Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893568

ABSTRACT

We present the synthesis of a cross-linking enzyme aggregate (CLEAS) of a peroxidase from Megathyrsus maximus (Guinea Grass) (GGP). The biocatalyst was produced using 50%v/v ethanol and 0.88%w/v glutaraldehyde for 1 h under stirring. The immobilization yield was 93.74% and the specific activity was 36.75 U mg-1. The biocatalyst surpassed by 61% the free enzyme activity at the optimal pH value (pH 6 for both preparations), becoming this increase in activity almost 10-fold at pH 9. GGP-CLEAS exhibited a higher thermal stability (2-4 folds) and was more stable towards hydrogen peroxide than the free enzyme (2-3 folds). GGP-CLEAS removes over 80% of 0.05 mM indigo carmine at pH 5, in the presence of 0.55 mM H2O2 after 60 min of reaction, a much higher value than when using the free enzyme. The operational stability showed a decrease of enzyme activity (over 60% in 4 cycles), very likely related to suicide inhibition.


Subject(s)
Enzymes, Immobilized , Hydrogen Peroxide , Indigo Carmine , Peroxidase , Indigo Carmine/chemistry , Peroxidase/metabolism , Peroxidase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Hydrogen Peroxide/chemistry , Enzyme Stability , Cross-Linking Reagents/chemistry , Temperature , Glutaral/chemistry
2.
Chemosphere ; 353: 141538, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428533

ABSTRACT

In this work, the bioremediation of wastewater from the textile industry with indigo dye content was carried out using combined bioaugmentation, bioventilation, and biostimulation techniques. Initially, the inoculum was prepared by isolating the microorganisms from the textile wastewater in a 2 L bioreactor. Then, the respirometry technique was implemented to determine the affinity of the microorganisms and the substrate by measuring CO2 and allowed the formulation of an empirical mathematical model for the growth kinetics of the microorganism. Finally, the bioremediation was carried out in a 3 L bioreactor obtaining an indigo dye removal efficiency of 20.7 ± 1.2%, 24.0 ± 1.5%, and 29.7 ± 1.1% for equivalent wavelengths of 436 nm, 525 nm, and 620 nm. The chemical oxygen demand showed an average reduction of 88.9 ± 2.5%, going from 470.7 ± 15.6 to 52.3 ± 10.7 ppm after 30 days under constant agitation and aeration. A negative generalized exponential model was fitted to assess the affinity of the microorganism with the wastewater as a substrate by evaluating the production of CO2 during the bioremediation. Bioremediation techniques improve water discharge parameters compared to chemical treatments implemented in the industry, reducing the use of substances that can generate secondary pollution. Bioaugmentation, biostimulation, and bioventing of the textile wastewater in this study demonstrate the potential of these combined techniques to serve as an efficient alternative for indigo-contaminated wastewater in the textile industry.


Subject(s)
Indigo Carmine , Wastewater , Biodegradation, Environmental , Carbon Dioxide , Textiles , Textile Industry
3.
Rev Col Bras Cir ; 50: e20233562, 2023.
Article in English, Portuguese | MEDLINE | ID: mdl-37851759

ABSTRACT

INTRODUCTION: colonoscopy is the best method for detecting polyps, with a reduction in colorectal cancer mortality of 29% and reaching 47% for distal tumors. However, it fails to demonstrate a significant reduction in proximal colon cancer mortality, and is the most common segment with interval neoplasm. The present study aimed to evaluate the impact on detection of polyps of a second sequential evaluation of cecum and ascending colon, with or without the use of indigo carmine chromoendoscopy. METHODS: prospective, non-randomized clinical trial. Patients were divided into two groups. The first (G1) underwent a routine colonoscopy, followed by a second endoscopy assessment of ascending colon and cecum. The second group (G2) underwent a routine colonoscopy, followed by a second assessment of the ascending colon and cecum with indigo carmine chromoendoscopy. RESULTS: In total, 203 patients were analyzed, 101 in the G1 and 102 in the G2. Newer polyps were identified in both groups after the second assessment with a significantly higher number of polyps detected in the patients in the G2 (p=0.0001). The number of patients who had at least one polyp in the two endoscopic assessments was significantly higher in the G2 (53 or 52% vs 27 or 26.7%, p=0.0002). In the second endoscopic assessment, the number of polyps found was also significantly higher in the G2 (50 or 76.9%) compared to the G1 (15 or 23.1%), p<0.0001. CONCLUSIONS: the second assessment with dye-based chromoendoscopy increases the detection of polyps in the ascending colon and cecum.


Subject(s)
Adenoma , Colonic Polyps , Humans , Colon, Ascending/pathology , Colonic Polyps/diagnosis , Colonic Polyps/pathology , Indigo Carmine , Prospective Studies , Adenoma/diagnosis , Adenoma/pathology , Colonoscopy , Cecum/pathology
4.
Braz J Microbiol ; 54(3): 1559-1564, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37440124

ABSTRACT

Denim, also known as jeans, is a fabric made up of braided cotton threads dyed indigo blue, whose fibers contain approximately 10% of non-cellulosic impurities that reduce its commercial value. Microbial enzymes can act in the cleaning and desizing processes of jeans, improving their color, softness, and covering capacity. The recombinant Xylanase II (XynA2) from the aquatic bacterial Caulobacter crescentus (C. crescentus), previously characterized in terms of its biochemical features, was applied to the biotreatment of jeans to clean and degum it. The biotreatment performance was evaluated in terms of tissue weight loss, amount of reducing sugars released and analysis of the images obtained by scanning electron microscopy (SEM). Biotreated tissues, at 12 and 24 h, showed a dry weight loss of 4.9 and 6.6%, respectively. The reducing sugars amount released after XynA2 action over the jean's fibers showed statistically significant values when compared with each other and with their respective controls. SEM images clearly shown that the fabric treated for 12 h presented a smooth and polished surface, while the fabric treated for 24 h showed the cotton fibers broken, displaying severe damage to the textile. The best treatment for the jeans was in the presence of 1 U mg-1 XynA2 at pH 8 and 60 °C during 12 h. In conclusion, XynA2 of C. crescentus was satisfactorily applied for the biopolishing of denim jeans being a more sustainable alternative to the use of chemical and abrasive processes to obtain the same effects.


Subject(s)
Caulobacter crescentus , Caulobacter crescentus/genetics , Textiles , Cotton Fiber , Indigo Carmine , Coloring Agents
5.
Biosensors (Basel) ; 13(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37367020

ABSTRACT

Triturated Moringa oleifera seeds have components that adsorb recalcitrant indigo carmine dye. Coagulating proteins known as lectins (carbohydrate-binding proteins) have already been purified from the powder of these seeds, in milligram amounts. The coagulant lectin from M. oleifera seeds (cMoL) was characterized by potentiometry and scanning electron microscopy (SEM) using MOFs, or metal-organic frameworks, of [Cu3(BTC)2(H2O)3]n to immobilize cMoL and construct biosensors. The potentiometric biosensor revealed an increase in the electrochemical potential resulting from the Pt/MOF/cMoL interaction with different concentrations of galactose in the electrolytic medium. The developed aluminum batteries constructed with recycled cans degraded an indigo carmine dye solution; the oxide reduction reactions of the batteries generated Al(OH)3, promoting dye electrocoagulation. Biosensors were used to investigate cMoL interactions with a specific galactose concentration and monitored residual dye. SEM revealed the components of the electrode assembly steps. Cyclic voltammetry showed differentiated redox peaks related to dye residue quantification by cMoL. Electrochemical systems were used to evaluate cMoL interactions with galactose ligands and efficiently degraded dye. Biosensors could be used for lectin characterization and monitoring dye residues in environmental effluents of the textile industry.


Subject(s)
Lectins , Moringa oleifera , Lectins/analysis , Moringa oleifera/chemistry , Indigo Carmine/analysis , Galactose , Seeds/chemistry , Carmine/analysis
6.
Int J Mol Sci ; 23(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36293414

ABSTRACT

Indigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives. However, these processes require high temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green alternative to avoid the use of these hazardous materials and consequently prevent toxic waste generation. In this research, we obtained two novel variants of phenylacetone monooxygenase (PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These interesting results encourage us to characterize the thermal stability and enzyme kinetics of these new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC. The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing ~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use of environmentally friendly strategies to obtain a diverse variety of indigoids.


Subject(s)
Mixed Function Oxygenases , Petroleum , Mixed Function Oxygenases/metabolism , Biocatalysis , Indigo Carmine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Tryptophan/metabolism , Indoles/metabolism , Coloring Agents/metabolism , Solvents/metabolism , Petroleum/metabolism , Hazardous Substances , Alkalies/metabolism
7.
Cell Stress Chaperones ; 27(4): 417-429, 2022 07.
Article in English | MEDLINE | ID: mdl-35687225

ABSTRACT

Indigo is a bis-indolic alkaloid that has antioxidant and anti-inflammatory effects reported in literature and is a promissory compound for treating chronic inflammatory diseases. This fact prompted to investigate the effects of this alkaloid in the experimental model of Duchenne muscular dystrophy. The main aim of this study was to evaluate the potential role of the indigo on oxidative stress and related signaling pathways in primary skeletal muscle cell cultures and in the diaphragm muscle from mdx mice. The MTT and Neutral Red assays showed no indigo dose-dependent toxicities in mdx muscle cells at concentrations analyzed (3.12, 6.25, 12.50, and 25.00 µg/mL). Antioxidant effect of indigo, in mdx muscle cells and diaphragm muscle, was demonstrated by reduction in 4-HNE content, H2O2 levels, DHE reaction, and lipofuscin granules. A significant decrease in the inflammatory process was identified by a reduction on TNF and NF-κB levels, on inflammatory area, and on macrophage infiltration in the dystrophic sample, after indigo treatment. Upregulation of PGC-1α and SIRT1 in dystrophic muscle cells treated with indigo was also observed. These results suggest the potential of indigo as a therapeutic agent for muscular dystrophy, through their action anti-inflammatory, antioxidant, and modulator of SIRT1/PGC-1α pathway.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/metabolism , Disease Models, Animal , Hydrogen Peroxide/metabolism , Indigo Carmine/metabolism , Indigo Carmine/pharmacology , Indigo Carmine/therapeutic use , Indole Alkaloids/metabolism , Indole Alkaloids/pharmacology , Indole Alkaloids/therapeutic use , Mice , Mice, Inbred mdx , Models, Theoretical , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Signal Transduction , Sirtuin 1/metabolism
8.
Braz J Cardiovasc Surg ; 37(1): 20-28, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35274519

ABSTRACT

INTRODUCTION: There are many reasons to believe that the nitric oxide/guanosine 3'5' - cyclic monophosphate (or NO/cGMP) pathway on vasoplegic states is underestimated. To study indigo carmine (IC) as an alternative to methylene blue was the investigation rationale. METHODS: The IC (3mg/kg intravenous infusion) study protocol included five experimental groups; 1) Control group - saline was injected at 0 and 10 minutes; 2) IC group - IC was injected at 0 and saline at 10 minutes; 3) compound 48/80 (C48/80) group - C48/80 was injected at 0 minute and saline at 10 minutes; 4) C48/80 + IC group - C48/80 was injected at 0 minute and IC at 10 minutes; and 5) IC + C48/80 group - IC was injected at 0 minute and C48/80 at 10 minutes. The studies were carried out by registering and measuring hemodynamic and blood gasometric parameters, including continuous cardiac output. RESULTS: 1) The effects of the drugs (IC and C48/80) were more evident in the first 20 minutes of recording; 2) hypotensive responses were more pronounced in the C48/80 groups; 3) IC isolated or applied before C48/80 caused transient pulmonary hypertension; and 4) after the first 20 minutes, the pressure responses showed stability with apparent hypotension more pronounced in the C48/80 groups. Clinical observations showed significant hemodynamic instability and catastrophic anaphylactic reactions (agitation, pulmonary hypertension, severe bronchospasm, urticaria, high-intensity cyanosis, violent gastric hypersecretion, and ascites). CONCLUSION: A global results analysis showed differences between groups only in the first 20 minutes of the experiments.


Subject(s)
Anaphylaxis , Vasoplegia , Anaphylaxis/drug therapy , Animals , Hemodynamics , Humans , Indigo Carmine/adverse effects , Nitric Oxide , Swine , p-Methoxy-N-methylphenethylamine/adverse effects
9.
Environ Sci Pollut Res Int ; 29(21): 31713-31722, 2022 May.
Article in English | MEDLINE | ID: mdl-35018597

ABSTRACT

The indigo blue dye is widely used in the textile industry, specifically in jeans dyeing, the effluents of which, rich in organic pollutants with recalcitrant characteristics, end up causing several environmental impacts, requiring efficient treatments. Several pieces of research have been conducted in search of effective treatment methods, among which is electrocoagulation. This treatment consists of an electrochemical process that generates its own coagulant by applying an electric current on metallic electrodes, bypassing the use of other chemical products. The purpose of this study was to evaluate the potential use of iron slag in the electrocoagulation of a synthetic effluent containing commercial indigo blue dye and the effluent from a textile factory. The quantified parameters were color, turbidity, pH, electrical conductivity, sludge generation, phenol removal, chemical oxygen demand (COD), and total organic carbon (TOC). The electrocoagulation treatment presented a good efficiency in removing the analyzed parameters, obtaining average removal in the synthetic effluent of 85% of color and 100% of phenol after 25 min of electrolysis. For the effluent from the textile factory, average reductions of 80% of color reaching 177.54 mg Pt CoL-1, 91% of turbidity reaching 93.83 NTU (nephelometric turbidity unit), 100% of phenol, 55% of COD with a final concentration of 298.8 mg O2 L-1, and 73% of TOC with a final concentration of 56.21 mg L-1, in 60 min of electrolysis. The reduced time for removal of color and phenolic compounds in synthetic effluent demonstrates the complexity of treating the real effluent since to obtain removals of the same order a 60-min period of electrolysis was necessary. The results obtained demonstrate the potential of using iron slag as an electrode in the electrocoagulation process in order to reuse industrial waste and reduce costs in the treatment and disposal of solid waste. Thus, the slag can be seen as an alternative material to be used in electrocoagulation processes for the treatment of effluents from the textile industry under the experimental conditions presented, its only limitation being the fact that it is a waste and therefore does not have a standardization in the amounts of iron present in the alternative electrodes.


Subject(s)
Waste Disposal, Fluid , Wastewater , Coloring Agents/chemistry , Electrocoagulation , Electrodes , Indigo Carmine , Industrial Waste/analysis , Iron , Phenol , Textile Industry , Textiles , Waste Disposal, Fluid/methods , Wastewater/chemistry
11.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21200503, 2021. tab, graf
Article in English | LILACS | ID: biblio-1345485

ABSTRACT

Abstract The textile industry demonstrates a polluting potential from the planting of cotton to the release of wastewater. The presence of dyes in water bodies decreases the passage of sun rays and directly affects the photosynthetic organisms and the ecosystem. Fungi have potential in the treatment of wastewater containing dyes with complex organic structures due to enzymes that they produce. This study evaluated the use of Phanerochaete chrisosporium in the treatment of synthetic effluent from textile industry containing indigo carmine (20 mg/L). The fungus was immobilized in a semibatch reactor. Glucose was the cosubstrate employed in the experiment and it was used in the system at 1g/L at the beginning of the process and 0.5 g /L after 24 hours of reaction. Average dye removal was 84±10% and chemical oxygen demand removal was 79±14%. For nitrogen compounds, the removal efficiencies were 87±11%, 81±11% and 91±9% for ammonia, nitrite and nitrate, respectively. The pH of the medium remained in the acidic range (2.57 to 5.00) throughout the process, with the lowest values recorded in the effluent of each cycle, justified by the release of organic acids from fungi metabolism. There was contamination of the medium by bacteria (710,000 CFU/mL), but the colonies count showed a predominance of fungi (1,365,000 CFU/mL). With the use of the semibatch system after reading of glucose it was observed that the efficiency of dye removal evolved from 72±17% to 84±10%, producing a final effluent with 3.35±1.99 mg/L of indigo, which proves that treatment configuration analyzed is satisfactory for dye removal.


Subject(s)
Phanerochaete , Environmental Restoration and Remediation , Glucose , Indigo Carmine
12.
Acta Cir Bras ; 35(9): e202000901, 2020.
Article in English | MEDLINE | ID: mdl-32996998

ABSTRACT

PURPOSE: To evaluate the effects of treatment with Indigo Carmine (IC) on rat livers subjected to ischemia-reperfusion injury. METHODS: The animals were subdivided into 4 groups: 1.SHAM group(SH) - saline; 2.SHAM group with IC-2mg/Kg(SHIC); 3.IR group - rats submitted to ischemia and reperfusion with saline(IR); 4.IR group with IC-2mg/Kg(IRIC). The IR protocol consists of liver exposure and administration of drug or saline intravenously, followed by 60 minutes of ischemia and 15 of reperfusion. Liver samples were collected for biochemical analysis. RESULTS: State 3 of mitochondrial respiration showed a significant worsening of the IRIC group in relation to all others. State 4 showed a difference between IRIC and SHIC. The Respiratory Control Ratio showed statistical decrease in IR and IRIC versus Sham. The osmotic swelling showed significant difference between SHxIR; SHICxIRIC and SHxIRIC. There was a significant increase in ALT in the IRIC group in relation to all the others. Concerning the nitrate dosage, there was a decrease in the group treated with IC(IRxIRIC). There was no difference regarding the dosage of Malondialdehyde. CONCLUSION: IC was not able to protect mitochondria from IR injury and proved to be a potentiating agent, acting in synergy with the IR injury promoting damage to the hepatocyte membranes.


Subject(s)
Indigo Carmine , Ischemia , Reperfusion Injury , Animals , Aspartate Aminotransferases , Indigo Carmine/therapeutic use , Ischemia/drug therapy , Ischemia/prevention & control , Male , Rats , Rats, Wistar , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control
13.
Braz J Microbiol ; 51(2): 701-709, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32319044

ABSTRACT

This study proposes the treatment and valorization of denim textile effluents through a fermentative hydrogen production process. Also, the study presents the decolorizing capabilities of bacterial and fungal isolates obtained from the fermented textile effluents. The maximum hydrogen production rate was 0.23 L H2/L-d, achieving at the same time color removal. A total of thirty-five bacteria and one fungal isolate were obtained from the fermented effluents and screened for their abilities to decolorize indigo dye, used as a model molecule. From them, isolates identified as Bacillus BT5, Bacillus BT9, Lactobacillus BT20, Lysinibacillus BT32, and Aspergillus H1T showed notable decolorizing capacities. Lactobacillus BT20 reached 90% of decolorization using glucose as co-substrate after 11 days of incubation producing colorless metabolites. Bacillus BT9 was able to utilize the indigo dye as the sole carbon source achieving a maximum decolorization of 60% after 9 days of incubation and producing a red-colored metabolite. In contrast, Bacillus BT5 and Lysinibacillus BT32 exhibited the lowest percentages of decolorization, barely 33% after 16 and 11 days of incubation, respectively. When Aspergillus H1T was grown in indigo dye supplemented with glucose, 96% of decolorization was reached after 2 days. This study demonstrates the valorization of denim textile effluents for the production of hydrogen via dark fermentation with concomitant color removal.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Hydrogen/metabolism , Indigo Carmine/metabolism , Water Decolorization , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Coloring Agents/metabolism , Kinetics , Textiles/analysis , Wastewater/microbiology
14.
Braz J Med Biol Res ; 53(3): e8853, 2020.
Article in English | MEDLINE | ID: mdl-32130289

ABSTRACT

Anaphylactic shock can be defined as an acute syndrome, and it is the most severe clinical manifestation of allergic diseases. Anaphylactoid reactions are similar to anaphylactic events but differ in the pathophysiological mechanism. Nitric oxide (NO) inhibitors during anaphylaxis suggest that NO might decrease the signs and symptoms of anaphylaxis but exacerbate associated vasodilation. Therefore, blocking the effects of NO on vascular smooth muscle by inhibiting the guanylate cyclase (GC) would be a reasonable strategy. This study aimed to investigate the effects of NO/cGMP pathway inhibitors methylene blue (MB), Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), and indigo carmine (IC) in shock induced by compound 48/80 (C48/80) in rats. The effect was assessed by invasive blood pressure measurement. Shock was initiated by C48/80 intravenous bolus injection 5 min before (prophylactic) or after (treatment) the administration of the inhibitors MB (3 mg/kg), L-NAME (1 mg/kg), and IC (3 mg/kg). Of the groups that received drugs as prophylaxis for shock, only the IC group did not present the final systolic blood pressure (SBP) better than the C48/80 group. Regarding shock treatment with the drugs tested, all groups had the final SBP similar to the C48/80group. Altogether, our results suggested that inhibition of GC and NO synthase in NO production pathway was not sufficient to revert hypotension or significantly improve survival.


Subject(s)
Anaphylaxis/drug therapy , Cyclic GMP/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Muscle, Smooth, Vascular/drug effects , Nitric Oxide/antagonists & inhibitors , Animals , Disease Models, Animal , Indigo Carmine/administration & dosage , Male , Methylene Blue/administration & dosage , NG-Nitroarginine Methyl Ester/administration & dosage , Rats , Rats, Wistar
15.
Acta cir. bras. ; 35(9): e202000901, 2020. graf
Article in English | VETINDEX | ID: vti-30450

ABSTRACT

Purpose To evaluate the effects of treatment with Indigo Carmine (IC) on rat livers subjected to ischemia-reperfusion injury. Methods The animals were subdivided into 4 groups: 1.SHAM group(SH) - saline; 2.SHAM group with IC-2mg/Kg(SHIC); 3.IR group - rats submitted to ischemia and reperfusion with saline(IR); 4.IR group with IC-2mg/Kg(IRIC). The IR protocol consists of liver exposure and administration of drug or saline intravenously, followed by 60 minutes of ischemia and 15 of reperfusion. Liver samples were collected for biochemical analysis. Results State 3 of mitochondrial respiration showed a significant worsening of the IRIC group in relation to all others. State 4 showed a difference between IRIC and SHIC. The Respiratory Control Ratio showed statistical decrease in IR and IRIC versus Sham. The osmotic swelling showed significant difference between SHxIR; SHICxIRIC and SHxIRIC. There was a significant increase in ALT in the IRIC group in relation to all the others. Concerning the nitrate dosage, there was a decrease in the group treated with IC(IRxIRIC). There was no difference regarding the dosage of Malondialdehyde. Conclusion IC was not able to protect mitochondria from IR injury and proved to be a potentiating agent, acting in synergy with the IR injury promoting damage to the hepatocyte membranes.(AU)


Subject(s)
Animals , Rats , Indigo Carmine/administration & dosage , Ischemia/drug therapy , Ischemia/therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/veterinary
16.
Acta cir. bras ; Acta cir. bras;35(9): e202000901, 2020. graf
Article in English | LILACS | ID: biblio-1130681

ABSTRACT

Abstract Purpose To evaluate the effects of treatment with Indigo Carmine (IC) on rat livers subjected to ischemia-reperfusion injury. Methods The animals were subdivided into 4 groups: 1.SHAM group(SH) - saline; 2.SHAM group with IC-2mg/Kg(SHIC); 3.IR group - rats submitted to ischemia and reperfusion with saline(IR); 4.IR group with IC-2mg/Kg(IRIC). The IR protocol consists of liver exposure and administration of drug or saline intravenously, followed by 60 minutes of ischemia and 15 of reperfusion. Liver samples were collected for biochemical analysis. Results State 3 of mitochondrial respiration showed a significant worsening of the IRIC group in relation to all others. State 4 showed a difference between IRIC and SHIC. The Respiratory Control Ratio showed statistical decrease in IR and IRIC versus Sham. The osmotic swelling showed significant difference between SHxIR; SHICxIRIC and SHxIRIC. There was a significant increase in ALT in the IRIC group in relation to all the others. Concerning the nitrate dosage, there was a decrease in the group treated with IC(IRxIRIC). There was no difference regarding the dosage of Malondialdehyde. Conclusion IC was not able to protect mitochondria from IR injury and proved to be a potentiating agent, acting in synergy with the IR injury promoting damage to the hepatocyte membranes.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Indigo Carmine/therapeutic use , Ischemia/prevention & control , Ischemia/drug therapy , Aspartate Aminotransferases , Rats, Wistar
17.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(3): e8853, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089343

ABSTRACT

Anaphylactic shock can be defined as an acute syndrome, and it is the most severe clinical manifestation of allergic diseases. Anaphylactoid reactions are similar to anaphylactic events but differ in the pathophysiological mechanism. Nitric oxide (NO) inhibitors during anaphylaxis suggest that NO might decrease the signs and symptoms of anaphylaxis but exacerbate associated vasodilation. Therefore, blocking the effects of NO on vascular smooth muscle by inhibiting the guanylate cyclase (GC) would be a reasonable strategy. This study aimed to investigate the effects of NO/cGMP pathway inhibitors methylene blue (MB), Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), and indigo carmine (IC) in shock induced by compound 48/80 (C48/80) in rats. The effect was assessed by invasive blood pressure measurement. Shock was initiated by C48/80 intravenous bolus injection 5 min before (prophylactic) or after (treatment) the administration of the inhibitors MB (3 mg/kg), L-NAME (1 mg/kg), and IC (3 mg/kg). Of the groups that received drugs as prophylaxis for shock, only the IC group did not present the final systolic blood pressure (SBP) better than the C48/80 group. Regarding shock treatment with the drugs tested, all groups had the final SBP similar to the C48/80group. Altogether, our results suggested that inhibition of GC and NO synthase in NO production pathway was not sufficient to revert hypotension or significantly improve survival.


Subject(s)
Animals , Male , Rats , Cyclic GMP/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Anaphylaxis/drug therapy , Muscle, Smooth, Vascular/drug effects , Nitric Oxide/antagonists & inhibitors , Rats, Wistar , NG-Nitroarginine Methyl Ester/administration & dosage , Disease Models, Animal , Indigo Carmine/administration & dosage , Methylene Blue/administration & dosage
18.
Environ Sci Pollut Res Int ; 26(7): 7164-7176, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30649696

ABSTRACT

The aim of this study was to evaluate the performance of high purity magnesium and the magnesium-aluminum-zinc alloy AZ31 as sacrificial anodes in an electrocoagulation process with polarity change for the treatment of synthetic indigo carmine solution. It was studied the effect of the main parameters such as temperature, anodic material, current density, initial dye concentration, and agitation speed on the diminishing of indigo carmine concentration and non-purgeable organic carbon. Also, image analysis was used in conjunction with zeta potential measurements to understand the mechanism of flocs formation. The best results were 80% and 96% removal for non-purgeable organic carbon and dye content respectively at room temperature, by using turbulent regime, initial dye concentration of 100 mg L-1 and 50 A m-2 as current density with AZ31 alloy as electrodes. Particularly, high purity magnesium reached 75% in non-purgeable organic carbon removal and 86% in dye removal at the conditions described above. Finally, an additional improvement of 43% in the diminishing of the organic carbon content was observed when polarity change was used, a phenomenon that was attributed to the distribution of the oxidation reaction between electrodes, avoiding the saturation of the surface with oxide and hydroxide layers. Major areas and major fractal dimension were obtained by using a polarity change.


Subject(s)
Indigo Carmine/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Carmine , Coloring Agents , Electrocoagulation , Electrodes , Hydroxides , Magnesium/chemistry , Organic Chemicals , Oxidation-Reduction
19.
Environ Sci Pollut Res Int ; 26(28): 28614-28621, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30607838

ABSTRACT

Pistia stratiotes is a common aquatic plant of the northern region of the state of Rio de Janeiro, and its use as adsorbent material was studied in the present work. The preparation process included washing, drying, grinding, and acid activation. The sorption potential for removal of the indigo carmine dye from aqueous solutions was tested under various conditions, such as initial concentration, contact time, and temperature. The tests showed that the obtained biosorbent showed good performance for dye removal with a maximum capacity of 41.2 mg/g. The kinetic studies revealed that the pseudo-second-order equation provided the best fit of the experimental data. The Freundlich isotherm provided the best fit of the experimental sorption data for the system under study. The results obtained show that Pistia stratiotes has great potential to be used as biosorbent for the removal of dyes from aqueous solutions.


Subject(s)
Araceae/chemistry , Indigo Carmine/chemistry , Adsorption , Biomass , Coloring Agents , Desiccation , Kinetics , Temperature , Water , Water Pollutants, Chemical , Water Purification/methods
20.
Sci Rep ; 8(1): 16961, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446709

ABSTRACT

Acinetobacter baumannii is a multidrug resistant nosocomial pathogen that shows an outstanding ability to undergo genetic exchange, thereby acquiring different traits that contribute to its success. In this work, we identified genetic features of an indigo-pigmented A. baumannii strain (Ab33405) that belongs to the clonal complex CC113B/CC79P. Ab33405 possesses a high number of genes coding for antibiotic resistance and virulence factors that may contribute to its survival, not only in the human host, but also in the hospital environment. Thirteen genes conferring resistance to different antibiotic families (trimethoprim, florfenicol, ß-lactams, aminoglycosides and sulfonamide) as well as the adeIJK genes and the capsule locus (KL) and outer core locus (OCL) were identified. Ab33405 includes 250 unique genes and a significant number of elements associated with Horizontal Gene Transfer, such as insertion sequences and transposons, genomic islands and prophage sequences. Also, the indigo-pigmented uncommon phenotype that could be associated with the monooxygenase or dioxygenase enzyme coded for by the iacA gene within the iac cluster was probably conferred by insertion of a 18-kb DNA fragment into the iacG gene belonging to this cluster. The Ab33405 genome includes all type VI secretion system genes and killing assays showed the ability of Ab33045 to kill Escherichia coli. In addition, Ab33405 can modulate susceptibility antibiotics when exposed to blue light.


Subject(s)
Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Genomic Islands/genetics , Acinetobacter Infections/microbiology , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/pathogenicity , Anti-Bacterial Agents/classification , Cross Infection/microbiology , DNA Transposable Elements/genetics , Genomics/methods , Humans , Indigo Carmine/metabolism , Microbial Sensitivity Tests , Sequence Analysis, DNA , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL