Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
1.
J Nanobiotechnology ; 22(1): 558, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39267061

ABSTRACT

Breast cancer therapy has significantly advanced by targeting the programmed cell death-ligand 1/programmed cell death-1 (PD-L1/PD-1) pathway. BMS-202 (a smallmolecule PD-L1 inhibitor) induces PD-L1 dimerization to block PD-1/PD-L1 interactions, allowing the T-cell-mediated immune response to kill tumor cells. However, immunotherapy alone has limited effects. Clinically approved photodynamic therapy (PDT) activates immunity and selectively targets malignant cells. However, PDT aggravates hypoxia, which may compromise its therapeutic efficacy and promote tumor metastasis. We designed a tumor-specific delivery nanoplatform of liposomes that encapsulate the hypoxia-sensitive antitumor drug tirapazamine (TPZ) and the small-molecule immunosuppressant BMS. New indocyanine green (IR820)-loaded polyethylenimine-folic acid (PEI-FA) was complexed with TPZ and BMS-loaded liposomes via electrostatic interactions to form lipid nanocomposites. This nanoplatform can be triggered by near-infrared irradiation to induce PDT, resulting in a hypoxic tumor environment and activation of the prodrug TPZ to achieve efficient chemotherapy. The in vitro and in vivo studies demonstrated excellent combined PDT, chemotherapy, and immunotherapy effects on the regression of distant tumors and lung metastases, providing a reference method for the preparation of targeted agents for treating breast cancer.


Subject(s)
Breast Neoplasms , Immunotherapy , Liposomes , Liposomes/chemistry , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Immunotherapy/methods , Animals , Mice , Humans , Cell Line, Tumor , Photochemotherapy/methods , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/analogs & derivatives , Mice, Inbred BALB C , Tirapazamine/chemistry , Tirapazamine/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Phototherapy/methods
2.
J Nanobiotechnology ; 22(1): 542, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238020

ABSTRACT

Phototherapy is a promising antitumor modality, which consists of photothermal therapy (PTT) and photodynamic therapy (PDT). However, the efficacy of phototherapy is dramatically hampered by local hypoxia in tumors, overexpression of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand-1 (PD-L1) on tumor cells. To address these issues, self-assembled multifunctional polymeric micelles (RIMNA) were developed to co-deliver photosensitizer indocyanine green (ICG), oxygenator MnO2, IDO inhibitor NLG919, and toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). It is worth noting that RIMNA polymeric micelles had good stability, uniform morphology, superior biocompatibility, and intensified PTT/PDT effect. What's more, RIMNA-mediated IDO inhibition combined with programmed death receptor-1 (PD-1)/PD-L1 blockade considerably improved immunosuppression and promoted immune activation. RIMNA-based photoimmunotherapy synergized with PD-1 antibody could remarkably inhibit primary tumor proliferation, as well as stimulate the immunity to greatly suppress lung metastasis and distant tumor growth. This study offers an efficient method to reinforce the efficacy of phototherapy and alleviate immunosuppression, thereby bringing clinical benefits to cancer treatment.


Subject(s)
Colonic Neoplasms , Immunotherapy , Micelles , Phototherapy , Polymers , Programmed Cell Death 1 Receptor , Animals , Colonic Neoplasms/therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/drug therapy , Mice , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Polymers/chemistry , Cell Line, Tumor , Phototherapy/methods , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology , Mice, Inbred BALB C , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Female , Humans , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Lipid A/analogs & derivatives
3.
J Nanobiotechnology ; 22(1): 473, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39135024

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant tumor known for its hypoxic environment, which contributes to resistance against the anticancer drug Sorafenib (SF). Addressing SF resistance in HCC requires innovative strategies to improve tumor oxygenation and effectively deliver therapeutics. RESULTS: In our study, we explored the role of KPNA4 in mediating hypoxia-induced SF resistance in HCC. We developed hemoglobin nanoclusters (Hb-NCs) capable of carrying oxygen, loaded with indocyanine green (ICG) and SF, named HPRG@SF. In vitro, HPRG@SF targeted HCC cells, alleviated hypoxia, suppressed KPNA4 expression, and enhanced the cytotoxicity of PDT against hypoxic, SF-resistant HCC cells. In vivo experiments supported these findings, showing that HPRG@SF effectively improved the oxygenation within the tumor microenvironment and countered SF resistance through combined photodynamic therapy (PDT). CONCLUSION: The combination of Hb-NCs with ICG and SF, forming HPRG@SF, presents a potent strategy to overcome drug resistance in hepatocellular carcinoma by improving hypoxia and employing PDT. This approach not only targets the hypoxic conditions that underlie resistance but also provides a synergistic anticancer effect, highlighting its potential for clinical applications in treating resistant HCC.


Subject(s)
Carcinoma, Hepatocellular , Hemoglobins , Indocyanine Green , Liver Neoplasms , Photochemotherapy , Sorafenib , Tumor Microenvironment , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Tumor Microenvironment/drug effects , Humans , Photochemotherapy/methods , Animals , Hemoglobins/pharmacology , Cell Line, Tumor , Sorafenib/pharmacology , Sorafenib/therapeutic use , Mice , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Mice, Nude , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , alpha Karyopherins/metabolism , Drug Resistance, Neoplasm/drug effects , Nanoparticles/chemistry
4.
Int J Biol Macromol ; 278(Pt 1): 134622, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127267

ABSTRACT

Antibody therapy of anti-HER2 monoclonal antibody (mAb) has been an important strategy in treating HER2-positive cancers. However, the efficacy is restricted by many factors, including the level of HER2 expressed by tumor cells and antibody resistance. To overcome these and boost the efficacy, a novel nanoparticle (NP) was constructed in this study for combined antibody therapy of antibody and photothermal therapy (PTT). This novel NP was assembled from 1-pyrenecarboxylic acid (PCA) functionalized anti-HER2 mAb and indocyanine green (ICG), a photothermal transduction agents (PTA), by non-covalent interactions, which was named as Anti-HER2 mAb-pyrene-indocyanine green (H-P-I). Notably, the constructed H-P-I NP not only maintained the affinity and cytotoxicity of anti-HER2 mAb, but also exhibited high photothermal conversion efficiency mediated by ICG. Both in vitro and in vivo assessments confirmed that compared with monotherapy of antibody or ICG, H-P-I demonstrated preferable efficacy in treating HER2-positive cancers. Further biochemistry analysis and pathological analysis ensured the biosafety of H-P-I administration. Taked together, this study proposes a feasible method for constructing tumor-targeted nano PTA based on anti-HER2 mAb through supramolecular self-assembly strategy, achieving synergistic antibody photothermal anticancer treatment, which has the potential to be a promising candidate for combination therapy of HER2-positive cancers.


Subject(s)
Immunoconjugates , Photothermal Therapy , Receptor, ErbB-2 , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Receptor, ErbB-2/antagonists & inhibitors , Humans , Photothermal Therapy/methods , Animals , Immunoconjugates/pharmacology , Immunoconjugates/chemistry , Immunoconjugates/therapeutic use , Mice , Cell Line, Tumor , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/chemistry , Nanoparticles/chemistry , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Female , Neoplasms/therapy , Neoplasms/immunology
5.
Clin Oral Investig ; 28(8): 426, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992200

ABSTRACT

OBJECTIVES: To assess the short-term efficacy of multiple sessions of antimicrobial photodynamic therapy (aPDT), light-emitting-diode (LED) photobiomodulation, and topical ozone therapy applications following surgical regenerative treatments on clinical parameters, patient-centered outcomes, and mRNA expression levels of VEGF, IL-6, RunX2, Nell-1, and osterix in gingival crevicular fluid samples in patients with stage III/IV, grade C periodontitis. MATERIALS AND METHODS: Forty-eight systemically healthy patients were assigned into four groups to receive adjunctive modalities with regenerative periodontal surgical treatment. A 970 ± 15 nm diode laser plus indocyanine-green for aPDT group, a 626 nm LED for photobiomodulation group, and topical gaseous ozone were applied at 0, 1, 3, and 7 postoperative days and compared to control group. The clinical periodontal parameters, early wound healing index (EHI), and postoperative patients' morbidity were evaluated. The mRNA levels of biomarkers were assessed by real-time polymerase chain reaction. RESULTS: No significant difference in the clinical parameters except gingival recession (GR) was identified among the groups. For group-by-time interactions, plaque index (PI) and probing pocket depths (PD) showed significant differences (p = 0.034; p = 0.022). In sites with initial PD > 7 mm, significant differences were observed between control and photobiomodulation groups in PD (p = 0.011), between control and aPDT, and control and photobiomodulation groups in CAL at 6-month follow-up (p = 0.007; p = 0.022). The relative osterix mRNA levels showed a statistically significant difference among the treatment groups (p = 0.014). CONCLUSIONS: The additional applications of aPDT and LED after regenerative treatment of stage III/IV grade C periodontitis exhibited a more pronounced beneficial effect on clinical outcomes in deep periodontal pockets.


Subject(s)
Lasers, Semiconductor , Low-Level Light Therapy , Ozone , Photochemotherapy , Humans , Photochemotherapy/methods , Male , Female , Ozone/therapeutic use , Adult , Low-Level Light Therapy/methods , Lasers, Semiconductor/therapeutic use , Treatment Outcome , Middle Aged , Periodontitis/therapy , Indocyanine Green/therapeutic use , Combined Modality Therapy , Real-Time Polymerase Chain Reaction , Gingival Crevicular Fluid , Biomarkers , Photosensitizing Agents/therapeutic use , Wound Healing/drug effects , Periodontal Index , Interleukin-6 , Vascular Endothelial Growth Factor A/metabolism , Core Binding Factor Alpha 1 Subunit , Sp7 Transcription Factor
6.
Nano Lett ; 24(28): 8752-8762, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953881

ABSTRACT

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Polylactic Acid-Polyglycolic Acid Copolymer , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Mice , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Microspheres , Photothermal Therapy , Pneumonia, Staphylococcal/therapy , Phage Therapy/methods , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Indocyanine Green/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Administration, Inhalation , Humans , Bacteriophages/chemistry
7.
ACS Appl Mater Interfaces ; 16(28): 36142-36156, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968001

ABSTRACT

There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.


Subject(s)
Ferrous Compounds , Hyaluronic Acid , Indocyanine Green , Metallocenes , Photochemotherapy , Ferrous Compounds/chemistry , Humans , Metallocenes/chemistry , Animals , Mice , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology , Hyaluronic Acid/chemistry , Photothermal Therapy , Female , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Mice, Inbred BALB C , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Mice, Nude , Cell Line, Tumor , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Nanoparticles/chemistry , Nanoparticles/therapeutic use
8.
Nano Lett ; 24(31): 9561-9568, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39042325

ABSTRACT

The perfect integration of microbubbles for efficient ultrasound imaging and nanocarriers for intelligent tumor-targeting delivery remains a challenge in precise tumor theranostics. Herein, we exquisitely fabricated laser-activated and targeted polymersomes (abbreviated as FIP-NPs) for simultaneously encapsulating the photosensitizer indocyanine green (ICG) and the phase change agent perfluorohexane (PFH). The formulated FIP-NPs were nanosize and effectively accumulated into tumors as observed by ICG fluorescence imaging. When the temperature rose above 56 °C, the encapsulated PFH transformed from liquid to gas and the FIP-NPs underwent balloon-like enlargement without structure destruction. Impressively, the enlarged FIP-NPs fused with adjacent polymersomes to form even larger microparticles. This temperature-responsive "nano-to-micro" transformation and fusion process was clearly demonstrated, and FIP-NPs showed greatly improved ultrasound signals. More importantly, FIP-NPs achieved dramatic antitumor efficacy through ICG-mediated phototherapy. Taken together, the novel polymersomes achieved excellent ultrasound/fluorescence dual imaging-guided tumor phototherapy, providing an optimistic candidate for the application of tumor theranostics.


Subject(s)
Indocyanine Green , Optical Imaging , Phototherapy , Polymers , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Animals , Mice , Phototherapy/methods , Humans , Optical Imaging/methods , Polymers/chemistry , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Fluorocarbons/chemistry , Neoplasms/diagnostic imaging , Neoplasms/therapy , Temperature , Ultrasonography/methods , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Theranostic Nanomedicine/methods , Microbubbles/therapeutic use
9.
ACS Appl Mater Interfaces ; 16(26): 32945-32956, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912948

ABSTRACT

Photothermal therapy (PTT) is a promising cancer therapeutic approach due to its spatial selectivity and high potency. Indocyanine green (ICG) has been considered a biocompatible PTT agent. However, ICG has several challenges to hinder its clinical use including rapid blood clearance and instability to heat, light, and solvent, leading to a loss of photoactivation property and PTT efficacy. Herein, we leveraged stabilizing components, methyl-ß-cyclodextrin and liposomes, in one nanoplatform (ICD lipo) to enhance ICG stability and the photothermal therapeutic effect against cancer. Compared to ICG, ICD lipo displayed a 4.8-fold reduction in degradation in PBS solvent after 30 days and a 3.4-fold reduction in photobleaching after near-infrared laser irradiation. Moreover, in tumor-bearing mice, ICD lipo presented a 2.7-fold increase in tumor targetability and inhibited tumor growth 9.6 times more effectively than did ICG without any serious toxicity. We believe that ICD lipo could be a potential PTT agent for cancer therapeutics.


Subject(s)
Indocyanine Green , Liposomes , Photothermal Therapy , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Animals , Mice , Liposomes/chemistry , Humans , beta-Cyclodextrins/chemistry , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/pathology , Female , Mice, Inbred BALB C , Phototherapy
10.
Int J Nanomedicine ; 19: 4263-4278, 2024.
Article in English | MEDLINE | ID: mdl-38766663

ABSTRACT

Introduction: Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP). Methods: We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy. Results: We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy. Conclusion: The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.


Subject(s)
Breast Neoplasms , Indocyanine Green , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Female , Humans , Antigens, CD/metabolism , Apoferritins/chemistry , Breast Neoplasms/therapy , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Ferritins/chemistry , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , MCF-7 Cells , Nanoparticles/chemistry , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Receptors, Transferrin/metabolism
11.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702709

ABSTRACT

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Subject(s)
Carbocyanines , Mitochondria , Neoplasm Recurrence, Local , Photothermal Therapy , Prostatic Neoplasms , Male , Prostatic Neoplasms/diagnostic imaging , Photothermal Therapy/methods , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Carbocyanines/chemistry , Optical Imaging/methods , Mice , Surgery, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Mice, Nude , Mice, Inbred BALB C , Infrared Rays , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology
12.
J Nanobiotechnology ; 22(1): 146, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38566213

ABSTRACT

Thrombotic diseases impose a significant global health burden, and conventional drug-based thrombolytic therapies are encumbered by the risk of bleeding complications. In this study, we introduce a novel drug-free nanomedicine founded on tea polyphenols nanoparticles (TPNs), which exhibits multifaceted capabilities for localized photothermal thrombolysis. TPNs were synthesized through a one-pot process under mild conditions, deriving from the monomeric epigallocatechin-3-gallate (EGCG). Within this process, indocyanine green (ICG) was effectively encapsulated, exploiting multiple intermolecular interactions between EGCG and ICG. While both TPNs and ICG inherently possessed photothermal potential, their synergy significantly enhanced photothermal conversion and stability. Furthermore, the nanomedicine was functionalized with cRGD for targeted delivery to activated platelets within thrombus sites, eliciting robust thrombolysis upon laser irradiation across diverse thrombus types. Importantly, the nanomedicine's potent free radical scavenging abilities concurrently mitigated vascular inflammation, thus diminishing the risk of disease recurrence. In summary, this highly biocompatible multifunctional nanomaterial holds promise as a comprehensive approach that combines thrombolysis with anti-inflammatory actions, offering precision in thrombosis treatment.


Subject(s)
Nanomedicine , Thrombosis , Humans , Polyphenols/pharmacology , Tea , Thrombolytic Therapy , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Inflammation/drug therapy , Thrombosis/drug therapy
13.
Biomater Adv ; 158: 213792, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281322

ABSTRACT

Posterior capsule opacification (PCO), as one of the most common late complications after intraocular lens (IOL) implantation in cataract surgery, seriously affects patients' postoperative vision and surgical satisfaction, and can only be treated by laser incision of the posterior capsule. Although drug eluting coating modification have been proved to inhibit PCO effectively, the complicated coating methods and the potential toxicity of the antiproliferative drugs hinders its actual application. In this study, an indocyanine green (ICG) loaded polydopamine (PDA) coating modified IOL (IP-IOL) was designed to prevented PCO. In vitro and in vivo studies have shown that IP-IOL can effectively eliminate lens epithelial cells and significantly reduce the degree of PCO. At the same time, it still has good imaging quality and optical properties. Furthermore, both the near-infrared irradiation and ICG loaded PDA coating modified IOLs have proved to possess high biological safety to eyes. Thus, with easy preparation and safer near-infrared irradiated photothermal/photodynamic synchronous properties, such ICG loaded PDA coating provides an effective yet easier and safer PCO prevention after IOL implantation.


Subject(s)
Capsule Opacification , Lenses, Intraocular , Polymers , Humans , Capsule Opacification/prevention & control , Eye, Artificial , Indoles/therapeutic use , Indocyanine Green/therapeutic use
14.
J Burn Care Res ; 45(2): 373-383, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-37830308

ABSTRACT

Indocyanine green angiography (ICGA) has been widely employed for quantitative evaluation of the rat comb burn model, but the imaging equipment, imaging protocol, and fluorescence data interpretation of ICGA remain unsatisfactory. This study aims to provide better solutions for the application of ICGA in perfusion analysis. The rat comb burn model was established under a series of different comb contact durations, including 10, 20, 25, 30, 35, and 40 s. Indocyanine green angiography was used to analyze wound perfusion. In total, 16 rats were divided into ibuprofen and control groups for the burn model, and their perfusion was compared. A total of 16 identical models were divided into standard- and high-dose indocyanine green (ICG) groups, and ICGA was conducted to investigate the dynamic change in wound fluorescence. Escharectomy was performed under real-time fluorescence mapping and navigation. The results showed that a comb contact duration of 30 s was optimum for the burn model. Indocyanine green angiography could accurately evaluate the histologically determined depth of thermal injury and wound perfusion in the rat comb model. Digital subtraction of residual fluorescence was necessary for multiple comparisons of perfusion. Dynamic changes in fluorescence and necrotic tissues were observed more clearly by high-dose (0.5 mg/kg) ICG in angiography. In conclusion, perfusion analysis by ICGA can be used to assess the histologically determined depth of thermal injury and the impact of a specific treatment on wound perfusion. Indocyanine green angiography can help to identify necrotic tissue. The above findings and related imaging protocols lay the foundation for future research.


Subject(s)
Burns , Indocyanine Green , Animals , Rats , Indocyanine Green/therapeutic use , Burns/diagnostic imaging , Burns/drug therapy , Angiography/methods , Perfusion
15.
Acta Biomater ; 173: 482-494, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37981044

ABSTRACT

Acute kidney injury (AKI) is a prevalent condition in critically ill patients that is often associated with significant morbidity and mortality. As the lack of effective early diagnosis methods often delays AKI treatment, there is currently no definitive clinical intervention available. In this study, we aimed to address these challenges by developing a nano-system called Platelet membranes-ICG-SS31-PLGA (PISP), which was designed to selectively target to the kidney site, taking advantage of the natural tendency of platelets to accumulate at sites of vascular injury. This approach allowed for the accumulation of PISP within the kidney as the disease progresses. By incorporating ICG, the in vivo distribution of PISP can be observed for NIR diagnosis of AKI. This non-invasive imaging technique holds great promise for early detection and monitoring of AKI. Furthermore, Elamipretide (SS31) acts as a mitochondria-targeted antioxidant that protects against mitochondrial damage and reduces oxidative stress, inflammation, and apoptosis. The combination of diagnostic and therapeutic capabilities within a single nano-system makes the PISP approach a valuable tool for addressing AKI. This intervention helps to prevent the deterioration of AKI and promotes the recovery. STATEMENT OF SIGNIFICANCE.


Subject(s)
Acute Kidney Injury , Nanoparticles , Humans , Antioxidants/pharmacology , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Acute Kidney Injury/diagnosis , Acute Kidney Injury/drug therapy , Kidney , Nanoparticles/therapeutic use
16.
Photodiagnosis Photodyn Ther ; 45: 103903, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37989473

ABSTRACT

BACKGROUND: Keloid, a prevalent pathological skin lesion, presents significant challenges in terms of treatment efficacy. Photodynamic therapy (PDT), an increasingly popular adjuvant treatment, has shown significant potential in the management of various disorders, including cancer. However, the therapeutic potential of indocyanine green-mediated photodynamic therapy (ICG-PDT) for keloids has not yet been demonstrated. METHODS: In this study, we divided the experimental groups into control group, Photothermal Therapy group, Photodynamic Therapy group, and Combined Therapy group. The in vitro investigation aimed to optimize the clinical application of PDT for keloid treatment by elucidating its underlying mechanism. Subsequently, on this basis, we endeavored to manage a clinical case of keloid by employing surgical intervention in conjunction with modified ICG-PDT. RESULTS: Our investigation revealed an unexpected outcome that ICG-PDT maximally inhibited the cellular activity and migration of keloid fibroblasts only when photodynamic mechanism took effect. Additionally, the induction of autophagy and apoptosis, as well as the inhibition of collagen synthesis, were particularly evident in this experimental group. Furthermore, the above therapeutic effect could be achieved at remarkably low drug concentrations. Building upon the aforementioned experimental findings, we successfully optimized the treatment modality for the latest case and obtained a more favorable treatment outcome. CONCLUSIONS: This study investigated the mechanism of ICG-PDT treatment and optimized the in vivo treatment regimen, demonstrating the significant therapeutic potential of ICG-PDT treatment in clinical keloid treatment.


Subject(s)
Keloid , Photochemotherapy , Humans , Adjuvants, Immunologic , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Keloid/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use
17.
Adv Healthc Mater ; 13(5): e2302302, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38078359

ABSTRACT

Blood-brain-barrier (BBB) serves as a fatal guard of the central nervous system as well as a formidable obstacle for the treatment of brain diseases such as brain tumors. Cell membrane-derived nanomedicines are promising drug carriers to achieve BBB-penetrating and brain lesion targeting. However, the challenge of precise size control of such nanomedicines has severely limited their therapeutic effect and clinical application in brain diseases. To address this problem, this work develops a microfluidic mixing platform that enables the fabrication of cell membrane-derived nanovesicles with precise controllability and tunability in particle size and component. Sub-100 nm macrophage plasma membrane-derived vesicles as small as 51 nm (nanoscale macrophage vesicles, NMVs), with a narrow size distribution (polydispersity index, PDI: 0.27) and a high drug loading rate (up to 89% for indocyanine green-loaded NMVs, NMVs@ICG (ICG is indocyanine green)), are achieved through a one-step process. Compared to beyond-100 nm macrophage cell membrane vesicles (general macrophage vesicles, GMVs) prepared via the traditional methods, the new NMVs exhibits rapid (within 1 h post-injection) and enhanced orthotopic glioma targeting (up to 78% enhancement), with no extra surface modification. This work demonstrates the great potential of such real-nanoscale cell membrane-derived nanomedicines in targeted brain tumor theranostics.


Subject(s)
Brain Neoplasms , Nanoparticles , Humans , Microfluidics , Indocyanine Green/therapeutic use , Biomimetics , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology
18.
J Control Release ; 366: 142-159, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145660

ABSTRACT

Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Photochemotherapy , Humans , Female , Reactive Oxygen Species/metabolism , Hydrogels/therapeutic use , Hydrogen Peroxide , Indocyanine Green/therapeutic use , Indocyanine Green/chemistry , Breast Neoplasms/drug therapy , Heat-Shock Proteins
19.
Analyst ; 148(24): 6334-6340, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37947486

ABSTRACT

Indocyanine green (ICG), as the only Federal Drug Administration (FDA) approved fluorescence imaging agent, has been widely applied in clinics for near-infrared (NIR) fluorescence imaging-guided surgery and photothermal therapy of cancers. However, its lack of target specificity and poor photo and photothermal stabilities seriously restrict its wide application in clinical practice. Herein, we developed ICG-derived NIR fluorescent probes consisting of a cypate fluorophore and one or two cyclic-(arginine-glycine-aspartic acid) (cRGD) peptides that can specifically target αvß3 integrin for accurate diagnosis and therapy of oral tumors. Probe Cy-2RGD has been demonstrated to possess bright NIR emission, great tumor targeting capability and a photothermal effect. Moreover, it could be successfully used for effective imaging-guided surgical resection as well as photothermal therapy of oral tumors. This work could provide a valuable tool for sensitive detection and accurate treatment of malignant tumors.


Subject(s)
Indocyanine Green , Mouth Neoplasms , Humans , Indocyanine Green/therapeutic use , Photothermal Therapy , Fluorescent Dyes , Mouth Neoplasms/diagnostic imaging , Mouth Neoplasms/therapy , Optical Imaging/methods
20.
Adv Healthc Mater ; 12(28): e2301413, 2023 11.
Article in English | MEDLINE | ID: mdl-37657182

ABSTRACT

The development of smart theranostic nanoplatforms has gained great interest in effective cancer treatment against the complex tumor microenvironment (TME), including weak acidity, hypoxia, and glutathione (GSH) overexpression. Herein, a TME-responsive nanoplatform named PMICApt /ICG, based on PB:Mn&Ir@CaCO3 Aptamer /ICG, is designed for the competent synergistic photothermal therapy and photodynamic therapy (PDT) under the guidance of photothermal and magnetic resonance imaging. The nanoplatform's aptamer modification targeting the transferrin receptor and the epithelial cell adhesion molecule on breast cancer cells, and the acid degradable CaCO3 shell allow for effective tumor accumulation and TME-responsive payload release in situ. The nanoplatform also exhibits excellent PDT properties due to its ability to generate O2 and consume antioxidant GSH in tumors. Additionally, the synergistic therapy is achieved by a single wavelength of near-infrared laser. RNA sequencing is performed to identify differentially expressed genes, which show that the expressions of proliferation and migration-associated genes are inhibited, while the apoptosis and immune response gene expressions are upregulated after the synergistic treatments. This multifunctional nanoplatform that responds to the TME to realize the on-demand payload release and enhance PDT induced by TME modulation holds great promise for clinical applications in tumor therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Photochemotherapy/methods , Tumor Microenvironment , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Glutathione/pharmacology , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL