Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.303
Filter
1.
J Enzyme Inhib Med Chem ; 39(1): 2395985, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39311475

ABSTRACT

Quinoxalines are benzopyrazine derivatives with significant therapeutic impact in the pharmaceutical industry. They proved to be useful against inflammation, bacterial, fungal, viral infection, diabetes and other applications. Very recently, in January 2024, the FDA approved new quinoxaline containing drug, erdafitinib for treatment of certain carcinomas. Despite the diverse biological activities exhibited by quinoxaline derivatives and the role of secretory phospholipase A2 (sPLA2) in diabetes-related complications, the potential of sPLA2-targeting quinoxaline-based inhibitors to effectively address these complications remains unexplored. Therefore, we designed novel sPLA2- and α-glucosidase-targeting quinoxaline-based heterocyclic inhibitors to regulate elevated post-prandial blood glucose linked to patients with diabetes-related cardiovascular complications. Compounds 5a-d and 6a-d were synthesised by condensing quinoxaline hydrazides with various aryl sulphonyl chlorides. Biological screening revealed compound 6a as a potent sPLA2 inhibitor (IC50 = 0.0475 µM), whereas compound 6c most effectively inhibited α-glucosidase (IC50 = 0.0953 µM), outperforming the positive control acarbose. Moreover, compound 6a was the best inhibitor for both enzymes. Molecular docking revealed pharmacophoric features, highlighting the importance of a sulfonohydrazide moiety in the structural design of these compounds, leading to the development of potent sPLA2 and α-glucosidase inhibitors. Collectively, our findings helped identify promising candidates for developing novel therapeutic agents for treating diabetes mellitus.


A small, focused library comprising 8 novel compounds was synthesised using a series of substituted quinoxaline sulfonohydrazide derivatives.All synthesised compounds were tested against phospholipase A2 (sPLA2) and α-glucosidase enzymes.The compounds exhibited activities against α-glucosidase and were potent at nanomolar concentrations against sPLA2 isozymes.Structure-based molecular modelling was employed to rationalise the SAR of the compounds.


Subject(s)
Diabetes Mellitus, Type 2 , Dose-Response Relationship, Drug , Hypoglycemic Agents , Quinoxalines , alpha-Glucosidases , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Humans , Structure-Activity Relationship , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Molecular Structure , alpha-Glucosidases/metabolism , Models, Molecular , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation
2.
PLoS One ; 19(9): e0306973, 2024.
Article in English | MEDLINE | ID: mdl-39264974

ABSTRACT

There are numerous uses for the pharmacological effects of thiazolo-pyridine and its derivatives. The main objective of the study was to synthesis 10 novel derivatives of thiazolo[3,2-a] pyridine-6,8-dicarbonitrile with a 22-78% yield, with a focus on their potential anti-diabetic properties. We investigated the interactions between these compounds and the enzyme α-amylase through an in silico study involving molecular docking. According to the docking analysis results, the resulting compounds had advantageous inhibitory properties. With a docking score of -7.43 kcal/mol against the target protein, compound 4e performed best. The stability root-mean-square deviation (RMSD) showed that the complex stabilizes after 25 ns and with minor perturbation at 80. The RMSF values of the ligand-protein complex indicate that the following residues have interacted with compound 4e during the MD simulation: Trp58, Trp59, Tyr62, Gln63, His101, Val107, lle148, Asn152, Leu162, Thr163, Gly164, Leu165, Asp197, Ala198, Asp 236, Leu237, His299, Asp300, and His305. Moreover, the pharmacokinetic and drug-like properties of the synthesized derivatives of 2-arylamino-dihydroindeno[1,2-b] pyrrol-4(1H)-one suggest that they have the potential to be effective inhibitors of α-amylase and should be considered for further research. Nevertheless, it is crucial to ascertain the in vivo and in vitro effectiveness of these compounds through biochemical and structural investigations.


Subject(s)
Hypoglycemic Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyridines , alpha-Amylases , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Nitriles/chemistry , Nitriles/pharmacology , Humans
3.
Molecules ; 29(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39202963

ABSTRACT

Ursolic acid (UA) and its derivatives have garnered significant attention due to their extensive pharmacological activity. UA is a pentacyclic triterpenoid found in a variety of plants, such as apples, rosemary, thyme, etc., and it possesses a range of pharmacological properties. Researchers have synthesized various derivatives of UA through structural modifications to enhance its potential pharmacological properties. Various in vitro and in vivo studies have indicated that UA and its derivatives possess diverse biological activities, such as anticancer, antifungal, antidiabetic, antioxidant, antibacterial, anti-inflammatory and antiviral properties. This review article provides a review of the biological activities of UA and its derivatives to show their valuable therapeutic properties useful in the treatment of different diseases, mainly focusing on the relevant structure-activity relationships (SARs), the underlying molecular targets/pathways, and modes of action.


Subject(s)
Triterpenes , Ursolic Acid , Triterpenes/pharmacology , Triterpenes/chemistry , Humans , Structure-Activity Relationship , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Structure , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
4.
Bioorg Chem ; 152: 107760, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39197383

ABSTRACT

A novel series of thiazole derivatives with pyrazole scaffold 16a-l as hybrid rosiglitazone/celecoxib analogs was designed, synthesized and tested for its PPAR-γ activation, α-glucosidase, α-amylase and COX-2 inhibitory activities. Regarding the anti-diabetic activity, all compounds were assessed in vitro against PPAR-γ activation, α-glucosidase and α-amylase inhibition in addition to in vivo hypoglycemic activity (one day and 15 days studies). Compounds 16b, 16c, 16e and 16 k showed good PPAR-γ activation (activation % ≈ 72-79 %) compared to that of the reference drug rosiglitazone (74 %). In addition, the same derivatives 16b, 16c, 16e and 16 k showed the highest inhibitory activities against α-glucosidase (IC50 = 0.158, 0.314, 0.305, 0.128 µM, respectively) and against α-amylase (IC50 = 32.46, 23.21, 7.74, 35.85 µM, respectively) compared to the reference drug acarbose (IC50 = 0.161 and 31.46 µM for α-glucosidase and α-amylase, respectively). The most active derivatives 16b, 16c, 16e and 16 k also revealed good in vivo hypoglycemic effect comparable to that of rosiglitazone. In addition, compounds 16b and 16c had the best COX-2 selectivity index (S.I. = 18.7, 31.7, respectively) compared to celecoxib (S.I. = 10.3). In vivo anti-inflammatory activity of the target derivatives 16b, 16c, 16e and 16 k supported the results of in vitro screening as the derivatives 16b and 16c (ED50 = 8.2 and 24 mg/kg, respectively) were more potent than celecoxib (ED50 = 30 mg/kg). In silico docking, ADME, toxicity, and molecular dynamic studies were carried out to explain the interactions of the most active anti-diabetic and anti-inflammatory compounds 16b, 16c, 16e and 16 k with the target enzymes in addition to their physiochemical parameters.


Subject(s)
Cyclooxygenase 2 Inhibitors , Drug Design , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , PPAR gamma , Pyrazoles , Thiazoles , alpha-Amylases , alpha-Glucosidases , PPAR gamma/metabolism , alpha-Glucosidases/metabolism , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Structure-Activity Relationship , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Animals , Molecular Structure , Cyclooxygenase 2/metabolism , Molecular Docking Simulation , Dose-Response Relationship, Drug , Humans , Rats , Drug Discovery , PPAR-gamma Agonists
5.
J Med Chem ; 67(17): 14820-14839, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39140772

ABSTRACT

Various small molecule GLP1R agonists have been developed and tested for treating type 2 diabetes (T2DM) and obesity. However, many of these new compounds have drawbacks, such as potential hERG inhibition, lower activity compared to natural GLP-1, limited oral bioavailability in cynomolgus monkeys, and short duration of action. Recently, a new category of 3-phenyloxetane derivative GLP1R agonists with enhanced hERG inhibition has been discovered. Using an AIDD/CADD method, compound 14 (DD202-114) was identified as a potent and selective GLP1R agonist, which was chosen as a preclinical candidate (PCC). Compound 14 demonstrates full agonistic efficacy in promoting cAMP accumulation and possesses favorable drug-like characteristics compared to the clinical drug candidate Danuglipron. Additionally, in hGLP-1R knock-in mice, compound 14 displayed a sustained pharmacological effect, effectively reducing blood glucose levels and food intake. These findings suggest that compound 14 holds promise as a future treatment option for T2DM and obesity, offering improved properties.


Subject(s)
Drug Design , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Animals , Humans , Mice , Structure-Activity Relationship , Male , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism
6.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125032

ABSTRACT

Reactions with allyl-, acetyl-, and phenylisothiocyanate have been studied on the basis of 3-amino-4,6-dimethylpyridine-2(1H)-one, 3-amino-4-phenylpyridine-2-one, and 3-amino-4-(thiophene-2-yl)pyridine-2(1H)-one (benzoyl-)isothiocyanates, and the corresponding thioureide derivatives 8-11a-c were obtained. Twelve thiourea derivatives were obtained and studied for their anti-diabetic activity against the enzyme α-glucosidase in comparison with the standard drug acarbose. The comparison drug acarbose inhibits the activity of α-glucosidase at a concentration of 15 mM by 46.1% (IC50 for acarbose is 11.96 mM). According to the results of the conducted studies, it was shown that alkyl and phenyl thiourea derivatives 8,9a-c, in contrast to their acetyl-(benzoyl) derivatives and 10,11a-c, show high antidiabetic activity. Thus, 1-(4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)-3-phenylthiourea 9a has the highest inhibitory activity against the enzyme α-glucosidase, exceeding the activity of the comparison drug acarbose, which inhibits the activity of α-glucosidase by 56.6% at a concentration of 15 mm (IC50 = 9,77 mM). 1-(6-methyl-2-oxo 4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)-3-phenylthiourea 9c has inhibitory activity against the enzyme α-glucosidase, comparable to the comparison drug acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mm per 41.2% (IC50 = 12,94 mM). Compounds 8a, 8b, and 9b showed inhibitory activity against the enzyme α-glucosidase, with a lower activity compared to acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mM by 23.3%, 26.9%, and 35.2%, respectively. The IC50 against α-glucosidase for compounds 8a, 8b, and 9b was found to be 16.64 mM, 19.79 mM, and 21.79 mM, respectively. The other compounds 8c, 10a, 10b, 10c, 11a, 11b, and 11c did not show inhibitory activity against α-glucosidase. Thus, the newly synthesized derivatives of thiourea based on 3-aminopyridine-2(1H)-ones are promising candidates for the further modification and study of their potential anti-diabetic activity. These positive bioanalytical results will stimulate further in-depth studies, including in vivo models.


Subject(s)
Glycoside Hydrolase Inhibitors , Thiourea , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/analogs & derivatives , Thiourea/chemical synthesis , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Molecular Structure , Aminopyridines/chemistry , Aminopyridines/pharmacology , Aminopyridines/chemical synthesis
7.
Eur J Med Chem ; 276: 116728, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39089002

ABSTRACT

In consideration of several serious side effects induced by the classical AF-2 involved "lock" mechanism, recently disclosed PPARγ-Ser273 phosphorylation mode of action has become an alternative and mainstream mechanism for currently PPARγ-based drug discovery and development with an improved therapeutic index. In this study, by virtue of structure-based virtual high throughput screening (SB-VHTS), structurally chemical optimization by targeting the inhibition of the PPARγ-Ser273 phosphorylation as well as in vitro biological evaluation, which led to the final identification of a chrysin-based potential hit (YGT-31) as a novel selective PPARγ modulator with potent binding affinity and partial agonism. Further in vivo evaluation demonstrated that YGT-31 possessed potent glucose-lowering and relieved hepatic steatosis effects without involving the TZD-associated side effects. Mechanistically, YGT-31 presented such desired therapeutic index, mainly because it effectively inhibited the CDK5-mediated PPARγ-Ser273 phosphorylation, selectively elevated the level of insulin sensitivity-related Glut4 and adiponectin but decreased the expression of insulin-resistance-associated genes PTP1B and SOCS3 as well as inflammation-linked genes IL-6, IL-1ß and TNFα. Finally, the molecular docking study was also conducted to uncover an interesting hydrogen-bonding network of YGT-31 with PPARγ-Ser273 phosphorylation-related key residues Ser342 and Glu343, which not only gave a clear verification for our targeting modification but also provided a proof of concept for the abovementioned molecular mechanism.


Subject(s)
Fatty Liver , Flavonoids , PPAR gamma , PPAR gamma/metabolism , PPAR gamma/agonists , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/chemical synthesis , Structure-Activity Relationship , Fatty Liver/drug therapy , Fatty Liver/metabolism , Humans , Molecular Structure , Diabetes Mellitus, Type 2/drug therapy , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Molecular Docking Simulation , Dose-Response Relationship, Drug , Mice , Male , Drug Evaluation, Preclinical
8.
Bioorg Med Chem ; 112: 117880, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39216382

ABSTRACT

Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.


Subject(s)
Berberine , Berberine/chemistry , Berberine/pharmacology , Berberine/analogs & derivatives , Structure-Activity Relationship , Humans , Molecular Structure , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
9.
Bioorg Med Chem ; 111: 117864, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39116711

ABSTRACT

As a step toward the development of novel small-molecule positive allosteric modulators (PAMs) of glucagon-like peptide 1 receptor (GLP-1R) for the treatment of type 2 diabetes, obesity, and heart diseases, we discovered a novel 2-amino-thiophene (2-AT) based lead compound bearing an ethyl 3-carboxylate appendage. In this work, we report the syntheses and biological studies of more than forty 2-AT analogs, that have revealed a 2-aminothiophene-3-arylketone analogue 7 (MW 299) showing approximately a 2-fold increase in insulin secretion at 5 µM when combined with the GLP-1 peptide at 10 nM. In vivo studies using CD1 mice at a dose of 10 mg/kg, clearly demonstrated that the blood plasma glucose level was lowered by 50% after 60 min. Co-treatment of 7 with sitagliptin, an inhibitor of GLP-1 degrading enzyme Dipeptidyl Peptidase IV, further confirmed 7 to be an effective PAM of GLP-1R. The small molecular weight and demonstrated allosteric modulating properties of these compound series, show the potential of these scaffolds for future drug development.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Thiophenes , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Animals , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/chemical synthesis , Allosteric Regulation/drug effects , Mice , Humans , Structure-Activity Relationship , Molecular Structure , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Blood Glucose/drug effects , Blood Glucose/metabolism , Dose-Response Relationship, Drug , Insulin/metabolism , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/chemical synthesis , Sitagliptin Phosphate/chemistry
10.
Bioorg Chem ; 151: 107666, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067420

ABSTRACT

Design and virtual screening of a set of non-acidic 4-methyl-4-phenyl-benzenesulfonate-based aldose reductase 2 inhibitors had been developed followed by chemical synthesis. Based on the results, the synthesized compounds 2, 4a,b, 7a-c, 9a-c, 10a-c, 11b,c and 14a-c inhibited the ALR2 enzymatic activity in a submicromolar range (99.29-417 nM) and among them, the derivatives 2, 9b, 10a and 14b were able to inhibit ALR2 by IC50 of 160.40, 165.20, 99.29 and 120.6 nM, respectively. Moreover, kinetic analyses using Lineweaver-Burk plot revealed that the most active candidate 10a inhibited ALR2 potently via a non-competitive mechanism. In vivo studies showed that 10 mg/kg of compound 10a significantly lowered blood glucose levels in alloxan-induced diabetic mice by 46.10 %. Moreover, compound 10a showed no toxicity up to a concentration of 50 mg/kg and had no adverse effects on liver and kidney functions. It significantly increased levels of GSH and SOD while decreasing MDA levels, thereby mitigating oxidative stress associated with diabetes and potentially attenuating diabetic complications. Furthermore, the binding mode of compound 10a was confirmed through MD simulation. Noteworthy, compounds 2 and 14b showed moderate antimicrobial activity against the two fungi Aspergillus fumigatus and Aspergillus niger. Finally, we report the thiazole derivative 10a as a new promising non-acidic aldose reductase inhibitor that may be beneficial in treating diabetic complications.


Subject(s)
Aldehyde Reductase , Drug Design , Enzyme Inhibitors , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/metabolism , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Structure-Activity Relationship , Molecular Structure , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Dose-Response Relationship, Drug , Molecular Docking Simulation , Male , Humans , Benzenesulfonates/pharmacology , Benzenesulfonates/chemistry , Benzenesulfonates/chemical synthesis , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry
11.
Bioorg Med Chem ; 111: 117845, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39059249

ABSTRACT

SR9009 is an activator of REV-ERBs with diverse biological activities, including improving exercise tolerance and controlling skeletal muscle mass. To optimise the carbamate motif of SR9009, analogues of SR9009 were synthesised and evaluated. All of them showed REV-ERB-α agonist activities. Among them, 5a, 5f, 5 g, 5m, and 5p showed potencies equivalent to or slightly higher than the potency of SR9009 in vitro. These data indicate that the halogenated benzyl group is an indispensable active group in these compounds. 5m, 5p and SR9009 improved exercise tolerance in normal mice in vivo. Additionally, in hyperlipidemic mice, 5m and 5p not only improved exercise tolerance but also lowered blood lipid levels. 5m and 5p displayed stronger hypoglycaemic activity than SR9009.


Subject(s)
Glycolipids , Nuclear Receptor Subfamily 1, Group D, Member 1 , Thiophenes , Animals , Mice , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/chemical synthesis , Nuclear Receptor Subfamily 1, Group D, Member 1/agonists , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Glycolipids/pharmacology , Glycolipids/chemistry , Glycolipids/chemical synthesis , Structure-Activity Relationship , Male , Humans , Molecular Structure , Mice, Inbred C57BL , Pyrrolidines/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/chemical synthesis , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Dose-Response Relationship, Drug , Exercise Tolerance/drug effects
12.
Bioorg Chem ; 151: 107671, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067419

ABSTRACT

Diabetes mellitus type 2 (T2DM) can be managed by targeting dipeptidyl peptidase-4 (DPP-4), an enzyme that breaks down and deactivates peptides such as GIP and GLP-1. In this context, a new series of 2-(2-substituted hydrazineyl)thiazole derivatives 4, 5, 6, 8, 10, and 11 conjugated with the 2-hydroxy-5-(pyrrolidin-1-ylsulfonyl)benzylidene fragment were designed and synthesized. The virtual screening of the designed derivatives inside DPP-4 demonstrated good to moderate activity, with binding affinity ranging from -6.86 to -5.36 kcal/mol compared to Sitagliptin (S=-5.58 kcal/mol). These results encourage us to evaluate DPP-4 using in-vitro fluorescence-based assay. The in-vitro results exhibited inhibitory percentage (IP) values ranging from 40.66 to 75.62 % in comparison to Sitagliptin (IP=63.14 %) at 100 µM. Subsequently, the IC50 values were determined, and the 5-aryl thiazole derivatives 10 and 11 revealed strong potent IC50 values 2.75 ± 0.27 and 2.51 ± 0.27 µM, respectively, compared to Sitagliptin (3.32 ± 0.22 µM). The SAR study exhibited the importance of the substituents on the thiazole scaffold, especially with the hydrophobic fragment at C5 of the thiazole, which has a role in the activity. Compounds 10 and 11 were further assessed toward α-glucosidase and α-amylase enzymes and give promising results. Compound 10 showed good activity against α-glucosidase with IC50 value of 3.02 ± 0.23 µM compared to Acarbose 3.05 ± 0.22 µM and (11 = 3.34 ± 0.10 µM). On the other hand, for α-amylase, compound 11 was found to be most effective with IC50 value of 2.91 ± 0.23 µM compared to compound 10 = 3.30 ± 0.16 µM and Acarbose (2.99 ± 0.21 µM) indicating that these derivatives could reduce glucose by more than one target. The most active derivatives 10 and 11 attracted great interest as candidates for oral bioavailability and safe toxicity profiles compared to positive controls. The in-silico docking simulation was performed to understand the binding interactions inside the DPP-4, α-glucosidase, and α-amylase pockets, and it was found to be promising antidiabetic agents through a number of interactions.


Subject(s)
Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors , Drug Design , Hypoglycemic Agents , Molecular Docking Simulation , Sulfonamides , Thiazoles , alpha-Amylases , alpha-Glucosidases , Dipeptidyl Peptidase 4/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , alpha-Glucosidases/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Humans , Structure-Activity Relationship , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure , Dose-Response Relationship, Drug
13.
Bioorg Chem ; 151: 107676, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39068716

ABSTRACT

Dual-specificity tyrosine phosphorylation-regulated kinase A (DYRK1A) is a potential drug target for diabetes. The DYRK1A inhibitor can promote ß cells proliferation, increase insulin secretion and reduce blood sugar in diabetes. In this paper, a series ß-carboline-cinnamic acid skeletal derivatives were designed, synthesized and evaluated to inhibit the activity of DYRK1A and promote pancreatic islet ß cell proliferation. Pharmacological activity showed that all of the compounds could effectively promote pancreatic islet ß cell proliferation at a concentration of 1 µM, and the cell viability of compound A1, A4 and B4 reached to 381.5 %, 380.2 % and 378.5 %, respectively. Compound A1, A4 and B4 could also inhibit the expression of DYRK1A better than positive drug harmine. Further mechanistic studies showed that compound A1, A4 and B4 could inhibit DYRK1A protein expression via promoting its degradation and thus enhancing the expression of proliferative proteins PCNA and Ki67. Molecular docking showed that ß-carboline scaffold of these three compounds was fully inserted into the ATP binding site and formed hydrophobic interactions with the active pocket. Besides, these three compounds were predicted to possess better drug-likeness properties using SwissADME. In conclusion, compounds A1, A4 and B4 were potent pancreatic ß cell proliferative agents as DYRK1A inhibitors and might serve as promising candidates for the treatment of diabetes.


Subject(s)
Carbolines , Cell Proliferation , Cinnamates , Dose-Response Relationship, Drug , Drug Design , Dyrk Kinases , Molecular Docking Simulation , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Carbolines/pharmacology , Carbolines/chemistry , Carbolines/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Molecular Structure , Cinnamates/pharmacology , Cinnamates/chemistry , Cinnamates/chemical synthesis , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Humans , Animals , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Cell Survival/drug effects
14.
Chem Rec ; 24(7): e202400044, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976862

ABSTRACT

Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.


Subject(s)
Organoselenium Compounds , Organoselenium Compounds/chemistry , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Biological Products/chemistry , Biological Products/chemical synthesis , Biological Products/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology
15.
Eur J Med Chem ; 275: 116632, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959726

ABSTRACT

Glucagon-like peptide-1 receptor (GLP-1R) is a pivotal receptor involved in blood glucose regulation and influencing feeding behavior. It has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. Peptide GLP-1 receptor agonists (GLP-1RAs) have achieved tremendous success in the market, driving the vigorous development of small molecule GLP-1RAs. Currently, several small molecules have entered the clinical research stage. Additionally, recent discoveries of GLP-1R positive allosteric modulators (PAMs) are also unveiling new regulatory patterns and treatment methods. This article reviews the structure and functional mechanisms of GLP-1R, recent reports on small molecule GLP-1RAs and PAMs, as well as the optimization process. Furthermore, it combines computer simulations to analyze structure-activity relationships (SAR) studies, providing a foundation for exploring new strategies for designing small molecule GLP-1RAs.


Subject(s)
Drug Design , Glucagon-Like Peptide-1 Receptor , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Structure-Activity Relationship , Binding Sites , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Molecular Structure , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis
16.
Future Med Chem ; 16(12): 1255-1266, 2024.
Article in English | MEDLINE | ID: mdl-38989987

ABSTRACT

Aim: To synthesize novel more potent anti-diabetic agents. Methodology: A simple cost effective Hantzsch's synthetic strategy was used to synthesize 2-(2-arylidenehydrazinyl)thiazol-4(5H)-ones. Results: Fifteen new 2-(2-arylidenehydrazinyl)thiazol-4(5H)-ones were established to check their anti-diabetic potential. From alpha(α)-amylase inhibition, anti-glycation and anti-oxidant activities it is revealed that most of the compounds possess good anti-diabetic potential. All tested compounds were found to be more potent anti-diabetic agents via anti-glycation mode. The results of α-amylase and anti-oxidant inhibition revealed that compounds are less active against α-amylase and anti-oxidant assays. Conclusion: This study concludes that introduction of various electron withdrawing groups at the aryl ring and substitution of different functionalities around thiazolone nucleus could help to find out better anti-diabetic drug.


Diabetes is a most spreading chronicle disease effecting millions of peoples across the globe every year and this number increases day by day. To cure the human population from this dilemma, we had synthesized, characterized and evaluated the anti-diabetic behavior of our synthesized compounds. α-Amylase, in vitro anti-glycation and anti-oxidant assays were performed to find out good lead for Diabetes Mellitus. All tested compounds were found to be excellent anti-glycating agents with IC50 values far better than standard amino-guanidine (IC50 = 3.582 ± 0.002 µM). Compound 4m was most efficient glycation inhibitor (IC50 = 1.095 ± 0.002 µM). Cytotoxicity of all compounds was determined with in vitro hemolytic assay and found all compounds safe and bio-compatible to humans at all tested concentrations. The inhibition potential was also examined with theoretical docking studies to support our experimental results against human pancreatic alpha-amylase (HPA) and human serum albumin (HSA) proteins. All compounds showed excellent binding affinity with HSA active pockets however, only compound 4h and 4k binding affinity was good with HPA.


Subject(s)
Hypoglycemic Agents , Molecular Docking Simulation , Thiazoles , alpha-Amylases , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Humans , Structure-Activity Relationship , Molecular Structure
17.
J Med Chem ; 67(14): 11957-11974, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39013034

ABSTRACT

In the quest for the discovery of antidiabetic compounds, a series of 27 1,4-dihydropyridine-indole derivatives were synthesized using a diversity approach. These compounds were systematically evaluated for their antidiabetic activity, starting with an in vitro assessment for GLUT4 translocation stimulation in L6-GLUT4myc myotubes, followed by in vivo antihyperglycemic activity evaluation in a streptozotocin (STZ)-induced diabetic rat model. Among the synthesized compounds, 12, 14, 15, 16, 19, 27, and 35 demonstrated significant potential to stimulate GLUT4 translocation in skeletal muscle cells. Compound 19 exhibited the highest potency and was selected for in vivo evaluation. A notable reduction of 21.6% (p < 0.01) in blood glucose levels was observed after 5 h of treatment with compound 19 in STZ-induced diabetic rats. Furthermore, pharmacokinetic studies affirmed that compound 19 was favorable to oral exposure with suitable pharmacological parameters. Overall, compound 19 emerged as a promising lead compound for further structural modification and optimization.


Subject(s)
Diabetes Mellitus, Experimental , Dihydropyridines , Drug Design , Glucose Transporter Type 4 , Hypoglycemic Agents , Indoles , Animals , Glucose Transporter Type 4/metabolism , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Indoles/pharmacokinetics , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Dihydropyridines/pharmacology , Dihydropyridines/chemical synthesis , Dihydropyridines/chemistry , Dihydropyridines/therapeutic use , Dihydropyridines/pharmacokinetics , Rats , Male , Structure-Activity Relationship , Blood Glucose/analysis , Blood Glucose/metabolism , Blood Glucose/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Cell Line , Rats, Sprague-Dawley
18.
Sci Rep ; 14(1): 15791, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38982268

ABSTRACT

In this work, a novel series of N-phenylacetamide-1,2,3-triazole-indole-2-carboxamide derivatives 5a-n were designed by consideration of the potent α-glucosidase inhibitors containing indole and carboxamide-1,2,3-triazole-N-phenylacetamide moieties. These compounds were synthesized by click reaction and evaluated against yeast α-glucosidase. All the newly title compounds demonstrated superior potency when compared with acarbose as a standard inhibitor. Particularly, compound 5k possessed the best inhibitory activity against α-glucosidase with around a 28-fold improvement in the inhibition effect in comparison standard inhibitor. This compound showed a competitive type of inhibition in the kinetics. The molecular docking and dynamics demonstrated that compound 5k with a favorable binding energy well occupied the active site of α-glucosidase.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Triazoles , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Drug Design , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Structure-Activity Relationship , Saccharomyces cerevisiae/enzymology , Kinetics
19.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999038

ABSTRACT

This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.


Subject(s)
Benzoxazines , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Benzoxazines/chemistry , Benzoxazines/pharmacology , Benzoxazines/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Pancreatic alpha-Amylases/antagonists & inhibitors , Pancreatic alpha-Amylases/metabolism , Cycloaddition Reaction , Molecular Structure , Computer Simulation , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Humans , Structure-Activity Relationship , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Intestines/enzymology
20.
Bioorg Chem ; 150: 107501, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38865858

ABSTRACT

In this study, eleven novel acyl hydrazides derivative of polyhydroquinoline were synthesized, characterized and screened for their in vitro anti-diabetic and anti-glycating activities. Seven compounds 2a, 2d, 2i, 2 h, 2j, 2f, and 2 g exhibited notable α-amylase inhibitory activity having IC50 values from 3.51 ± 2.13 to 11.92 ± 2.30 µM. Similarly, six compounds 2d, 2f, 2 h, 2i, 2j, and 2 g displayed potent α-glucosidase inhibitory activity compared to the standard acarbose. Moreover, eight derivatives 2d, 2 g, 2f, 2j, 2a, 2i, 2 g, and 2e showed excellent anti-glycating activity with IC50 values from 6.91 ± 2.66 to 15.80 ± 1.87 µM when compared them with the standard rutin (IC50 = 22.5 ± 0.90 µM). Molecular docking was carried out to predict the binding modes of all the compounds with α-amylase and α-glucosidase. The docking analysis revealed that most of the compounds established strong interactions with α-amylase and α-glucosidase. All compounds fitted well into the binding pockets of α-amylase and α-glucosidase. Among all compounds 2a and 2f were most potent based on docking score -8.2515 and -7.3949 against α-amylase and α-glucosidase respectively. These results hold promise for the development of novel candidates targeted at controlling postprandial glucose levels in individuals with diabetes.


Subject(s)
Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , alpha-Amylases , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Structure-Activity Relationship , Hydrazines/chemistry , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Molecular Structure , Humans , Dose-Response Relationship, Drug , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Antiglycation Agents
SELECTION OF CITATIONS
SEARCH DETAIL