Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
J Am Chem Soc ; 146(31): 21203-21207, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39047232

ABSTRACT

The auxin-inducible degron (AID) system degrades target proteins rapidly in a controllable manner. Although this is a highly versatile technique for studying protein functionality, protein degradation with spatiotemporal resolution is not currently possible. Herein we describe a photoswitchable AID using a light-active auxin derivative for reversible and site-specific protein degradation with temporal resolution.


Subject(s)
Degrons , Indoleacetic Acids , Proteolysis , Degrons/radiation effects , Indoleacetic Acids/chemistry , Indoleacetic Acids/radiation effects , Light , Photochemical Processes , Proteolysis/radiation effects
2.
J Biol Chem ; 300(7): 107421, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815865

ABSTRACT

GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetases conjugate amino acids to acyl acid hormones to either activate or inactivate the hormone molecule. The largest subgroup of GH3 proteins modify the growth-promoting hormone auxin (indole-3-acetic acid; IAA) with the second largest class activating the defense hormone jasmonic acid (JA). The two-step reaction mechanism of GH3 proteins provides a potential proofreading mechanism to ensure fidelity of hormone modification. Examining pyrophosphate release in the first-half reaction of Arabidopsis GH3 proteins that modify IAA (AtGH3.2/YDK2, AtGH3.5/WES1, AtGH3.17/VAS2), JA (AtGH3.11/JAR1), and other acyl acids (AtGH3.7, AtGH3.12/PBS3) indicates that acyl acid-AMP intermediates are hydrolyzed into acyl acid and AMP in the absence of the amino acid, a typical feature of pre-transfer editing mechanisms. Single-turnover kinetic analysis of AtGH3.2/YDK2 and AtGH3.5/WES1 shows that non-cognate acyl acid-adenylate intermediates are more rapidly hydrolyzed than the cognate IAA-adenylate. In contrast, AtGH3.11/JAR1 only adenylates JA, not IAA. While some of the auxin-conjugating GH3 proteins in Arabidopsis (i.e., AtGH3.5/WES1) accept multiple acyl acid substrates, others, like AtGH3.2/YDK2, are specific for IAA; however, both these proteins share similar active site residues. Biochemical analysis of chimeric variants of AtGH3.2/YDK2 and AtGH3.5/WES1 indicates that the C-terminal domain contributes to selection of cognate acyl acid substrates. These findings suggest that the hydrolysis of non-cognate acyl acid-adenylate intermediates, or proofreading, proceeds via a slowed structural switch that provides a checkpoint for fidelity before the full reaction proceeds.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Indoleacetic Acids/metabolism , Indoleacetic Acids/chemistry , Oxylipins/metabolism , Oxylipins/chemistry , Plant Growth Regulators/metabolism , Cyclopentanes/metabolism , Ligases/metabolism , Ligases/chemistry , Kinetics
3.
Sci Rep ; 14(1): 6778, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514802

ABSTRACT

An indole-3-acetic acid (IAA)-glucose hydrolase, THOUSAND-GRAIN WEIGHT 6 (TGW6), negatively regulates the grain weight in rice. TGW6 has been used as a target for breeding increased rice yield. Moreover, the activity of TGW6 has been thought to involve auxin homeostasis, yet the details of this putative TGW6 activity remain unclear. Here, we show the three-dimensional structure and substrate preference of TGW6 using X-ray crystallography, thermal shift assays and fluorine nuclear magnetic resonance (19F NMR). The crystal structure of TGW6 was determined at 2.6 Å resolution and exhibited a six-bladed ß-propeller structure. Thermal shift assays revealed that TGW6 preferably interacted with indole compounds among the tested substrates, enzyme products and their analogs. Further analysis using 19F NMR with 1,134 fluorinated fragments emphasized the importance of indole fragments in recognition by TGW6. Finally, docking simulation analyses of the substrate and related fragments in the presence of TGW6 supported the interaction specificity for indole compounds. Herein, we describe the structure and substrate preference of TGW6 for interacting with indole fragments during substrate recognition. Uncovering the molecular details of TGW6 activity will stimulate the use of this enzyme for increasing crop yields and contributes to functional studies of IAA glycoconjugate hydrolases in auxin homeostasis.


Subject(s)
Glucose , Hydrolases , Plant Breeding , Indoleacetic Acids/chemistry , Indoles , Edible Grain
4.
Anal Chem ; 95(2): 1385-1394, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36577018

ABSTRACT

To fully understand the function of the phytohormone indole-3-acetic acid (IAA) in regulating plant growth and development, we need to monitor their levels and distribution with high spatial and temporal resolution. In this work, an anthracene-based fluorescent biosensor for IAA was prepared using bovine serum albumin (BSA) as a bio-template. The single linear oxygen (1O2) specifically produced by IAA catalyzed with horseradish peroxidase (HRP) turns on the fluorescence of the probe, enabling specific trace sensing of IAA in the presence of multiple structural analogues. The presence of the bio-template BSA extends the biocompatibility of the probe, enabling visual monitoring of the level and distribution signal of endogenous IAA of plants in the field of bioimaging. In addition, the strategy has shown potential for application in portable paper-based sensors and in vivo fluorescent flower culture. This work provides a technical and theoretical basis for exploring the growth regulatory mechanisms of IAA in plants at the molecular level.


Subject(s)
Indoleacetic Acids , Plants , Indoleacetic Acids/chemistry , Horseradish Peroxidase/chemistry , Plant Growth Regulators , Coloring Agents , Oxygen
5.
Nature ; 609(7927): 616-621, 2022 09.
Article in English | MEDLINE | ID: mdl-35917926

ABSTRACT

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/ultrastructure , Biological Transport/drug effects , Cryoelectron Microscopy , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Phthalimides/chemistry , Phthalimides/pharmacology , Protein Domains , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism
6.
Nature ; 609(7927): 605-610, 2022 09.
Article in English | MEDLINE | ID: mdl-35768502

ABSTRACT

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Indoleacetic Acids , Membrane Transport Proteins , Antiporters/metabolism , Arabidopsis/chemistry , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Bicarbonates/metabolism , Bile Acids and Salts/metabolism , Binding Sites , Biological Transport , Herbicides/metabolism , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Phthalimides/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/metabolism , Proline/metabolism , Protein Domains , Protein Multimerization , Protons , Sodium/metabolism , Symporters/metabolism
7.
J Struct Biol ; 214(2): 107857, 2022 06.
Article in English | MEDLINE | ID: mdl-35395410

ABSTRACT

Phytohormone indole-3-acetic acid (IAA) plays a vital role in regulating plant growth and development. Tryptophan-dependent IAA biosynthesis participates in IAA homeostasis by producing IAA via two sequential reactions, which involve a conversion of tryptophan to indole-3-pyruvic acid (IPyA) by tryptophan aminotransferase (TAA1) followed by the irreversible formation of IAA in the second reaction. Pad-1 from Solanaceae plants regulates IAA levels by catalyzing a reverse reaction of the first step of IAA biosynthesis. Pad-1 is a pyridoxal phosphate (PLP)-dependent aminotransferase, with IPyA as the amino acceptor and l-glutamine as the amino donor. Currently, the structural and functional basis for the substrate specificity of Pad-1 remains poorly understood. In this study, we carried out structural and kinetic analyses of Pad-1 from Solanum melongena. Pad-1 is a homodimeric enzyme, with coenzyme PLP present between a central large α/ß domain and a protruding small domain. The active site of Pad-1 includes a vacancy near the phosphate group (P-side) and the 3'-O (O-side) of PLP. These features are distinct from those of TAA1, which is homologous in an overall structure with Pad-1 but includes only the P-side region in the active site. Kinetic analysis suggests that P-side residues constitute a binding pocket for l-glutamine, and O-side residues of Phe124 and Ile350 are involved in the binding of IPyA. These studies illuminate distinct differences in the active site between Pad-1 and TAA1, and provide structural and functional insights into the substrate specificity of Pad-1.


