Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cancer Med ; 13(5): e6985, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38491819

ABSTRACT

BACKGROUND: Aberrant Notch signaling pathway has been related with the tumorigenesis in head and neck region, involving oral cavity. Here, we report the correlation between mutations in the Notch signaling pathway and CD8+ T-cell infiltration via PD-L1, which lead to enhanced antitumor immunity and may target for immune-checkpoint inhibitors (ICIs) therapy. METHODS: This retrospective study analyzed the results of immunohistochemical staining for PD-L1 and CD8+ T-cell infiltration in 10 patients and whole-exome sequencing (WES) was conducted on five of these patients to identify frequently mutated genes. RESULTS: Four of 10 patients were positive for PD-L1 and CD8+ T. By analyzing WES in three of these four patients, we notably identified the mutations of NOTCH1, FBXW7, and noncoding RNA intronic mutation in NOTCH2NLR in two of these three patients. This study may enable better selection of ICI therapy with CD8+ T-cell infiltration via PD-L1 expression for oral squamous cell carcinoma patients with mutations in Notch signaling pathway.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/metabolism , Retrospective Studies , B7-H1 Antigen/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Head and Neck Neoplasms/pathology
2.
Nutr Cancer ; 76(1): 17-30, 2024.
Article in English | MEDLINE | ID: mdl-37930032

ABSTRACT

BACKGROUND: This study performed a meta-analysis to evaluate the combined effects of polyphenols and anti-programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) inhibitors. METHODS: Relevant studies were collected from electronic databases. Standardized mean differences (SMDs) or hazard ratio (HR) was calculated by Stata 15.0 software. RESULTS: Sixteen preclinical studies were included. The overall meta-analysis showed that, compared to anti-PD-1/PD-L1 alone, polyphenol combined therapy significantly reduced the tumor volume (SMD = -3.28), weight (SMD = -2.18), number (SMD = -2.17), and prolonged the survival (HR = 0.45) of mice (all P < 0.001). Pooled analysis of mechanism studies indicated polyphenol combined therapy could increase the number of cytotoxic CD8+ T cells (SMD = 3.88; P < 0.001), IFN-γ+ CD8+ T cells (SMD = 2.38; P < 0.001), decrease the number of myeloid-derived suppressor cells (SMD = -2.52; P = 0.044) and Treg cells (SMD = -4.00; P = 0.004) and suppress PD-L1 expression in tumors (SMD = -13.41; P < 0.001). Subgroup analyses demonstrated curcuminoids, flavonoids, and stilbene changed the tumor volume, the percentage of CD8+ T cells, IFN-γ+CD8+ T cells, and PD-L1 expression. CONCLUSION: Polyphenol supplementation may be a promising combined strategy for patients with poor response to anti-PD-1/PD-L1 monotherapy.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Animals , Mice , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/metabolism , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes , Polyphenols/pharmacology , Polyphenols/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Dietary Supplements
3.
Theranostics ; 13(15): 5483-5500, 2023.
Article in English | MEDLINE | ID: mdl-37908728

ABSTRACT

Rationale: Although promising responses are obtained in patients treated with immune checkpoint inhibitors targeting programmed death ligand 1 (PD-L1) and its receptor programmed death-1 (PD-1), only a fraction of patients benefits from this immunotherapy. Cancer vaccination may be an effective approach to improve the response to immune checkpoint inhibitors anti-PD-L1/PD-1 therapy. However, there is a lack of research on the dynamics of PD-L1 expression in response to cancer vaccination. Methods: We performed non-invasive whole-body imaging to visualize PD-L1 expression at different timepoints after vaccination of melanoma-bearing mice. Mice bearing ovalbumin (OVA) expressing B16 tumors were i.v. injected with the Galsome mRNA vaccine: OVA encoding mRNA lipoplexes co-encapsulating a low or a high dose of the atypical adjuvant α-galactosylceramide (αGC) to activate invariant natural killer T (iNKT) cells. Serial non-invasive whole-body immune imaging was performed using a technetium-99m (99mTc)-labeled anti-PD-L1 nanobody, single-photon emission computerized tomography (SPECT) and X-ray computed tomography (CT) images were quantified. Additionally, cellular expression of PD-L1 was evaluated with flow cytometry. Results: SPECT/CT-imaging showed a rapid and systemic upregulation of PD-L1 after vaccination. PD-L1 expression could not be correlated to the αGC-dose, although we observed a dose-dependent iNKT cell activation. Dynamics of PD-L1 expression were organ-dependent and most pronounced in lungs and liver, organs to which the vaccine was distributed. PD-L1 expression in lungs increased immediately after vaccination and gradually decreased over time, whereas in liver, vaccination-induced PD-L1 upregulation was short-lived. Flow cytometric analysis of these organs further showed myeloid cells as well as non-immune cells with elevated PD-L1 expression in response to vaccination. SPECT/CT imaging of the tumor demonstrated that the expression of PD-L1 remained stable over time and was overall not affected by vaccination although flow cytometric analysis at the cellular level demonstrated changes in PD-L1 expression in various immune cell populations following vaccination. Conclusion: Repeated non-invasive whole-body imaging using 99mTc-labeled anti-PD-L1 nanobodies allows to document the dynamic nature of PD-L1 expression upon vaccination. Galsome vaccination rapidly induced systemic upregulation of PD-L1 expression with the most pronounced upregulation in lungs and liver while flow cytometry analysis showed upregulation of PD-L1 in the tumor microenvironment. This study shows that imaging using nanobodies may be useful for monitoring vaccine-mediated PD-L1 modulation in patients and could provide a rationale for combination therapy. To the best of our knowledge, this is the first report that visualizes PD-L1 expression upon cancer vaccination.


Subject(s)
Melanoma , Natural Killer T-Cells , Single-Domain Antibodies , Humans , Mice , Animals , B7-H1 Antigen , Natural Killer T-Cells/metabolism , Single-Domain Antibodies/metabolism , Immune Checkpoint Inhibitors/metabolism , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Vaccines, Synthetic , Melanoma/diagnostic imaging , Melanoma/therapy , Tumor Microenvironment , mRNA Vaccines
4.
J Immunother ; 46(9): 333-340, 2023.
Article in English | MEDLINE | ID: mdl-37737688

ABSTRACT

Undifferentiated monocytes can be loaded with tumor antigens (Ag) and administered intravenously to induce antitumor cytotoxic T lymphocyte (CTL) responses. This vaccination strategy exploits an endogenous Ag cross-presentation pathway, where Ag-loaded monocytes (monocyte vaccines) transfer their Ag to resident splenic dendritic cells (DC), which then stimulate robust CD8 + CTL responses. In this study, we investigated whether monocyte vaccination in combination with CDX-301, a DC-expanding cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), could improve the antitumor efficacy of anti-programmed cell death (anti-PD-1) immune checkpoint blockade. We found that Flt3L expanded splenic DC over 40-fold in vivo and doubled the number of circulating Ag-specific T cells when administered before monocyte vaccination in C57BL/6 mice. In addition, OVA-monocyte vaccination combined with either anti-PD-1, anti-programmed cell death ligand 1 (anti-PD-L1), or anti-cytotoxic T lymphocyte antigen-4 (anti-CTLA-4) suppressed subcutaneous B16/F10-OVA tumor growth to a greater extent than checkpoint blockade alone. When administered together, OVA-monocyte vaccination improved the antitumor efficacy of Flt3L and anti-PD-1 in terms of circulating Ag-specific CD8 + T cell frequency and inhibition of subcutaneous B16/F10-OVA tumor growth. To our knowledge, this is the first demonstration that a cancer vaccine strategy and Flt3L can improve the antitumor efficacy of anti-PD-1. The findings presented here warrant further study of how monocyte vaccines can improve Flt3L and immune checkpoint blockade as they enter clinical trials.


Subject(s)
Cancer Vaccines , Melanoma , Vaccines , Mice , Animals , Monocytes , Immune Checkpoint Inhibitors/metabolism , Dendritic Cells , Mice, Inbred C57BL , Melanoma/drug therapy , CD8-Positive T-Lymphocytes , Vaccines/metabolism
5.
Adv Healthc Mater ; 12(30): e2301515, 2023 12.
Article in English | MEDLINE | ID: mdl-37602495

ABSTRACT

The programmed cell death protein 1 (PD-1) signaling pathway is a major source of dampened T cell activity in the tumor microenvironment. While clinical approaches to inhibiting the PD-1 pathway using antibody blockade have been broadly successful, these approaches lead to widespread PD-1 suppression, increasing the risk of autoimmune reactions. This study reports the development of an ionizable lipid nanoparticle (LNP) platform for simultaneous therapeutic gene expression and RNA interference (RNAi)-mediated transient gene knockdown in T cells. In developing this platform, interesting interactions are observed between the two RNA cargoes when co-encapsulated, leading to improved expression and knockdown characteristics compared to delivering either cargo alone. This messenger RNA (mRNA)/small interfering RNA (siRNA) co-delivery platform is adopted to deliver chimeric antigen receptor (CAR) mRNA and siRNA targeting PD-1 to primary human T cells ex vivo and strong CAR expression and PD-1 knockdown are observed without apparent changes to overall T cell activation state. This delivery platform shows great promise for transient immune gene modulation for a number of immunoengineering applications, including the development of improved cancer immunotherapies.


Subject(s)
Nanoparticles , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Programmed Cell Death 1 Receptor/genetics , Immune Checkpoint Inhibitors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Cell Engineering , Cell Line, Tumor
6.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446039

ABSTRACT

The standard treatment of ovarian cancer (OC) patients, including debulking surgery and first-line chemotherapy, is unsatisfactory because of recurrent episodes in the majority (~70%) of patients with advanced OC. Clinical trials have shown only a modest (10-15%) response of OC individuals to treatment based on immune checkpoint inhibitors (ICIs). The resistance of OC to therapy is caused by various factors, including OC heterogeneity, low density of tumor-infiltrating lymphocytes (TILs), non-cellular and cellular interactions in the tumor microenvironment (TME), as well as a network of microRNA regulating immune checkpoint pathways. Moreover, ICIs are the most efficient in tumors that are marked by high microsatellite instability and high tumor mutation burden, which is rare among OC patients. The great challenge in ICI implementation is connected with distinguishing hyper-, pseudo-, and real progression of the disease. The understanding of the immunological, molecular, and genetic mechanisms of OC resistance is crucial to selecting the group of OC individuals in whom personalized treatment would be beneficial. In this review, we summarize current knowledge about the selected factors inducing OC resistance and discuss the future directions of ICI-based immunotherapy development for OC patients.


Subject(s)
Immune Checkpoint Inhibitors , Ovarian Neoplasms , Humans , Female , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating , Immunotherapy , Carcinoma, Ovarian Epithelial/drug therapy , Tumor Microenvironment
7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446056

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that has been implicated in numerous oncogenic processes. GSK-3 inhibitor elraglusib (9-ING-41) has shown promising preclinical and clinical antitumor activity across multiple tumor types. Despite promising early-phase clinical trial results, there have been limited efforts to characterize the potential immunomodulatory properties of elraglusib. We report that elraglusib promotes immune cell-mediated tumor cell killing of microsatellite stable colorectal cancer (CRC) cells. Mechanistically, elraglusib sensitized CRC cells to immune-mediated cytotoxicity and enhanced immune cell effector function. Using western blots, we found that elraglusib decreased CRC cell expression of NF-κB p65 and several survival proteins. Using microarrays, we discovered that elraglusib upregulated the expression of proapoptotic and antiproliferative genes and downregulated the expression of cell proliferation, cell cycle progression, metastasis, TGFß signaling, and anti-apoptotic genes in CRC cells. Elraglusib reduced CRC cell production of immunosuppressive molecules such as VEGF, GDF-15, and sPD-L1. Elraglusib increased immune cell IFN-γ secretion, which upregulated CRC cell gasdermin B expression to potentially enhance pyroptosis. Elraglusib enhanced immune effector function resulting in augmented granzyme B, IFN-γ, TNF-α, and TRAIL production. Using a syngeneic, immunocompetent murine model of microsatellite stable CRC, we evaluated elraglusib as a single agent or combined with immune checkpoint blockade (anti-PD-1/L1) and observed improved survival in the elraglusib and anti-PD-L1 group. Murine responders had increased tumor-infiltrating T cells, augmented granzyme B expression, and fewer regulatory T cells. Murine responders had reduced immunosuppressive (VEGF, VEGFR2) and elevated immunostimulatory (GM-CSF, IL-12p70) cytokine plasma concentrations. To determine the clinical significance, we then utilized elraglusib-treated patient plasma samples and found that reduced VEGF and BAFF and elevated IL-1 beta, CCL22, and CCL4 concentrations correlated with improved survival. Using paired tumor biopsies, we found that tumor-infiltrating immune cells had a reduced expression of inhibitory immune checkpoints (VISTA, PD-1, PD-L2) and an elevated expression of T-cell activation markers (CTLA-4, OX40L) after elraglusib treatment. These results address a significant gap in knowledge concerning the immunomodulatory mechanisms of GSK-3 inhibitor elraglusib, provide a rationale for the clinical evaluation of elraglusib in combination with immune checkpoint blockade, and are expected to have an impact on additional tumor types, besides CRC.


Subject(s)
Colorectal Neoplasms , Glycogen Synthase Kinase 3 , Humans , Animals , Mice , Glycogen Synthase Kinase 3/metabolism , Granzymes/genetics , Granzymes/metabolism , Disease Models, Animal , Immune Checkpoint Inhibitors/metabolism , Vascular Endothelial Growth Factor A/metabolism , Colorectal Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating , Biopsy , Cell Line, Tumor , B7-H1 Antigen
8.
Cancer Lett ; 568: 216300, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37414394

ABSTRACT

Castration-resistant prostate cancer (CRPC) patients have a 14-month median survival, emphasizing the need for alternative treatments. Previously, we demonstrated that expanded high-dose natural killer (NK) cells derived from human peripheral blood exhibit therapeutic efficacy against CRPC. However, which immune checkpoint blockade promotes NK cell antitumor immunity against CRPC remains unknown. Here, we explored immune checkpoint molecule expression in NK and CRPC cells during their interactions, and identified that the T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) monoclonal antibody (mAb), vibostolimab, significantly enhanced NK cell cytotoxicity against CRPC cells and cytokine production in vitro, demonstrated by upregulation of degranulation marker CD107a and Fas-ligand (Fas-L) and increased interferon-gamma (IFN-γ) and tumor necrosis factor-alpha secretion. TIGIT blockade increased Fas-L expression and IFN-γ production via the NF-κB signaling pathway and restored degranulation via the mitogen-activated protein kinase ERK (extracellular signal-regulated kinase) kinase/ERK pathway in activated NK cells. Vibostolimab significantly enhanced NK cell antitumor effects against CRPC in two xenograft mouse models. Vibostolimab also increased T cell chemotaxis induced by activated NK cells in vitro and in vivo. Overall, blocking TIGIT/CD155 signaling enhances the antitumor effect of expanded NK cells against CRPC; this finding supports the translational application of TIGIT mAb and NK cell combination strategies from bench to bedside for CRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/pathology , Immune Checkpoint Inhibitors/metabolism , Killer Cells, Natural , Receptors, Immunologic/metabolism , Interferon-gamma/metabolism , Disease Models, Animal
9.
Proc Natl Acad Sci U S A ; 120(13): e2216796120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943877

ABSTRACT

Programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 (PD-1) mediate T cell-dependent immunity against tumors. The abundance of cell surface PD-L1 is a key determinant of the efficacy of immune checkpoint blockade therapy targeting PD-L1. However, the regulation of cell surface PD-L1 is still poorly understood. Here, we show that lysosomal degradation of PD-L1 is regulated by O-linked N-acetylglucosamine (O-GlcNAc) during the intracellular trafficking pathway. O-GlcNAc modifies the hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), a key component of the endosomal sorting machinery, and subsequently inhibits its interaction with intracellular PD-L1, leading to impaired lysosomal degradation of PD-L1. O-GlcNAc inhibition activates T cell-mediated antitumor immunity in vitro and in immune-competent mice in a manner dependent on HGS glycosylation. Combination of O-GlcNAc inhibition with PD-L1 antibody synergistically promotes antitumor immune response. We also designed a competitive peptide inhibitor of HGS glycosylation that decreases PD-L1 expression and enhances T cell-mediated immunity against tumor cells. Collectively, our study reveals a link between O-GlcNAc and tumor immune evasion, and suggests strategies for improving PD-L1-mediated immune checkpoint blockade therapy.


Subject(s)
B7-H1 Antigen , Tumor Escape , Animals , Mice , B7-H1 Antigen/metabolism , Immune Checkpoint Inhibitors/metabolism , Lysosomes/metabolism , Cell Line, Tumor
10.
J Control Release ; 356: 272-287, 2023 04.
Article in English | MEDLINE | ID: mdl-36870541

ABSTRACT

Abundant cancer-associated fibroblasts (CAFs) in highly fibrotic breast cancer constitute an immunosuppressive barrier for T cell activity and are closely related to the failure of immune checkpoint blockade therapy (ICB). Inspired by the similar antigen-processing capacity of CAFs to professional antigen-presenting cells (APCs), a "turning foes to friends" strategy is proposed by in situ engineering immune-suppressed CAFs into immune-activated APCs for improving response rates of ICB. To achieve safe and specific CAFs engineering in vivo, a thermochromic spatiotemporal photo-controlled gene expression nanosystem was developed by self-assembly of molten eutectic mixture, chitosan andfusion plasmid. After photoactivatable gene expression, CAFs could be engineered as APCs via co-stimulatory molecule (CD86) expression, which effectively induced activation and proliferation of antigen-specific CD8 + T cells. Meanwhile, engineered CAFs could also secrete PD-L1 trap protein in situ for ICB, avoiding potential autoimmune-like disorders caused by "off-target" effects of clinically applied PD-L1 antibody. The study demonstrated that the designed nanosystem could efficiently engineer CAFs, significantly enhance the percentages of CD8+ T cells (4-folds), result in about 85% tumor inhibition rate and 83.3% survival rate at 60 days in highly fibrotic breast cancer, further inducing long-term immune memory effects and effectively inhibiting lung metastasis.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Lung Neoplasms , Humans , Female , Immune Checkpoint Inhibitors/metabolism , B7-H1 Antigen , Cancer-Associated Fibroblasts/metabolism , Immunotherapy , Lung Neoplasms/metabolism , Breast Neoplasms/metabolism , Tumor Microenvironment
11.
Nat Mater ; 22(5): 656-665, 2023 05.
Article in English | MEDLINE | ID: mdl-36959501

ABSTRACT

Tumour-derived exosomes (T-EXOs) impede immune checkpoint blockade therapies, motivating pharmacological efforts to inhibit them. Inspired by how antiviral curvature-sensing peptides disrupt membrane-enveloped virus particles in the exosome size range, we devised a broadly useful strategy that repurposes an engineered antiviral peptide to disrupt membrane-enveloped T-EXOs for synergistic cancer immunotherapy. The membrane-targeting peptide inhibits T-EXOs from various cancer types and exhibits pH-enhanced membrane disruption relevant to the tumour microenvironment. The combination of T-EXO-disrupting peptide and programmed cell death protein-1 antibody-based immune checkpoint blockade therapy improves treatment outcomes in tumour-bearing mice. Peptide-mediated disruption of T-EXOs not only reduces levels of circulating exosomal programmed death-ligand 1, but also restores CD8+ T cell effector function, prevents premetastatic niche formation and reshapes the tumour microenvironment in vivo. Our findings demonstrate that peptide-induced T-EXO depletion can enhance cancer immunotherapy and support the potential of peptide engineering for exosome-targeting applications.


Subject(s)
Exosomes , Neoplasms , Mice , Animals , Exosomes/metabolism , Immune Checkpoint Inhibitors/metabolism , Immunotherapy , Neoplasms/therapy , Peptides/pharmacology , Peptides/metabolism , Antiviral Agents , Tumor Microenvironment
12.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36787939

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) are an essential treatment for non-small cell lung cancer (NSCLC). Currently, the tumor-related intrinsic factors in response to ICIs have mostly been elucidated in tissue samples. However, tissue immune status and changes in the immune microenvironment can also be reflected and monitored through peripheral blood. METHODS: Single-cell RNA and T cell receptor (scTCR) sequencing were conducted using peripheral blood mononuclear cells (PBMCs) from 60 patients with stage IV NSCLC. Those samples were prospectively acquired from patients treated with anti-PD(L)-1 therapy for advanced lung cancer. Based on the clinical outcomes, samples were classified as durable clinical benefit (DCB) and non-durable clinical benefit (NCB). The samples constituted paired longitudinal samples, consisting of pre-treatment and on-treatment. Additionally, PBMC samples from 60 healthy donors from the Asian Immune Diversity Atlas project were used as a control. RESULTS: The dynamic changes in major cell types between pre-treatment and on-treatment PBMCs were associated with an increase in proliferating T cells and NK cells in both DCB and NCB groups. Among T cell subtypes, effector memory CD8+ T cells (CD8+ TEM_GZMK_PDCD1) were increased after ICI treatment in both DCB and NCB. From the lineage trajectory analysis, effector memory CD8+ T cells resided at the bifurcation point, which has the potential to differentiate into lineages with precursor exhausted CD8+ T cells (CD8+ TCM cells) assumed to be related to the ICI response. From the scTCR-seq, effector memory CD8+ T cells along with T cells recognizing unknown antigen expanded and composed of novel clones skewed toward dysfunctional status, especially in on-treatment samples of the DCB group. The extent of immunophenotype conversion capabilities of the TCR with effector memory CD8+ T cells showed remarkable variation in the on-treatment sample in the DCB group. CONCLUSION: A transitioning T cell subtype identified in PBMCs might be related to the prolonged ICI response. From our study, expansion of effector memory CD8+ T cells with novel TCRs in PBMCs after ICI treatment could contribute to a better clinical outcome in patients with NSCLC. This proof-of-concept research strengthens the use of non-invasive PBMCs in studying systemic changes of immune reactions related to the ICI treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/metabolism , Leukocytes, Mononuclear , CD8-Positive T-Lymphocytes , Memory T Cells , Tumor Microenvironment
13.
Front Immunol ; 14: 1108200, 2023.
Article in English | MEDLINE | ID: mdl-36742324

ABSTRACT

Acute myeloid leukemia (AML) arises from the cells of myeloid lineage and is the most frequent leukemia type in adulthood accounting for about 80% of all cases. The most common treatment strategy for the treatment of AML includes chemotherapy, in rare cases radiotherapy and stem cell and bone marrow transplantation are considered. Immune checkpoint proteins involve in the negative regulation of immune cells, leading to an escape from immune surveillance, in turn, causing failure of tumor cell elimination. Immune checkpoint inhibitors (ICIs) target the negative regulation of the immune cells and support the immune system in terms of anti-tumor immunity. Bone marrow microenvironment (BMM) bears various blood cell lineages and the interactions between these lineages and the noncellular components of BMM are considered important for AML development and progression. Administration of ICIs for the AML treatment may be a promising option by regulating BMM. In this review, we summarize the current treatment options in AML treatment and discuss the possible application of ICIs in AML treatment from the perspective of the regulation of BMM.


Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Humans , Bone Marrow/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/metabolism , Leukemia, Myeloid, Acute/therapy , Bone Marrow Transplantation , Neoplastic Stem Cells , Tumor Microenvironment
14.
Adv Sci (Weinh) ; 10(8): e2207155, 2023 03.
Article in English | MEDLINE | ID: mdl-36642843

ABSTRACT

To improve response rate of monotherapy of immune checkpoint blockade (ICB), it is necessary to find an emerging target in combination therapy. Through analyzing tumor microenvironment (TME)-related indicators, it is validated that BCAT2 shapes a noninflamed TME in bladder cancer. The outcomes of multiomics indicate that BCAT2 has an inhibitory effect on cytotoxic lymphocyte recruitment by restraining activities of proinflammatory cytokine/chemokine-related pathways and T-cell-chemotaxis pathway. Immunoassays reveal that secretion of CD8+ T-cell-related chemokines keeps a robust negative correlation with BCAT2, generating a decreasing tendency of CD8+ T cells around BCAT2+ tumor cells from far to near. Cotreatment of BCAT2 deficiency and anti-PD-1 antibody has a synergistic effect in vivo, implying the potential of BCAT2 in combination therapy. Moreover, the value of BCAT2 in predicting efficacy of immunotherapy is validated in multiple immunotherapy cohorts. Together, as a key molecule in TME, BCAT2 is an emerging target in combination with ICB and a biomarker of guiding precision therapy.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Immunotherapy , Tumor Microenvironment , B7-H1 Antigen/metabolism , B7-H1 Antigen/therapeutic use , CD8-Positive T-Lymphocytes , Chemokines/metabolism , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/metabolism , Immune Checkpoint Inhibitors/pharmacology
15.
Cancer Lett ; 554: 216021, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36455758

ABSTRACT

Tumor-associated macrophages (TAMs) play an important role in remodeling the tumor microenvironment (TME), which promotes tumor growth, immunosuppression and angiogenesis. Because of the high plasticity of macrophages and the extremely complex tumor microenvironment, the mechanism of TAMs in cancer progression is still largely unknown. In this study, we found that xCT (SLC7A11) was overexpressed in lung cancer-associated macrophages. Higher xCT in TAMs was associated with poor prognosis and was an independent predictive factor in lung cancer. In addition, lung cancer growth and progression was inhibited in xCT knockout mice, especially macrophage-specific xCT knockout mice. We also found that the deletion of macrophage xCT inhibited AKT/STAT6 signaling activation and reduced M2-type polarization of TAMs. Macrophage xCT deletion recruited more CD8+ T cells and activated the lung cancer cell-mediated and IFN-γ-induced JAK/STAT1 axis and increased the expression of its target genes, including CXCL10 and CD274. The combination of macrophage xCT deletion and anti-PDL1 antibody achieved better tumor inhibition. Finally, combining the xCT inhibitor erastin with an anti-PDL1 antibody was more potent in inhibiting lung cancer progression. Therefore, suppression of xCT may overcome resistance to cancer immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Lung Neoplasms , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/metabolism , CD8-Positive T-Lymphocytes/metabolism , Macrophages/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice, Knockout , Tumor Microenvironment , Macrophage Activation
16.
Curr Med Chem ; 30(28): 3215-3237, 2023.
Article in English | MEDLINE | ID: mdl-35986535

ABSTRACT

Immune checkpoints are vital molecules and pathways of the immune system with defined roles of controlling immune responses from being destructive to the healthy cells in the body. They include inhibitory receptors and ligands, which check the recognition of most cancers by the immune system. This happens when proteins on the surface of T cells called immune checkpoint proteins identify partner proteins on the cancer cells and bind to them, sending brake signals to the T cells to evade immune attack. However, drugs called immune checkpoint inhibitors block checkpoint proteins from binding to their partner proteins, thereby inhibiting the brake signals from being sent to T cells. This eventually allows the T cells to destroy cancer cells and arbitrate robust tumor regression. Many such inhibitors have already been approved and are in various developmental stages. The well-illustrated inhibitory checkpoints include the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1). Though many molecules blocking these checkpoints have shown promise in treating many malignancies, such treatment options have limited success in terms of the immune response in most patients. Against this backdrop, exploring new pathways and next-generation inhibitors becomes imperative for developing more responsive and effective immune checkpoint therapy. Owing to the complex biology and unexplored ambiguities in the mechanistic aspects of immune checkpoint pathways, analysis of the activity profile of new drugs is the subject of strenuous investigation. We herein report the recent progress in developing new inhibitory pathways and potential therapeutics and delineate the developments based on their merit. Further, the ensuing challenges towards developing efficacious checkpoint therapies and the impending opportunities are also discussed.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Neoplasms/drug therapy , Neoplasms/metabolism , T-Lymphocytes
17.
Front Immunol ; 13: 1069444, 2022.
Article in English | MEDLINE | ID: mdl-36685591

ABSTRACT

Introduction: Endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF), identified by its ability to support differentiation of hematopoietic cells into several types of myeloid cells, is now known to support maturation and maintain the metabolic capacity of mononuclear phagocytes including monocytes, macrophages, and dendritic cells. These cells sense and attack potential pathogens, present antigens to adaptive immune cells, and recruit other immune cells. Recombinant human (rhu) GM-CSF (e.g., sargramostim [glycosylated, yeast-derived rhu GM-CSF]) has immune modulating properties and can restore the normal function of mononuclear phagocytes rendered dysfunctional by deficient or insufficient endogenous GM-CSF. Methods: We reviewed the emerging biologic and cellular effects of GM-CSF. Experts in clinical disease areas caused by deficient or insufficient endogenous GM-CSF examined the role of GM-CSF in mononuclear phagocyte disorders including autoimmune pulmonary alveolar proteinosis (aPAP), diverse infections (including COVID-19), wound healing, and anti-cancer immune checkpoint inhibitor therapy. Results: We discuss emerging data for GM-CSF biology including the positive effects on mitochondrial function and cell metabolism, augmentation of phagocytosis and efferocytosis, and immune cell modulation. We further address how giving exogenous rhu GM-CSF may control or treat mononuclear phagocyte dysfunction disorders caused or exacerbated by GM-CSF deficiency or insufficiency. We discuss how rhu GM-CSF may augment the anti-cancer effects of immune checkpoint inhibitor immunotherapy as well as ameliorate immune-related adverse events. Discussion: We identify research gaps, opportunities, and the concept that rhu GM-CSF, by supporting and restoring the metabolic capacity and function of mononuclear phagocytes, can have significant therapeutic effects. rhu GM-CSF (e.g., sargramostim) might ameliorate multiple diseases of GM-CSF deficiency or insufficiency and address a high unmet medical need.


Subject(s)
COVID-19 , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Immune Checkpoint Inhibitors/metabolism , COVID-19/metabolism , Macrophages/metabolism , Monocytes/metabolism
18.
Front Immunol ; 13: 1065495, 2022.
Article in English | MEDLINE | ID: mdl-36713444

ABSTRACT

Objectives: Vγ9Vδ2 T-cells are a subset of T-cells with a crucial role in immunosurveillance which can be activated and expanded by multiple means to stimulate effector responses. Little is known about the expression of checkpoint molecules on this cell population and whether the ligation of these molecules can regulate their activity. The aim of this study was to assess the expression of both activatory and inhibitory receptors on Vγ9Vδ2 T-cells to assess potential avenues of regulation to target with immunotherapy. Methods: Expression of various activatory and inhibitory receptors was assessed on Vγ9Vδ2 T-cells by flow cytometry following activation and expansion using zoledronic acid (ZA) and Bacillus Calmette-Guérin (BCG). Expression of these markers and production of effector molecules was also examined following co-culture with various tumour cell targets. The effect of immune checkpoint blockade on Vγ9Vδ2 T-cells was also explored. Results: Vγ9Vδ2 T-cells expressed high levels of activatory markers both at baseline and following stimulation. Vγ9Vδ2 T-cells expressed variable levels of inhibitory checkpoint receptors with many being upregulated following stimulation. Expression of these markers is further modulated upon co-culture with tumour cells with changes reflecting activation and effector functions. Despite their high expression of inhibitory receptors when cultured with tumour cells expressing cognate ligands there was no effect on Vδ2+ T-cell cytotoxic capacity or cytokine production with immune checkpoint blockade. Conclusions: Our work suggests the expression of checkpoint receptors present on Vγ9Vδ2 T-cells which may provide a mechanism with the potential to be utilised by tumour cells to subvert Vγ9Vδ2 T-cell cytotoxicity. This work suggests important candidates for blockade by ICI therapy in order to increase the successful use of Vγ9Vδ2 T-cells in immunotherapy.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Immune Checkpoint Inhibitors/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Lymphocyte Activation , Immunotherapy , Neoplasms/therapy , Neoplasms/metabolism
19.
Cancer Immunol Immunother ; 71(1): 203-217, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34091744

ABSTRACT

BACKGROUND: Lipids have immunomodulatory functions and the potential to affect cancer immunity. METHODS: The associations of pretreatment serum cholesterol and long-chain fatty acids with the objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were evaluated in 148 patients with non-small cell lung cancer who received nivolumab. RESULTS: When each lipid was separately evaluated, increased low-density lipoprotein (LDL)-cholesterol (P < 0.001), high-density lipoprotein (HDL)-cholesterol (P = 0.014), total cholesterol (P = 0.007), lauric acid (P = 0.015), myristic acid (P = 0.022), myristoleic acid (P = 0.035), stearic acid (P = 0.028), linoleic acid (P = 0.005), arachidic acid (P = 0.027), eicosadienoic acid (P = 0.017), dihomo-γ-linolenic acid (P = 0.036), and behenic acid levels (P = 0.032) were associated with longer PFS independent of programmed death ligand 1 (PD-L1) expression. Meanwhile, increased LDL-cholesterol (P < 0.001), HDL-cholesterol (P = 0.009), total cholesterol (P = 0.036), linoleic acid (P = 0.014), and lignoceric acid levels (P = 0.028) were associated with longer OS independent of PD-L1 expression. When multiple lipids were evaluated simultaneously, LDL-cholesterol (P = 0.003), HDL-cholesterol (P = 0.036), and lauric acid (P = 0.036) were independently predictive of PFS, and LDL-cholesterol (P = 0.008) and HDL-cholesterol (P = 0.031) were predictive of OS. ORR was not associated with any serum lipid. CONCLUSIONS: Based on the association of prolonged survival in patients with increased serum cholesterol and long-chain fatty acid levels, serum lipid levels may be useful for predicting the efficacy of immune checkpoint inhibitor therapy.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Carcinoma, Non-Small-Cell Lung/blood , Cholesterol/blood , Fatty Acids/biosynthesis , Gene Expression Regulation, Neoplastic , Lung Neoplasms/blood , Nivolumab/pharmacology , Aged , Carcinoma, Non-Small-Cell Lung/drug therapy , Cholesterol, HDL/metabolism , Cholesterol, LDL/metabolism , Disease-Free Survival , Female , Humans , Immune Checkpoint Inhibitors/metabolism , Lipids/chemistry , Lung Neoplasms/drug therapy , Male , Middle Aged , Prospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL