Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48.327
1.
Pathol Oncol Res ; 30: 1611593, 2024.
Article En | MEDLINE | ID: mdl-38706776

RICTOR gene, which encodes the scaffold protein of mTORC2, can be amplified in various tumor types, including squamous cell carcinoma (SCC) of the lung. RICTOR amplification can lead to hyperactivation of mTORC2 and may serve as a targetable genetic alteration, including in lung SCC patients with no PD-L1 expression who are not expected to benefit from immune checkpoint inhibitor therapy. This study aimed to compare RICTOR amplification detected by fluorescence in situ hybridization (FISH) with Rictor and PD-L1 protein expression detected by immunohistochemistry (IHC) in SCC of the lung. The study was complemented by analysis of the publicly available Lung Squamous Cell Carcinoma (TCGA, Firehose legacy) dataset. RICTOR amplification was observed in 20% of our cases and 16% of the lung SCC cases of the TCGA dataset. Rictor and PD-L1 expression was seen in 74% and 44% of the cases, respectively. Rictor IHC showed two staining patterns: membrane staining (16% of the cases) and cytoplasmic staining (58% of the cases). Rictor membrane staining predicted RICTOR amplification as detected by FISH with high specificity (95%) and sensitivity (70%). We did not find any correlation between RICTOR amplification and PD-L1 expression; RICTOR amplification was detected in 18% and 26% of PD-L1 positive and negative cases, respectively. The TCGA dataset analysis showed similar results; RICTOR copy number correlated with Rictor mRNA and protein expression but showed no association with PD-L1 mRNA and protein expression. In conclusion, the correlation between RICTOR amplification and Rictor membrane staining suggests that the latter can potentially be used as a surrogate marker to identify lung SCC cases with RICTOR amplification. Since a significant proportion of PD-L1 negative SCC cases harbor RICTOR amplification, analyzing PD-L1 negative tumors by RICTOR FISH or Rictor IHC can help select patients who may benefit from mTORC2 inhibitor therapy.


B7-H1 Antigen , Biomarkers, Tumor , Carcinoma, Squamous Cell , Gene Amplification , Lung Neoplasms , Rapamycin-Insensitive Companion of mTOR Protein , Humans , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Male , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Middle Aged , Aged , In Situ Hybridization, Fluorescence/methods , Prognosis , Aged, 80 and over
2.
Article En | MEDLINE | ID: mdl-38821666

Cytogenetic studies have shown that human chromosomes 1, 9, and 16, with a large heterochromatic region of highly methylated classical satellite DNA, are prone to induction of chromatid breaks and interchanges by mitomycin C (MMC). A couple of studies have indicated that material from chromosome 9, and possibly also from chromosomes 1 and 16, are preferentially micronucleated by MMC. Here, we further examined the chromosome-specific induction of micronuclei (MN; with and without cytochalasin B) and chromosomal aberrations (CAs) by MMC. Cultures of isolated human lymphocytes from two male donors were treated (at 48 h of culture, for 24 h) with MMC (500 ng/ml), and the induced MN were examined by a pancentromeric DNA probe and paint probe for chromosome 9, and by paint probes for chromosomes 1 and 16. MMC increased the total frequency of MN by 6-8-fold but the frequency of chromosome 9 -positive (9+) MN by 29-30-fold and the frequency of chromosome 1 -positive (1+) MN and chromosome 16 -positive (16+) MN by 12-16-fold and 10-17-fold, respectively. After treatment with MMC, 34-47 % of all MN were 9+, 17-20 % 1+, and 3-4 % 16+. The majority (94-96 %) of the 9+ MN contained no centromere and thus harboured acentric fragments. When MMC-induced CAs aberrations were characterized by using the pancentromeric DNA probe and probes for the classical satellite region and long- and short- arm telomeres of chromosome 9, a high proportion of chromosomal breaks (31 %) and interchanges (41 %) concerned chromosome 9. In 83 % of cases, the breakpoint in chromosome 9 was just below the region (9cen-q12) labelled by the classical satellite probe. Our results indicate that MMC specifically induces MN harbouring fragments of chromosome 9, 1, and 16. CAs of chromosome 9 are highly overrepresented in metaphases of MMC-treated lymphocytes. The preferential breakpoint is below the region 9q12.


Chromosome Aberrations , Chromosomes, Human, Pair 16 , Chromosomes, Human, Pair 1 , Chromosomes, Human, Pair 9 , Micronuclei, Chromosome-Defective , Mitomycin , Humans , Mitomycin/toxicity , Mitomycin/pharmacology , Male , Chromosome Aberrations/chemically induced , Chromosome Aberrations/drug effects , Micronuclei, Chromosome-Defective/chemically induced , Micronuclei, Chromosome-Defective/drug effects , Chromosomes, Human, Pair 9/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 16/genetics , Lymphocytes/drug effects , Lymphocytes/metabolism , Adult , Micronucleus Tests , Cells, Cultured , Cytochalasin B/pharmacology , In Situ Hybridization, Fluorescence
3.
Genes Chromosomes Cancer ; 63(2): e23220, 2024 Feb.
Article En | MEDLINE | ID: mdl-38780072

Accurate diagnosis of partial hydatidiform moles (PHMs) is crucial for improving outcomes of gestational trophoblastic neoplasia. The use of short tandem repeat (STR) polymorphism analysis to distinguish between PHM and hydropic abortuses is instrumental; however, its diagnostic power has not been comprehensively assessed. Herein, we evaluated the diagnostic efficacy of STR in differentiating between PHM and hydropic abortus, thus providing an opportunity for early measurement of human chorionic gonadotropin for PHMs. We reviewed charts of STR polymorphism analysis performed on fresh villous specimens and patient blood samples using a commercial kit for 16 loci. The genetic classification of 79 PHMs was confirmed. STR was reliable in differentiating PHMs when at least 15 loci were available. Typically, PHMs are characterized by their triploidy, including two paternal and one maternal haploid contribution. In our sample, seven PHMs lacked the three-allelic loci, requiring fluorescence in situ hybridization (FISH) analysis to investigate imbalanced biparental conceptus and single-nucleotide polymorphism array analysis to reveal cytogenetic details. Of these PHMs, two, three, and one were identified as androgenetic/biparental mosaics (diploids), monospermic diandric monogynic triploids, and a typical dispermic diandric monogynic triploid, respectively. The remaining case was monospermic origin, but its ploidy details could not be available. Therefore, STR differentiated PHM from a biparental diploid abortus in most cases. However, PHM diagnosis may be compromised when STR is used as the sole method for cases displaying distinct cytogenetic patterns lacking the three-allelic loci, including androgenetic/biparental mosaicism. Therefore, FISH should be considered to confirm the diagnosis.


Hydatidiform Mole , In Situ Hybridization, Fluorescence , Microsatellite Repeats , Polymorphism, Single Nucleotide , Humans , Hydatidiform Mole/genetics , Hydatidiform Mole/diagnosis , Hydatidiform Mole/pathology , Microsatellite Repeats/genetics , Female , Pregnancy , In Situ Hybridization, Fluorescence/methods , Adult , Uterine Neoplasms/genetics , Uterine Neoplasms/diagnosis , Uterine Neoplasms/pathology , Middle Aged
4.
J Cancer Res Clin Oncol ; 150(5): 267, 2024 May 21.
Article En | MEDLINE | ID: mdl-38769118

BACKGROUND: Ewing's sarcoma (ES) is an aggressive cancer of bone and soft tissue, most of which tend to occur in the bone. Extraosseous Ewing's sarcoma (EES) of the cervix is extremely rare. CASE PRESENTATION: In the present work, we reported a 39-year-old cervical EES patient with a 2.5*2.1*1.8 cm tumor mass. According to previous literatures, our case is the smallest tumor found in primary cervical ES ever. The patient initially came to our hospital due to vaginal bleeding, and then the gynecological examination found a neoplasm between the cervical canal and partially in the external cervical orifice. The diagnosis of EES was confirmed below: Hematoxylin & Eosin staining (H&E) revealed small round blue malignant cells in biopsy specimens. Immunohistochemistry (IHC) showed the positive staining for CD99, NKX2.2, and FLI1. Disruption of EWSR1 gene was found by fluorescence in situ hybridization (FISH), and the EWSR1-FLI1 gene fusion was determined by next-generation sequencing (NGS). The patient received laparoscopic wide hysterectomy, bilateral adnexectomy, pelvic lymphadenectomy, and postoperative adjuvant chemotherapy and remained disease free with regular follow-up for 1 year. CONCLUSIONS: Through a systematic review of previously reported cervical ES and this case, we highlighted the importance of FISH and NGS for the accuracy of ESS diagnosis, which could assist on the optimal treatment strategy. However, due to the rarity of the disease, there is no standard treatment schemes. Investigation on molecular pathological diagnosis and standardization of treatment regimens for cervical ES are critical to patients' prognosis.


Sarcoma, Ewing , Uterine Cervical Neoplasms , Humans , Female , Sarcoma, Ewing/pathology , Sarcoma, Ewing/genetics , Sarcoma, Ewing/diagnosis , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/surgery , Adult , Oncogene Proteins, Fusion/genetics , Homeobox Protein Nkx-2.2 , RNA-Binding Protein EWS/genetics , In Situ Hybridization, Fluorescence , Transcription Factors/genetics , Proto-Oncogene Protein c-fli-1/genetics , Nuclear Proteins , Homeodomain Proteins
5.
JCO Glob Oncol ; 10: e2300269, 2024 May.
Article En | MEDLINE | ID: mdl-38754050

PURPOSE: Molecular characterization is key to optimally diagnose and manage cancer. The complexity and cost of routine genomic analysis have unfortunately limited its use and denied many patients access to precision medicine. A possible solution is to rationalize use-creating a tiered approach to testing which uses inexpensive techniques for most patients and limits expensive testing to patients with the highest needs. Here, we tested the utility of this approach to molecularly characterize pediatric glioma in a cost- and time-sensitive manner. METHODS: We used a tiered testing pipeline of immunohistochemistry (IHC), customized fusion panels or fluorescence in situ hybridization (FISH), and targeted RNA sequencing in pediatric gliomas. Two distinct diagnostic algorithms were used for low- and high-grade gliomas (LGGs and HGGs). The percentage of driver alterations identified, associated testing costs, and turnaround time (TAT) are reported. RESULTS: The tiered approach successfully characterized 96% (95 of 99) of gliomas. For 82 LGGs, IHC, targeted fusion panel or FISH, and targeted RNA sequencing solved 35% (29 of 82), 29% (24 of 82), and 30% (25 of 82) of cases, respectively. A total of 64% (53 of 82) of samples were characterized without targeted RNA sequencing. Of 17 HGG samples, 13 were characterized by IHC and four were characterized by targeted RNA sequencing. The average cost per sample was more affordable when using the tiered approach as compared with up-front targeted RNA sequencing in LGG ($405 US dollars [USD] v $745 USD) and HGGs ($282 USD v $745 USD). The average TAT per sample was also shorter using the tiered approach (10 days for LGG, 5 days for HGG v 14 days for targeted RNA sequencing). CONCLUSION: Our tiered approach molecularly characterized 96% of samples in a cost- and time-sensitive manner. Such an approach may be feasible in neuro-oncology centers worldwide, particularly in resource-limited settings.


Glioma , Humans , Glioma/genetics , Glioma/diagnosis , Glioma/pathology , Child , Male , Child, Preschool , Female , Adolescent , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/economics , Brain Neoplasms/diagnosis , In Situ Hybridization, Fluorescence/economics , Infant , Immunohistochemistry/economics , Health Resources/economics , Sequence Analysis, RNA/economics , Resource-Limited Settings
6.
J Pathol Clin Res ; 10(3): e12376, 2024 May.
Article En | MEDLINE | ID: mdl-38738521

The identification of gene fusions has become an integral part of soft tissue and bone tumour diagnosis. We investigated the added value of targeted RNA-based sequencing (targeted RNA-seq, Archer FusionPlex) to our current molecular diagnostic workflow of these tumours, which is based on fluorescence in situ hybridisation (FISH) for the detection of gene fusions using 25 probes. In a series of 131 diagnostic samples targeted RNA-seq identified a gene fusion, BCOR internal tandem duplication or ALK deletion in 47 cases (35.9%). For 74 cases, encompassing 137 FISH analyses, concordance between FISH and targeted RNA-seq was evaluated. A positive or negative FISH result was confirmed by targeted RNA-seq in 27 out of 49 (55.1%) and 81 out of 88 (92.0%) analyses, respectively. While negative concordance was high, targeted RNA-seq identified a canonical gene fusion in seven cases despite a negative FISH result. The 22 discordant FISH-positive analyses showed a lower percentage of rearrangement-positive nuclei (range 15-41%) compared to the concordant FISH-positive analyses (>41% of nuclei in 88.9% of cases). Six FISH analyses (in four cases) were finally considered false positive based on histological and targeted RNA-seq findings. For the EWSR1 FISH probe, we observed a gene-dependent disparity (p = 0.0020), with 8 out of 35 cases showing a discordance between FISH and targeted RNA-seq (22.9%). This study demonstrates an added value of targeted RNA-seq to our current diagnostic workflow of soft tissue and bone tumours in 19 out of 131 cases (14.5%), which we categorised as altered diagnosis (3 cases), added precision (6 cases), or augmented spectrum (10 cases). In the latter subgroup, four novel fusion transcripts were found for which the clinical relevance remains unclear: NAB2::NCOA2, YAP1::NUTM2B, HSPA8::BRAF, and PDE2A::PLAG1. Overall, targeted RNA-seq has proven extremely valuable in the diagnostic workflow of soft tissue and bone tumours.


Bone Neoplasms , In Situ Hybridization, Fluorescence , Soft Tissue Neoplasms , Workflow , Humans , Bone Neoplasms/genetics , Bone Neoplasms/diagnosis , Bone Neoplasms/pathology , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/pathology , Female , Adult , Male , Middle Aged , Adolescent , Aged , Sequence Analysis, RNA , Child , Young Adult , Gene Fusion , Biomarkers, Tumor/genetics , Child, Preschool , Aged, 80 and over , Oncogene Proteins, Fusion/genetics
7.
Methods Mol Biol ; 2807: 31-43, 2024.
Article En | MEDLINE | ID: mdl-38743219

RNA fluorescence in situ hybridization (FISH) serves as a method for visualizing specific RNA molecules within cells. Its primary utility lies in the observation of messenger RNA (mRNA) molecules associated with particular genes of significance. This technique can also be applied to examine viral transcription and the localization of said transcripts within infected cells. In this context, we provide a comprehensive protocol for the detection, localization, and quantification of HIV-1 transcripts in mammalian cell lines. This encompasses the preparation of required reagents, cellular treatments, visualization, and the subsequent analysis of the data acquired. These parameters play a pivotal role in enhancing our comprehension of the molecular processes during infection, particularly at the crucial transcription phase of the viral life cycle.


HIV-1 , In Situ Hybridization, Fluorescence , RNA, Viral , Transcription, Genetic , In Situ Hybridization, Fluorescence/methods , Humans , RNA, Viral/genetics , HIV-1/genetics , RNA, Messenger/genetics , HIV Infections/virology , Cell Line
8.
Methods Mol Biol ; 2807: 45-59, 2024.
Article En | MEDLINE | ID: mdl-38743220

Latent HIV-1 reservoirs are a major obstacle to the eradication of HIV-1. Several cure strategies have been proposed to eliminate latent reservoirs. One of the key strategies involves the reactivation of latent HIV-1 from cells using latency-reversing agents. However, currently it is unclear whether any of the latency-reversing agents are able to completely reactivate HIV-1 provirus transcription in all latent cells. An understanding of the reactivation of HIV-1 provirus at single-cell single-molecule level is necessary to fully comprehend the reactivation of HIV-1 in the reservoirs. Furthermore, since reactivable viruses in the pool of latent reservoirs are rare, combining single-cell imaging techniques with the ability to visualize a large number of reactivated single cells that express both viral RNA and proteins in a pool of uninfected and non-reactivated cells will provide unprecedented information about cell-to-cell variability in reactivation. Here, we describe the single-cell single-molecule RNA-FISH (smRNA-FISH) method to visualize HIV-1 gag RNA combined with the immunofluorescence (IF) method to detect Gag protein to characterize the reactivated cells. This method allows the visualization of subcellular localization of RNA and proteins before and after reactivation and facilitates absolute quantitation of the number of transcripts per cell using FISH-quant. In addition, we describe a high-speed and high-resolution scanning (HSHRS) fluorescence microscopy imaging method to visualize rare and reactivated cells in a pool of non-reactivated cells with high efficiency.


Fluorescent Antibody Technique , HIV-1 , In Situ Hybridization, Fluorescence , RNA, Viral , Single Molecule Imaging , Single-Cell Analysis , Virus Activation , Virus Latency , HIV-1/physiology , HIV-1/genetics , Humans , In Situ Hybridization, Fluorescence/methods , RNA, Viral/genetics , Single-Cell Analysis/methods , Single Molecule Imaging/methods , Fluorescent Antibody Technique/methods , HIV Infections/virology , Proviruses/genetics
9.
Gut Microbes ; 16(1): 2350156, 2024.
Article En | MEDLINE | ID: mdl-38726597

Extensive research has explored the role of gut microbiota in colorectal cancer (CRC). Nonetheless, metatranscriptomic studies investigating the in situ functional implications of host-microbe interactions in CRC are scarce. Therefore, we characterized the influence of CRC core pathogens and biofilms on the tumor microenvironment (TME) in 40 CRC, paired normal, and healthy tissue biopsies using fluorescence in situ hybridization (FISH) and dual-RNA sequencing. FISH revealed that Fusobacterium spp. was associated with increased bacterial biomass and inflammatory response in CRC samples. Dual-RNA sequencing demonstrated increased expression of pro-inflammatory cytokines, defensins, matrix-metalloproteases, and immunomodulatory factors in CRC samples with high bacterial activity. In addition, bacterial activity correlated with the infiltration of several immune cell subtypes, including M2 macrophages and regulatory T-cells in CRC samples. Specifically, Bacteroides fragilis and Fusobacterium nucleatum correlated with the infiltration of neutrophils and CD4+ T-cells, respectively. The collective bacterial activity/biomass appeared to exert a more significant influence on the TME than core pathogens, underscoring the intricate interplay between gut microbiota and CRC. These results emphasize how biofilms and core pathogens shape the immune phenotype and TME in CRC while highlighting the need to extend the bacterial scope beyond CRC pathogens to advance our understanding and identify treatment targets.


Biofilms , Colorectal Neoplasms , Gastrointestinal Microbiome , Tumor Microenvironment , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Humans , Biofilms/growth & development , Tumor Microenvironment/immunology , Male , Female , Bacteria/classification , Bacteria/genetics , Bacteria/immunology , Middle Aged , In Situ Hybridization, Fluorescence , Aged , Fusobacterium nucleatum/immunology , Cytokines/metabolism , Macrophages/immunology , Macrophages/microbiology , Phenotype , Bacteroides fragilis/immunology , Bacteroides fragilis/physiology , Bacteroides fragilis/genetics
10.
Nat Commun ; 15(1): 3918, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724524

Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.


In Situ Hybridization, Fluorescence , Mouse Embryonic Stem Cells , RNA, Messenger , Animals , In Situ Hybridization, Fluorescence/methods , Mice , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Single-Cell Analysis/methods , Time-Lapse Imaging/methods , Gene Expression Profiling/methods , Cell Differentiation
11.
Nat Commun ; 15(1): 3715, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698041

Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.


Bacteriophages , Ribosomes , Ribosomes/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Phytoplankton/virology , Phytoplankton/genetics , Phytoplankton/metabolism , In Situ Hybridization, Fluorescence , Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Ecosystem , Seawater/microbiology , Seawater/virology , Oceans and Seas
12.
BMC Pregnancy Childbirth ; 24(1): 338, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702634

OBJECTIVE: This study aims to perform a prenatal genetic diagnosis of a high-risk fetus with trisomy 7 identified by noninvasive prenatal testing (NIPT) and to evaluate the efficacy of different genetic testing techniques for prenatal diagnosis of trisomy mosaicism. METHODS: For prenatal diagnosis of a pregnant woman with a high risk of trisomy 7 suggested by NIPT, karyotyping and chromosomal microarray analysis (CMA) were performed on an amniotic fluid sample. Low-depth whole-genome copy number variation sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were used to clarify the results further. In addition, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was performed to analyze the possibility of uniparental disomy(UPD). RESULTS: Amniotic fluid karyotype analysis revealed a 46, XX result. Approximately 20% mosaic trisomy 7 was detected according to the CMA result. About 16% and 4% of mosaicism was detected by CNV-seq and FISH, respectively. MS-MLPA showed no methylation abnormalities. The fetal ultrasound did not show any detectable abnormalities except for mild intrauterine growth retardation seen at 39 weeks of gestation. After receiving genetic counseling, the expectant mother decided to continue the pregnancy, and follow-up within three months of delivery was normal. CONCLUSION: In high-risk NIPT diagnosis, a combination of cytogenetic and molecular genetic techniques proves fruitful in detecting low-level mosaicism. Furthermore, the exclusion of UPD on chromosome 7 remains crucial when NIPT indicates a positive prenatal diagnosis of trisomy 7.


Chromosomes, Human, Pair 7 , DNA Copy Number Variations , In Situ Hybridization, Fluorescence , Karyotyping , Mosaicism , Trisomy , Uniparental Disomy , Humans , Female , Mosaicism/embryology , Pregnancy , In Situ Hybridization, Fluorescence/methods , Chromosomes, Human, Pair 7/genetics , Trisomy/diagnosis , Trisomy/genetics , Karyotyping/methods , Adult , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Prenatal Diagnosis/methods , Microarray Analysis/methods , Noninvasive Prenatal Testing/methods , Multiplex Polymerase Chain Reaction/methods , Amniotic Fluid
13.
Front Cell Infect Microbiol ; 14: 1374817, 2024.
Article En | MEDLINE | ID: mdl-38779563

Introduction: Periodontal diseases are known to be associated with polymicrobial biofilms and inflammasome activation. A deeper understanding of the subgingival cytological (micro) landscape, the role of extracellular DNA (eDNA) during periodontitis, and contribution of the host immune eDNA to inflammasome persistence, may improve our understanding of the mechanisms underlaying severe forms of periodontitis. Methods: In this work, subgingival biolfilms developing on biologically neutral polyethylene terephthalate films placed in gingival cavities of patients with chronic periodontitis were investigated by confocal laser scanning microscopy (CLSM). This allowed examination of realistic cytological landscapes and visualization of extracellular polymeric substances (EPS) including amyloids, total proteins, carbohydrates and eDNA, as well as comparison with several single-strain in vitro model biofilms produced by oral pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus gordonii, S. sanguinis and S. mitis. Fluorescence in situ hybridization (FISH) analysis was also used to identify eDNA derived from eubacteria, streptococci and members of the Bacteroides-Porphyromonas-Prevotella (BPP) group associated with periodontitis. Results: Analysis of subgingival biofilm EPS revealed low levels of amyloids and high levels of eDNA which appears to be the main matrix component. However, bacterial eDNA contributed less than a third of the total eDNA observed, suggesting that host-derived eDNA released in neutrophil extracellular traps may be of more importance in the development of biofilms causing periodontitis. Discussion: eDNA derived from host immunocompetent cells activated at the onset of periodontitis may therefore be a major driver of bacterial persistence and pathogenesis.


Biofilms , Periodontitis , Biofilms/growth & development , Humans , Periodontitis/microbiology , Microscopy, Confocal , DNA , In Situ Hybridization, Fluorescence , Bacteria/genetics , DNA, Bacterial/genetics , Inflammasomes/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Gingiva/microbiology , Chronic Periodontitis/microbiology , Chronic Periodontitis/immunology
14.
Taiwan J Obstet Gynecol ; 63(3): 394-397, 2024 May.
Article En | MEDLINE | ID: mdl-38802205

OBJECTIVE: We present low-level mosaic trisomy 21 at amniocentesis in a pregnancy with a favorable fetal outcome. CASE REPORT: A 38-year-old, gravida 2, para 1, woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 47,XY,+21[4]/46,XY[34]. Prenatal ultrasound findings were normal. At 27 weeks of gestation, she was referred for genetic counseling, and the cultured amniocytes had a karyotype of 47,XY,+21[2]/46,XY[26]. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis on the DNA extracted from uncultured amniocytes and parental bloods excluded uniparental disomy (UPD) 21. Interphase fluorescence in situ hybridization (FISH) analysis on uncultured amniocytes revealed 30% (30/100 cells) mosaicism for trisomy 21. Array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed the result of arr 21q11.2q22.3 × 2.25, consistent with 20%-30% mosaicism for trisomy 21. The parental karyotypes were normal. The woman was advised to continue the pregnancy, and a 3510-g phenotypically normal male baby was delivered at 39 weeks of gestation. Cytogenetic analysis of the cord blood, umbilical cord and placenta revealed the karyotypes of 47,XY,+21[1]/46,XY[39], 47,XY,+21[2]/46,XY[38] and 46,XY in 40/40 cells, respectively. When follow-up at age 1 year and 2 months, the neonate was normal in phenotype and development. The peripheral blood had a karyotype of 46,XY in 40/40 cells, and interphase FISH analysis on uncultured buccal mucosal cells showed 6.4% (7/109 cells) mosaicism for trisomy 21. CONCLUSION: Low-level mosaic trisomy 21 at amniocentesis can be associated with cytogenetic discrepancy between cultured amniocytes and uncultured amniocytes, perinatal progressive decrease of the trisomy 21 cell line and a favorable fetal outcome.


Amniocentesis , Comparative Genomic Hybridization , Down Syndrome , In Situ Hybridization, Fluorescence , Mosaicism , Humans , Pregnancy , Female , Mosaicism/embryology , Adult , Down Syndrome/genetics , Down Syndrome/diagnosis , Infant, Newborn , Cell Line , Cells, Cultured , Karyotyping/methods , Amnion/cytology , Male
15.
Taiwan J Obstet Gynecol ; 63(3): 418-421, 2024 May.
Article En | MEDLINE | ID: mdl-38802211

OBJECTIVE: Herein, we present a case of mosaic trisomy 6 detected by amniocentesis. CASE REPORT: Amniocentesis (G-banding) was performed at 17 weeks of gestation; the results were 47,XY,+6[3]/46,XY[12]. Fetal screening ultrasonography showed no morphological abnormalities, and the parents desired to continue the pregnancy. The infant was delivered vaginally at 39 weeks' gestation. The male infant weighed 3002 g at birth with no morphological abnormalities. G-banding karyotype analysis performed on the infant's peripheral blood revealed 46,XY[20]. FISH analysis revealed trisomy signals on chromosome 6 in 1-4 out of 100 cells from the placenta. The single nucleotide polymorphism microarray of the umbilical cord blood revealed no abnormalities. Methylation analysis of umbilical cord blood revealed no abnormalities in PLAGL1. No disorders were observed at one year of age. CONCLUSION: When amniocentesis reveals chromosomal mosaicism, it is essential to provide a thorough fetal ultrasound examination and careful genetic counseling to support the couples' decision-making.


Amniocentesis , Chromosomes, Human, Pair 6 , Mosaicism , Trisomy , Humans , Mosaicism/embryology , Female , Pregnancy , Trisomy/genetics , Trisomy/diagnosis , Male , Adult , Chromosomes, Human, Pair 6/genetics , Infant, Newborn , Ultrasonography, Prenatal , Karyotyping , In Situ Hybridization, Fluorescence
16.
Cell Syst ; 15(5): 475-482.e6, 2024 May 15.
Article En | MEDLINE | ID: mdl-38754367

Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep-learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from multiplexed error-robust FISH (MERFISH), sequential fluorescence in situ hybridization (seqFISH), or in situ RNA sequencing (ISS) experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.


Deep Learning , Gene Expression Profiling , In Situ Hybridization, Fluorescence , Transcriptome , In Situ Hybridization, Fluorescence/methods , Transcriptome/genetics , Gene Expression Profiling/methods , Software , Humans , Single-Cell Analysis/methods , Image Processing, Computer-Assisted/methods , Single Molecule Imaging/methods , Animals , Supervised Machine Learning
17.
Genes (Basel) ; 15(5)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38790188

Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.


In Situ Hybridization, Fluorescence , Humans , Male , Female , Middle Aged , Adult , Aged , In Situ Hybridization, Fluorescence/methods , Chromosome Mapping/methods , Bone Marrow Failure Disorders/genetics , Chromosome Aberrations , Adolescent , Cytogenetic Analysis/methods , Bone Marrow Diseases/genetics , Karyotyping/methods , Young Adult
18.
Genes (Basel) ; 15(5)2024 May 20.
Article En | MEDLINE | ID: mdl-38790276

This study was conducted to evaluate the 5S rDNA site number, position, and origin of signal pattern diversity in 42 plant species using fluorescence in situ hybridization. The species were selected based on the discovery of karyotype rearrangement, or because 5S rDNA had not yet been explored the species. The chromosome number varied from 14 to 160, and the chromosome length ranged from 0.63 to 6.88 µm, with 21 species having small chromosomes (<3 µm). The chromosome numbers of three species and the 5S rDNA loci of nineteen species are reported for the first time. Six 5S rDNA signal pattern types were identified. The 5S rDNA varied and was abundant in signal site numbers (2-18), positions (distal, proximal, outside of chromosome arms), and even in signal intensity. Variation in the numbers and locations of 5S rDNA was observed in 20 species, whereas an extensive stable number and location of 5S rDNA was found in 22 species. The potential origin of the signal pattern diversity was proposed and discussed. These data characterized the variability of 5S rDNA within the karyotypes of the 42 species that exhibited chromosomal rearrangements and provided anchor points for genetic physical maps.


Chromosomes, Plant , In Situ Hybridization, Fluorescence , Karyotype , RNA, Ribosomal, 5S , Chromosomes, Plant/genetics , RNA, Ribosomal, 5S/genetics , In Situ Hybridization, Fluorescence/methods , Chromosome Mapping/methods , DNA, Ribosomal/genetics , Plants/genetics , Karyotyping/methods
19.
Int J Mol Sci ; 25(10)2024 May 19.
Article En | MEDLINE | ID: mdl-38791572

Artificial hybrids between cultivated Avena species and wild Avena macrostachya that possess genes for resistance to biotic and abiotic stresses can be important for oat breeding. For the first time, a comprehensive study of genomes of artificial fertile hybrids Avena sativa × Avena macrostachya and their parental species was carried out based on the chromosome FISH mapping of satellite DNA sequences (satDNAs) and also analysis of intragenomic polymorphism in the 18S-ITS1-5.8S rDNA region, using NGS data. Chromosome distribution patterns of marker satDNAs allowed us to identify all chromosomes in the studied karyotypes, determine their subgenomic affiliation, and detect several chromosome rearrangements. Based on the obtained cytogenomic data, we revealed differences between two A. macrostachya subgenomes and demonstrated that only one of them was inherited in the studied octoploid hybrids. Ribotype analyses showed that the second major ribotype of A. macrostachya was species-specific and was not represented in rDNA pools of the octoploids, which could be related to the allopolyploid origin of this species. Our results indicate that the use of marker satDNAs in cytogenomic studies can provide important data on genomic relationships within Avena allopolyploid species and hybrids, and also expand the potential for interspecific crosses for breeding.


Avena , Chromosomes, Plant , DNA, Satellite , Genome, Plant , DNA, Satellite/genetics , Avena/genetics , Chromosomes, Plant/genetics , Polyploidy , DNA, Ribosomal/genetics , Genetic Markers , Hybridization, Genetic , Genetic Variation , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , In Situ Hybridization, Fluorescence
20.
Chromosome Res ; 32(2): 8, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717688

Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.


Centromere , Chromosomes, Plant , DNA, Satellite , Myristica , DNA, Satellite/genetics , Centromere/genetics , Myristica/chemistry , Myristica/genetics , Histones/genetics , Tubulin/genetics , In Situ Hybridization, Fluorescence , Plant Proteins/genetics
...