Subject(s)
Transaminases , Tryptophan , Glutamine , Homeostasis/physiology , Indoleacetic Acids/chemistry , Indoles , Kinetics , Substrate Specificity , Transaminases/genetics , Transaminases/metabolism , Tryptophan Transaminase/metabolism
8.
Proteins ; 90(4): 1005-1024, 2022 04.
Article in English | MEDLINE | ID: mdl-34890079

ABSTRACT

Auxin is involved in almost every aspect of plant growth and development, from embryogenesis to senescence. Indole-3-acetic acid (IAA) is the main known natural auxin that is synthesized by enzymes tryptophan aminotransferase of arabidopsis (TAA) and YUCCA (YUC) of the flavin-containing monooxygenases family (FMO) from one of the tryptophan-dependent pathways. Genome-wide identification and comprehensive analysis of the YUC-protein family have been conducted in Coffea canephora in the present study. A total of 10 members CcYUC gene family were identified in C. canephora. Phylogenetic analysis revealed that the CcYUC protein family is evolutionarily conserved, and they consist of four groups. In contrast, bioinformatic analysis predicted a hydrophobic transmembrane helix (TMH) for one CcYUC (YUC10) member only. Isoelectric point (pI), molecular mass (Ms), signal peptide, subcellular localization, and phosphorylation sites were predicted for CcYUC proteins. YUC enzymes require the prosthetic group flavin adenine dinucleotide (FAD) and the cofactor nicotinamide adenine dinucleotide phosphate (NADPH) for their enzymatic activity. Therefore, we include the molecular docking for CcYUC2-FAD-NADPH-IPyA and yucasin, which is a specific inhibitor for YUC activity. The docking results showed FAD and NADPH binding at the big and small domain sites, respectively, in CcYUC2. IPyA binds very close to FAD along the big domain, and yucasin competes for the same site as IPA, blocking IAA production. Furthermore, in silico point mutations affect the stability of the CcYUC2-4 proteins.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Coffea , Yucca , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Coffea/genetics , Coffea/metabolism , Flavin-Adenine Dinucleotide/metabolism , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Molecular Docking Simulation , NADP/metabolism , Phylogeny , Yucca/metabolism
9.
Nat Chem Biol ; 17(12): 1230-1237, 2021 12.
Article in English | MEDLINE | ID: mdl-34556863

ABSTRACT

Cholecystokinin receptors, CCKAR and CCKBR, are important neurointestinal peptide hormone receptors and play a vital role in food intake and appetite regulation. Here, we report three crystal structures of the human CCKAR in complex with different ligands, including one peptide agonist and two small-molecule antagonists, as well as two cryo-electron microscopy structures of CCKBR-gastrin in complex with Gi2 and Gq, respectively. These structures reveal the recognition pattern of different ligand types and the molecular basis of peptide selectivity in the cholecystokinin receptor family. By comparing receptor structures in different conformational states, a stepwise activation process of cholecystokinin receptors is proposed. Combined with pharmacological data, our results provide atomic details for differential ligand recognition and receptor activation mechanisms. These insights will facilitate the discovery of potential therapeutics targeting cholecystokinin receptors.


Subject(s)
Devazepide/chemistry , Receptors, Cholecystokinin/chemistry , Amino Acid Sequence , Cryoelectron Microscopy , Crystallization , Humans , Indoleacetic Acids/chemistry , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Receptors, Cholecystokinin/genetics , Structure-Activity Relationship , Thiazoles/chemistry
10.
Mol Cell ; 81(21): 4413-4424.e5, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34480849

ABSTRACT

Based on in vitro studies, it has been demonstrated that the DSIF complex, composed of SPT4 and SPT5, regulates the elongation stage of transcription catalyzed by RNA polymerase II (RNA Pol II). The precise cellular function of SPT5 is not clear, because conventional gene depletion strategies for SPT5 result in loss of cellular viability. Using an acute inducible protein depletion strategy to circumvent this issue, we report that SPT5 loss triggers the ubiquitination and proteasomal degradation of the core RNA Pol II subunit RPB1, a process that we show to be evolutionarily conserved from yeast to human cells. RPB1 degradation requires the E3 ligase Cullin 3, the unfoldase VCP/p97, and a novel form of CDK9 kinase complex. Our study demonstrates that SPT5 stabilizes RNA Pol II specifically at promoter-proximal regions, permitting RNA Pol II release from promoters into gene bodies and providing mechanistic insight into the cellular function of SPT5 in safeguarding accurate gene expression.


Subject(s)
Cullin Proteins/metabolism , Nuclear Proteins/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Transcriptional Elongation Factors/metabolism , Animals , Cell Survival , Chromosomal Proteins, Non-Histone/metabolism , Cullin Proteins/chemistry , Fibroblasts/metabolism , Humans , Indoleacetic Acids/chemistry , Mice , Nedd4 Ubiquitin Protein Ligases/chemistry , Promoter Regions, Genetic , Proteasome Endopeptidase Complex/chemistry , Proteome , Proteomics/methods , Ubiquitin-Protein Ligases/chemistry , Valosin Containing Protein/chemistry , Valosin Containing Protein/metabolism
11.
ACS Appl Mater Interfaces ; 13(38): 45149-45160, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34520182

ABSTRACT

The removal of uremic toxins from patients with acute kidney injury is a key issue in improving the quality of life for people requiring peritoneal dialysis. The currently utilized method for the removal of uremic toxins from the human organism is hemodialysis, performed on semipermeable membranes where the uremic toxins, along with small molecules, are separated from proteins and blood cells. In this study, we describe a mixed-linker modulated synthesis of zirconium-based metal-organic frameworks for efficient removal of uremic toxins. We determined that the efficient adsorption of uremic toxins is achieved by optimizing the ratio between -amino functionalization of the UiO-66 structure with 75% of -NH2 groups within organic linker structure. The maximum adsorption of hippuric acid and 3-indoloacetic acid was achieved by UiO-66-NH2 (75%) and by UiO-66-NH2 (75%) 12.5% HCl prepared by modulated synthesis. Furthermore, UiO-66-NH2 (75%) almost completely adsorbs 3-indoloacetic acid bound to bovine serum albumin, which was used as a model protein to which uremic toxins bind in the human body. The high adsorption capacity was confirmed in recyclability test, which showed almost 80% removal of 3-indoloacetic acid after the third adsorption cycle. Furthermore, in vitro cytotoxicity tests as well as hemolytic activity assay have proven that the UiO-66-based materials can be considered as potentially safe for hemodialytic purposes in living organisms.


Subject(s)
Hippurates/isolation & purification , Indoleacetic Acids/isolation & purification , Kidneys, Artificial , Metal-Organic Frameworks/chemistry , Phthalic Acids/chemistry , Uremic Toxins/isolation & purification , Adsorption , Animals , Chlorocebus aethiops , Erythrocytes/drug effects , HEK293 Cells , Hippurates/chemistry , Humans , Indoleacetic Acids/chemistry , Metal-Organic Frameworks/chemical synthesis , Metal-Organic Frameworks/toxicity , Phthalic Acids/chemical synthesis , Phthalic Acids/toxicity , Uremic Toxins/chemistry , Vero Cells , Zirconium/chemistry
12.
Biomed Pharmacother ; 142: 112037, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34392084

ABSTRACT

Fighting cancer still relies on chemo- and radiation therapy, which is a trade-off between effective clearance of malignant cells and severe side effects on healthy tissue. Targeted cancer treatment on the other hand is a promising and refined strategy with less systemic interference. The enzyme horseradish peroxidase (HRP) exhibits cytotoxic effects on cancer cells in combination with indole-3-acetic acid (IAA). However, the plant-derived enzyme is out of bounds for medical purposes due to its foreign glycosylation pattern and resulting rapid clearance and immunogenicity. In this study, we generated recombinant, unglycosylated HRP variants in Escherichia coli using random mutagenesis and investigated their biochemical properties and suitability for cancer treatment. The cytotoxicity of the HRP-IAA enzyme prodrug system was assessed in vitro with HCT-116 human colon, FaDu human nasopharyngeal squamous cell carcinoma and murine colon adenocarcinoma cells (MC38). Extensive cytotoxicity was shown in all three cancer cell lines: the cell viability of HCT-116 and MC38 cells treated with HRP-IAA was below 1% after 24 h incubation and the surviving fraction of FaDu cells was ≤ 10% after 72 h. However, no cytotoxic effect was observed upon in vivo intratumoral application of HRP-IAA on a MC38 tumor model in C57BL/6J mice. However, we expect that targeting of HRP to the tumor by conjugation to specific antibodies or antibody fragments will reduce HRP clearance and thereby enhance therapy efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Horseradish Peroxidase/pharmacology , Indoleacetic Acids/chemistry , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Antineoplastic Agents/chemistry , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Female , HCT116 Cells , Horseradish Peroxidase/chemistry , Humans , Mice , Mice, Inbred C57BL , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Prodrugs
13.
Biomed Res Int ; 2021: 9930210, 2021.
Article in English | MEDLINE | ID: mdl-34395628

ABSTRACT

The present study was aimed at isolating endophytic fungi from the Asian culinary and medicinal plant Lilium davidii and analyzing its antifungal and plant growth-promoting effects. In this study, the fungal endophyte Acremonium sp. Ld-03 was isolated from the bulbs of L. davidii and identified through morphological and molecular analysis. The molecular and morphological analysis confirmed the endophytic fungal strain as Acremonium sp. Ld-03. Antifungal effects of Ld-03 were observed against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. The highest growth inhibition, i.e., 78.39 ± 4.21%, was observed for B. dothidea followed by 56.68 ± 4.38%, 43.62 ± 3.81%, and 20.12 ± 2.45% for B. cinerea, F. fujikuroi, and F. oxysporum, respectively. Analysis of the ethyl acetate fraction through UHPLC-LTQ-IT-MS/MS revealed putative secondary metabolites which included xanthurenic acid, valyl aspartic acid, gancidin W, peptides, and cyclic dipeptides such as valylarginine, cyclo-[L-(4-hydroxy-Pro)-L-leu], cyclo(Pro-Phe), and (3S,6S)-3-benzyl-6-(4-hydroxybenzyl)piperazine-2,5-dione. Other metabolites included (S)-3-(4-hydroxyphenyl)-2-((S)-pyrrolidine-2-carboxamido)propanoic acid, dibutyl phthalate (DBP), 9-octadecenamide, D-erythro-C18-Sphingosine, N-palmitoyl sphinganine, and hydroxypalmitoyl sphinganine. The strain Ld-03 showed indole acetic acid (IAA) production with or without the application of exogenous tryptophan. The IAA ranged from 53.12 ± 3.20 µg ml-1 to 167.71 ± 7.12 µg ml-1 under different tryptophan concentrations. The strain was able to produce siderophore, and its production was significantly decreased with increasing Fe(III) citrate concentrations in the medium. The endophytic fungal strain also showed production of organic acids and phosphate solubilization activity. Plant growth-promoting effects of the strain were evaluated on in vitro seedling growth of Allium tuberosum. Application of 40% culture dilution resulted in a significant increase in root and shoot length, i.e., 24.03 ± 2.71 mm and 37.27 ± 1.86 mm, respectively, compared to nontreated control plants. The fungal endophyte Ld-03 demonstrated the potential of conferring disease resistance and plant growth promotion. Therefore, we conclude that the isolated Acremonium sp. Ld-03 should be further investigated before utilization as a biocontrol agent and plant growth stimulator.


Subject(s)
Acremonium/chemistry , Antifungal Agents/pharmacology , Ascomycota/growth & development , Botrytis/growth & development , Fusarium/growth & development , Lilium/microbiology , Plant Growth Regulators/pharmacology , Acetates/chemistry , Acetates/pharmacology , Acremonium/isolation & purification , Acremonium/physiology , Antifungal Agents/chemistry , Ascomycota/drug effects , Botrytis/drug effects , Chive/drug effects , Chive/growth & development , Chromatography, High Pressure Liquid , Disease Resistance , Endophytes/isolation & purification , Endophytes/physiology , Fusarium/drug effects , Indoleacetic Acids/chemistry , Indoleacetic Acids/isolation & purification , Indoleacetic Acids/pharmacology , Metabolomics/methods , Microbial Sensitivity Tests , Microbial Viability/drug effects , Plant Development , Plant Growth Regulators/chemistry , Plant Growth Regulators/isolation & purification , Plant Roots/microbiology , Secondary Metabolism , Tandem Mass Spectrometry
14.
Chem Biol Drug Des ; 98(5): 722-732, 2021 11.
Article in English | MEDLINE | ID: mdl-34265158

ABSTRACT

Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that caused 1.5 million fatalities globally in 2018. New strains of Mtb resistant to all known classes of antibiotics pose a global healthcare problem. In this work, we have conjugated novel indole-3-acetic acid-based DNA primase/gyrase inhibitor with cell-penetrating peptide via cleavable and non-cleavable bonds. For non-cleavable linkage, inhibitor was conjugated with peptide via an amide bond to the N-terminus, whereas a cleavable linkage was obtained by conjugating the inhibitor through a disulfide bond. We performed the conjugation of the inhibitor either directly on a solid surface or by using solution-phase chemistry. M. smegmatis (non-pathogenic model of Mtb) was used to determine the minimal inhibitory concentration (MIC) of the synthetic conjugates. Conjugates were found more active as compared to free inhibitor molecules. Strikingly, the conjugate also impairs the development of biofilm, showing a therapeutic potential against infections caused by both planktonic and sessile forms of mycobacterium species.


Subject(s)
Antitubercular Agents/chemistry , Cell-Penetrating Peptides/chemistry , DNA Primase/chemistry , Indoleacetic Acids/chemistry , Topoisomerase II Inhibitors/chemistry , Antitubercular Agents/pharmacology , Biofilms , DNA Primase/metabolism , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Plankton , Topoisomerase II Inhibitors/metabolism
15.
Plant Mol Biol ; 107(4-5): 245-277, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34245404

ABSTRACT

KEY MESSAGE: Most known phytohormones regulate moss development. We present a comprehensive view of the synthesis and signaling pathways for the most investigated of these compounds in mosses, focusing on the model Physcomitrium patens. The last 50 years of research have shown that most of the known phytohormones are synthesized by the model moss Physcomitrium patens (formerly Physcomitrella patens) and regulate its development, in interaction with responses to biotic and abiotic stresses. Biosynthesis and signaling pathways are best described in P. patens for the three classical hormones auxins, cytokinins and abscisic acid. Furthermore, their roles in almost all steps of development, from early filament growth to gametophore development and sexual reproduction, have been the focus of much research effort over the years. Evidence of hormonal roles exist for ethylene and for CLE signaling peptides, as well as for salicylic acid, although their possible effects on development remain unclear. Production of brassinosteroids by P. patens is still debated, and modes of action for these compounds are even less known. Gibberellin biosynthesis and signaling may have been lost in P. patens, while gibberellin precursors such as ent-kaurene derivatives could be used as signals in a yet to discover pathway. As for jasmonic acid, it is not used per se as a hormone in P. patens, but its precursor OPDA appears to play a corresponding role in defense against abiotic stress. We have tried to gather a comprehensive view of the biosynthesis and signaling pathways for all these compounds in mosses, without forgetting strigolactones, the last class of plant hormones to be reported. Study of the strigolactone response in P. patens points to a novel signaling compound, the KAI2-ligand, which was likely employed as a hormone prior to land plant emergence.


Subject(s)
Bryophyta/metabolism , Plant Growth Regulators/biosynthesis , Plant Proteins/metabolism , Signal Transduction/physiology , Bryophyta/drug effects , Bryophyta/genetics , Cyclopentanes/chemistry , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Cytokinins/chemistry , Cytokinins/metabolism , Cytokinins/pharmacology , Gene Expression Regulation, Plant/drug effects , Gibberellins/chemistry , Gibberellins/metabolism , Gibberellins/pharmacology , Indoleacetic Acids/chemistry , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Molecular Structure , Oxylipins/chemistry , Oxylipins/metabolism , Oxylipins/pharmacology , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
16.
Sci Rep ; 11(1): 13094, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158557

ABSTRACT

Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class and regulates various plant growth processes. The present study investigated IAA production by the basidiomycetous yeast Rhodosporidiobolus fluvialis DMKU-CP293 using the one-factor-at-a-time (OFAT) method and response surface methodology (RSM). IAA production was optimized in shake-flask culture using a cost-effective medium containing 4.5% crude glycerol, 2% CSL and 0.55% feed-grade L-tryptophan. The optimized medium resulted in a 3.3-fold improvement in IAA production and a 3.6-fold reduction in cost compared with those obtained with a non-optimized medium. Production was then scaled up to a 15-L bioreactor and to a pilot-scale (100-L) bioreactor based on the constant impeller tip speed (Vtip) strategy. By doing so, IAA was successfully produced at a concentration of 3569.32 mg/L at the pilot scale. To the best of our knowledge, this is the first report of pilot-scale IAA production by microorganisms. In addition, we evaluated the effect of crude IAA on weed growth. The results showed that weed (Cyperus rotundus L.) growth could be inhibited by 50 mg/L of crude IAA. IAA therefore has the potential to be developed as a herbicidal bioproduct to replace the chemical herbicides that have been banned in various countries, including Thailand.


Subject(s)
Biotechnology/methods , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Basidiomycota/metabolism , Bioreactors/microbiology , Culture Media/chemistry , Indoleacetic Acids/chemistry , Plant Development/drug effects , Plant Growth Regulators/biosynthesis , Tryptophan/pharmacology , Yeasts/drug effects
17.
Molecules ; 26(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924700

ABSTRACT

Humic substances (HS) are dominant components of soil organic matter and are recognized as natural, effective growth promoters to be used in sustainable agriculture. In recent years, many efforts have been made to get insights on the relationship between HS chemical structure and their biological activity in plants using combinatory approaches. Relevant results highlight the existence of key functional groups in HS that might trigger positive local and systemic physiological responses via a complex network of hormone-like signaling pathways. The biological activity of HS finely relies on their dosage, origin, molecular size, degree of hydrophobicity and aromaticity, and spatial distribution of hydrophilic and hydrophobic domains. The molecular size of HS also impacts their mode of action in plants, as low molecular size HS can enter the root cells and directly elicit intracellular signals, while high molecular size HS bind to external cell receptors to induce molecular responses. Main targets of HS in plants are nutrient transporters, plasma membrane H+-ATPases, hormone routes, genes/enzymes involved in nitrogen assimilation, cell division, and development. This review aims to give a detailed survey of the mechanisms associated to the growth regulatory functions of HS in view of their use in sustainable technologies.


Subject(s)
Humic Substances , Animals , Humans , Hydrophobic and Hydrophilic Interactions , Indoleacetic Acids/chemistry
18.
Int J Mol Sci ; 22(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670805

ABSTRACT

The major auxin, indole-3-acetic acid (IAA), is associated with a plethora of growth and developmental processes including embryo development, expansion growth, cambial activity, and the induction of lateral root growth. Accumulation of the auxin precursor indole-3-acetamide (IAM) induces stress related processes by stimulating abscisic acid (ABA) biosynthesis. How IAM signaling is controlled is, at present, unclear. Here, we characterize the ami1rooty double mutant, that we initially generated to study the metabolic and phenotypic consequences of a simultaneous genetic blockade of the indole glucosinolate and IAM pathways in Arabidopsisthaliana. Our mass spectrometric analyses of the mutant revealed that the combination of the two mutations is not sufficient to fully prevent the conversion of IAM to IAA. The detected strong accumulation of IAM was, however, recognized to substantially impair seed development. We further show by genome-wide expression studies that the double mutant is broadly affected in its translational capacity, and that a small number of plant growth regulating transcriptional circuits are repressed by the high IAM content in the seed. In accordance with the previously described growth reduction in response to elevated IAM levels, our data support the hypothesis that IAM is a growth repressing counterpart to IAA.


Subject(s)
Gene Regulatory Networks , Indoleacetic Acids/metabolism , Organelle Biogenesis , Ribosomes/metabolism , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Germination , Indoleacetic Acids/chemistry , Metabolic Networks and Pathways , Models, Molecular , Mutation/genetics , Phenotype , Protein Biosynthesis/genetics , Reproducibility of Results , Seeds/metabolism , Transcription, Genetic
19.
Int J Biol Macromol ; 180: 339-354, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33711372

ABSTRACT

This work intends to synthesis newer guar gum indole acetate ester and design film scaffolds based on protein-polysaccharide interactions for tissue engineering applications. Guar gum indole acetate(GGIA) was synthesized for the first time from guar gum in presence of aprotic solvent activated hofmeister ions. The newer biopolymer was fully characterized in FT-IR,13C NMR, XRD and TGA analysis. High DS (Degree of Substitution, DS = 0.61) GGIA was cross-linked with hydrolyzed keratin, extracted from chicken feather wastes. Films were synthesized from different biopolymer ratios and the surface chemistry appeared interesting. Physicochemical properties for GGIA-keratin association were notable. Fully bio-based films were non-cytotoxic and exhibited excellent biocompatibility for human dermal fibroblast cell cultivations. The film scaffold showed 63% porosity and the recorded tensile strength at break was 6.4 MPa. Furthermore, the standardised film exerted superior antimicrobial activity against both the Gram-positive and Gram-negative bacteria. MICs were recorded at 130 µg/mL and 212 µg/mL for E. coli and S. aureus respectively. In summary, GGIA-keratin film scaffolds represented promising platforms for skin tissue engineering applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Biocompatible Materials/chemistry , Chickens/anatomy & histology , Esters/chemistry , Feathers/chemistry , Galactans/chemistry , Keratins/chemistry , Mannans/chemistry , Plant Gums/chemistry , Tissue Engineering/methods , Adult , Animals , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cross-Linking Reagents/chemistry , Escherichia coli/drug effects , Fibroblasts/metabolism , Humans , Indoleacetic Acids/chemistry , Keratins/isolation & purification , Microbial Sensitivity Tests , Porosity , Staphylococcus aureus/drug effects , Tensile Strength
20.
PLoS Genet ; 17(3): e1009414, 2021 03.
Article in English | MEDLINE | ID: mdl-33690632

ABSTRACT

Indole-3-acetic acid (IAA) is the most common, naturally occurring phytohormone that regulates cell division, differentiation, and senescence in plants. The capacity to synthesize IAA is also widespread among plant-associated bacterial and fungal species, which may use IAA as an effector molecule to define their relationships with plants or to coordinate their physiological behavior through cell-cell communication. Fungi, including many species that do not entertain a plant-associated life style, are also able to synthesize IAA, but the physiological role of IAA in these fungi has largely remained enigmatic. Interestingly, in this context, growth of the budding yeast Saccharomyces cerevisiae is sensitive to extracellular IAA. Here, we use a combination of various genetic approaches including chemical-genetic profiling, SAturated Transposon Analysis in Yeast (SATAY), and genetic epistasis analyses to identify the mode-of-action by which IAA inhibits growth in yeast. Surprisingly, these analyses pinpointed the target of rapamycin complex 1 (TORC1), a central regulator of eukaryotic cell growth, as the major growth-limiting target of IAA. Our biochemical analyses further demonstrate that IAA inhibits TORC1 both in vivo and in vitro. Intriguingly, we also show that yeast cells are able to synthesize IAA and specifically accumulate IAA upon entry into stationary phase. Our data therefore suggest that IAA contributes to proper entry of yeast cells into a quiescent state by acting as a metabolic inhibitor of TORC1.


Subject(s)
Fungi/drug effects , Fungi/enzymology , Indoleacetic Acids/pharmacology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , DNA Transposable Elements , Dose-Response Relationship, Drug , Enzyme Activation , Fungi/genetics , Indoleacetic Acids/chemistry , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Kinase Inhibitors/chemistry , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL