT

Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Phytochrome , Plants, Genetically Modified , Promoter Regions, Genetic , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Promoter Regions, Genetic/genetics , Phytochrome/metabolism , Phytochrome/genetics , Light , Hypocotyl/genetics , Hypocotyl/growth & development , Germination/genetics
17.
Plant Physiol ; 195(3): 2443-2455, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38620015

ABSTRACT

Shade avoidance syndrome is an important adaptive strategy. Under shade, major transcriptional rearrangements underlie the reallocation of resources to elongate vegetative structures and redefine the plant architecture to compete for photosynthesis. BBX28 is a B-box transcription factor involved in seedling de-etiolation and flowering in Arabidopsis (Arabidopsis thaliana), but its function in shade-avoidance response is completely unknown. Here, we studied the function of BBX28 using two mutant and two transgenic lines of Arabidopsis exposed to white light and simulated shade conditions. We found that BBX28 promotes hypocotyl growth under shade through the phytochrome system by perceiving the reduction of red photons but not the reduction of photosynthetically active radiation or blue photons. We demonstrated that hypocotyl growth under shade is sustained by the protein accumulation of BBX28 in the nuclei in a CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1)-dependent manner at the end of the photoperiod. BBX28 up-regulates the expression of transcription factor- and auxin-related genes, thereby promoting hypocotyl growth under prolonged shade. Overall, our results suggest the role of BBX28 in COP1 signaling to sustain the shade-avoidance response and extend the well-known participation of other members of BBX transcription factors for fine-tuning plant growth under shade.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Light , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hypocotyl/growth & development , Hypocotyl/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Plants, Genetically Modified , Mutation/genetics , Indoleacetic Acids/metabolism , Photoperiod , Signal Transduction/genetics
18.
J Integr Plant Biol ; 66(5): 956-972, 2024 May.
Article in English | MEDLINE | ID: mdl-38558526

ABSTRACT

Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling. Among these, RACK1A (Receptors for Activated C Kinase 1A) stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways. However, the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear. Here, we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways. RACK1A interacts with PHYTOCHROME INTERACTING FACTOR (PIF)3, enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription. Furthermore, RACK1A associates with ELONGATED HYPOCOTYL 5 (HY5) to repress HY5 biochemical activity toward target genes, ultimately contributing to hypocotyl elongation. In darkness, RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC (COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system. Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation, ensuring proper skoto- and photo-morphogenic development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Receptors for Activated C Kinase , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Hypocotyl/growth & development , Hypocotyl/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/genetics , Gene Expression Regulation, Plant/radiation effects , Light , Signal Transduction , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Light Signal Transduction , Phosphorylation
19.
J Agric Food Chem ; 72(14): 8126-8139, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551387

ABSTRACT

A novel ß-primeverosidase-like enzyme, originating from the hypocotyl of soybeans, was isolated and characterized. This enzyme, with an estimated molecular weight of 44 kDa, was identified as a monomer and exhibited peak activity at 55 °C and pH 5.5. It demonstrated a specific and efficient hydrolysis of 1-octen-3-yl ß-primeveroside (1-octen-3-yl prim) and 3-octanyl ß-primeveroside (3-octanyl prim) but did not act on glucopyranosides. Mn2+ significantly enhanced its activity, while Zn2+, Cu2+, and Hg2+ exerted inhibitory effects. Kinetic analysis revealed a higher hydrolytic capacity toward 1-octen-3-yl prim. Partial amino acid sequences were determined and the N-terminal amino acid sequence was determined to be AIVAYAL ALSKRAIAAQ. The binding energy and binding free energy between the ß-primeverosidase enzyme and its substrates were observed to be higher than that of ß-glucosidase, thus validating its superior hydrolysis efficiency. Hydrogen bonds and hydrophobic interactions were the main types of interactions between ß-primeverosidase enzyme and 1-octen-3-yl prim and 3-octanyl prim, involving amino acid residues such as GLU-470, TRP-463, GLU-416, TRP-471, GLN-53, and GLN-477 (hydrogen bonds) and PHE-389, TYR-345, LEU-216, and TYR-275 (hydrophobic interactions). This study contributes to the application of a ß-primeverosidase-like enzyme in improving the release efficiency of glycosidically conjugated flavor substances.


Subject(s)
Glycine max , Hypocotyl , Hypocotyl/metabolism , Kinetics , Glycoside Hydrolases/metabolism
20.
Plant Commun ; 5(7): 100880, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38486455

ABSTRACT

Arabidopsis plants adapt to warm temperatures by promoting hypocotyl growth primarily through the basic helix-loop-helix transcription factor PIF4 and its downstream genes involved in auxin responses, which enhance cell division. In the current study, we discovered that cell wall-related calcium-binding protein 2 (CCaP2) and its paralogs CCaP1 and CCaP3 function as positive regulators of thermo-responsive hypocotyl growth by promoting cell elongation in Arabidopsis. Interestingly, mutations in CCaP1/CCaP2/CCaP3 do not affect the expression of PIF4-regulated classic downstream genes. However, they do noticeably reduce the expression of xyloglucan endotransglucosylase/hydrolase genes, which are involved in cell wall modification. We also found that CCaP1/CCaP2/CCaP3 are predominantly localized to the plasma membrane, where they interact with the plasma membrane H+-ATPases AHA1/AHA2. Furthermore, we observed that vanadate-sensitive H+-ATPase activity and cell wall pectin and hemicellulose contents are significantly increased in wild-type plants grown at warm temperatures compared with those grown at normal growth temperatures, but these changes are not evident in the ccap1-1 ccap2-1 ccap3-1 triple mutant. Overall, our findings demonstrate that CCaP1/CCaP2/CCaP3 play an important role in controlling thermo-responsive hypocotyl growth and provide new insights into the alternative pathway regulating hypocotyl growth at warm temperatures through cell wall modification mediated by CCaP1/CCaP2/CCaP3.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Membrane , Cell Wall , Proton-Translocating ATPases , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Wall/metabolism , Cell Wall/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/genetics , Gene Expression Regulation, Plant , Hypocotyl/growth & development , Hypocotyl/genetics , Hypocotyl/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL