Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chim Acta ; 1106: 52-60, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32145855

ABSTRACT

This work describes a novel methodology to analyze four tricyclic antidepressants (amitriptyline, doxepin, imipramine and, nortriptyline) in urine samples by combining supramolecular microextraction and paper spray ionization mass spectrometry (PS-MS). The proposed method uses a supramolecular solvent in which reverse micelles of 1-decanol are dispersed in tetrahydrofuran (THF)/water. The extraction of the tricyclic antidepressants at pH 9.0 requires a sample volume of 10.0 mL, short extraction time (1.0 min of extraction and 5 min of centrifugation), low amounts of organic solvent (50 µL of 1-decanol and 200 µL of THF), and provides high preconcentration factors: 96.9 to amitriptyline, 93.6 to doxepin, 71.3 to imipramine, and 146.9 to nortriptyline. The quantification by PS-MS is fast and straightforward because chromatographic separation is not required and all analytes were determined simultaneously. The limits of detection (LOD), quantification (LOQ), and the precision (RSD, %) of the developed method ranged between 5.2 and 8.6 µg L-1, 17.4-28.7 µg L-1 and 1.3-12.9%, respectively. Urine samples of five individuals (three males and two females) were used for accuracy evaluation. The accuracy obtained in these spiked urine samples at µg L-1 levels varied from 95.3 to 112.0%. The method also provided clean mass spectra with a high signal-to-noise ratio, which demonstrates the analytical appeal combination of supramolecular microextraction with determination by paper spray mass spectrometry.


Subject(s)
Antidepressive Agents, Tricyclic/urine , Liquid Phase Microextraction , Paper , Amitriptyline/urine , Doxepin/urine , Humans , Imipramine/urine , Macromolecular Substances/chemistry , Mass Spectrometry , Molecular Structure , Nortriptyline/urine
2.
Article in English | MEDLINE | ID: mdl-32213465

ABSTRACT

In this study, the use of switchable hydrophilicity solvent with a simple and low-cost lab-made device for the extraction procedure in homogeneous liquid-liquid microextraction is proposed for the first time in the determination of antidepressants in human urine. The antidepressants studied consisted of fluoxetine, amitriptyline, nortriptyline, imipramine, desipramine and sertraline. The optimization of the main parameters that can influence on the extraction efficiency was performed through multivariate approaches. The analytes were separated and identified by gas chromatography coupled to mass spectrometry (GC-MS). The optimal extraction conditions consisted of using N,N-dimethylcyclohexylamine (DMCHA) as the switchable hydrophilicity solvent (SHS), 500 µL of urine sample previously diluted with ultrapure water at 1:1 ratio (v/v), 200 µL of a mixture of SHS:HCl 6 mol L-1 (1:1 v/v), 600 µL of NaOH 10 mol L-1 and 3 min of extraction time. A volume of 40 µL of diphenylamine at concentration of 500 µg L-1 (20 ng) was used as internal standard. The method developed was in-house validated, providing coefficients of determination higher than 0.995 for all analytes, limits of detection (LOD) from 0.02 to 0.88 µg L-1, limits of quantification (LOQ) from 0.05 to 2.92 µg L-1, relative recoveries of 68 to 102%, intra-day precision from 0.5 to 15.9%, inter-day precision from 4.2 to 19.3%, selectivity and robustness. The method proposed was successfully applied in five human urine samples from a Toxicological Information Center located in Porto Alegre (Brazil). The results demonstrated that the µP-SHS-HLLME approach is highly cost-effective, rapid, simple and environmentally-friendly with satisfactory analytical performance.


Subject(s)
Antidepressive Agents/urine , Adult , Amitriptyline/urine , Cyclohexylamines/chemistry , Desipramine/urine , Fluoxetine/urine , Gas Chromatography-Mass Spectrometry , Green Chemistry Technology , Humans , Hydrophobic and Hydrophilic Interactions , Imipramine/urine , Limit of Detection , Liquid Phase Microextraction , Nortriptyline/urine , Sertraline/urine , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL