Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.167
Filter
1.
Anal Biochem ; 693: 115583, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38838931

ABSTRACT

Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a µPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The µPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the µPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.


Subject(s)
Biomarkers , Luminescent Measurements , Luminescent Measurements/methods , Humans , Biomarkers/blood , Biomarkers/analysis , Paper , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza A Virus, H7N9 Subtype/genetics , Animals , Influenza in Birds/diagnosis , Influenza in Birds/virology , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , Birds/virology , Limit of Detection , Influenza, Human/diagnosis , Influenza, Human/virology , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation
2.
J Gen Virol ; 105(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38922678

ABSTRACT

Highly pathogenic avian influenza (HPAI) H5N1 viruses are responsible for disease outbreaks in wild birds and poultry, resulting in devastating losses to the poultry sector. Since 2020, an increasing number of outbreaks of HPAI H5N1 was seen in wild birds. Infections in mammals have become more common, in most cases in carnivores after direct contact with infected birds. Although ruminants were previously not considered a host species for HPAI viruses, in March 2024 multiple outbreaks of HPAI H5N1 were detected in goats and cattle in the United States. Here, we have used primary bronchus-derived well-differentiated bovine airway epithelial cells (WD-AECs) cultured at air-liquid interface to assess the susceptibility and permissiveness of bovine epithelial cells to infection with European H5N1 virus isolates. We inoculated bovine WD-AECs with three low-passage HPAI clade 2.3.4.4b H5N1 virus isolates and detected rapid increases in viral genome loads and infectious virus during the first 24 h post-inoculation, without substantial cytopathogenic effects. Three days post-inoculation infected cells were still detectable by immunofluorescent staining. These data indicate that multiple lineages of HPAI H5N1 may have the propensity to infect the respiratory tract of cattle and support extension of avian influenza surveillance efforts to ruminants. Furthermore, this study underscores the benefit of WD-AEC cultures for pandemic preparedness by providing a rapid and animal-free assessment of the host range of an emerging pathogen.


Subject(s)
Epithelial Cells , Influenza A Virus, H5N1 Subtype , Virus Replication , Animals , Cattle , Epithelial Cells/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/isolation & purification , Cells, Cultured
3.
Emerg Infect Dis ; 30(7): 1425-1429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848249

ABSTRACT

During March and April 2024, we studied dairy cattle specimens from a single farm in Texas, USA, using multiple molecular, cell culture, and next-generation sequencing pathogen detection techniques. Here, we report evidence that highly pathogenic avian influenza A(H5N1) virus strains of clade 2.3.4.4b were the sole cause of this epizootic.


Subject(s)
Cattle Diseases , Influenza A Virus, H5N1 Subtype , Animals , Texas/epidemiology , Cattle , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Cattle Diseases/virology , Cattle Diseases/epidemiology , Phylogeny , Influenza in Birds/virology , Influenza in Birds/epidemiology , Dairying , Female
4.
Viruses ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38932187

ABSTRACT

In 2023, South Africa continued to experience sporadic cases of clade 2.3.4.4b H5N1 high-pathogenicity avian influenza (HPAI) in coastal seabirds and poultry. Active environmental surveillance determined that H5Nx, H7Nx, H9Nx, H11Nx, H6N2, and H12N2, amongst other unidentified subtypes, circulated in wild birds and ostriches in 2023, but that H5Nx was predominant. Genome sequencing and phylogenetic analysis of confirmed H5N1 HPAI cases determined that only two of the fifteen sub-genotypes that circulated in South Africa in 2021-2022 still persisted in 2023. Sub-genotype SA13 remained restricted to coastal seabirds, with accelerated mutations observed in the neuraminidase protein. SA15 caused the chicken outbreaks, but outbreaks in the Paardeberg and George areas, in the Western Cape province, and the Camperdown region of the KwaZulu-Natal province were unrelated to each other, implicating wild birds as the source. All SA15 viruses contained a truncation in the PB1-F2 gene, but in the Western Cape SA15 chicken viruses, PA-X was putatively expressed as a novel isoform with eight additional amino acids. South African clade 2.3.4.4b H5N1 viruses had comparatively fewer markers of virulence and pathogenicity compared to European strains, a possible reason why no spillover to mammals has occurred here yet.


Subject(s)
Birds , Disease Outbreaks , Genotype , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , South Africa/epidemiology , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Birds/virology , Chickens/virology , Poultry/virology , Genome, Viral , Virulence , Animals, Wild/virology , Neuraminidase/genetics , Viral Proteins/genetics
5.
Viruses ; 16(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38932223

ABSTRACT

The study involved five ferrets from one household in Poland, comprising three sick 9-week-old juveniles, their healthy mother, and another clinically normal adult, admitted to the veterinary clinic in June 2023. The juvenile ferrets displayed significant lethargy and a pronounced unwillingness to move with accompanying pulmonary distress. Prompted by concurrent outbreaks of A/H5N1 influenza virus infections in Polish cats, point-of-care tests were conducted that revealed type A influenza antigens in the throat swabs of all five ferrets. Despite treatment, one juvenile ferret exhibited dyspnea and neurological symptoms and eventually died. The two remaining ferrets recovered fully, including one severely affected showing persistent dyspnea and incoordination without fever that recovered after 11 days of treatment. In the RT-qPCR, the throat swabs collected from all surviving ferrets as well as the samples of lungs, trachea, heart, brain, pancreas, liver, and intestine of the succumbed ferret were found positive for A/H5N1 virus RNA. To our best knowledge, this is the first documented natural A/H5N1 avian influenza in domestic ferrets kept as pets. In addition, this outbreak suggests the possibility of asymptomatic A/H5N1 virus shedding by ferrets, highlighting their zoonotic potential and the advisability of excluding fresh or frozen poultry from their diet to reduce the A/H5N1 virus transmission risks.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections , Pets , Animals , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Pets/virology , Female , Male , Poland/epidemiology , Disease Outbreaks , Virus Shedding , Cats
6.
Euro Surveill ; 29(25)2024 Jun.
Article in English | MEDLINE | ID: mdl-38904109

ABSTRACT

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Subject(s)
Animals, Wild , Charadriiformes , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Finland/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Animals, Wild/virology , Charadriiformes/virology , Disease Outbreaks/veterinary , Farms , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/epidemiology , Foxes/virology , Birds/virology , Mink/virology
7.
Emerg Microbes Infect ; 13(1): 2364732, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832658

ABSTRACT

Recently, an outbreak of highly pathogenic avian influenza A (H5N1), which carries the clade 2.3.4.4b hemagglutinin (HA) gene and has been prevalent among North American bird populations since the winter of 2021, was reported in dairy cows in the United States. As of 24 May 2024, the virus has affected 63 dairy herds across nine states and has resulted in two human infections. The virus causes unusual symptoms in dairy cows, including an unexpected drop in milk production, and thick colostrum-like milk. Notably, The US Food and Drug Administration reported that around 20% of tested retail milk samples contained H5N1 viruses, with a higher percentage of positive results from regions with infected cattle herds. Data are scant regarding how effectively pasteurization inactivates the H5N1 virus in milk. Therefore, in this study, we evaluated the thermal stability of the H5 clade 2.3.4.4b viruses, along with one human H3N2 virus and other influenza subtype viruses, including H1, H3, H7, H9, and H10 subtype viruses. We also assessed the effectiveness of pasteurization in inactivating these viruses. We found that the avian H3 virus exhibits the highest thermal stability, whereas the H5N1 viruses that belong to clade 2.3.4.4b display moderate thermal stability. Importantly, our data provide direct evidence that the standard pasteurization methods used by dairy companies are effective in inactivating all tested subtypes of influenza viruses in raw milk. Our findings indicate that thermally pasteurized milk products do not pose a safety risk to consumers.


Subject(s)
Milk , Pasteurization , Animals , Pasteurization/methods , Milk/virology , Cattle , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Humans , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza in Birds/prevention & control , Influenza in Birds/epidemiology , Virus Inactivation , United States , Influenza, Human/virology , Influenza, Human/transmission , Influenza, Human/prevention & control , Influenza A virus/genetics , Influenza A virus/isolation & purification , Female
8.
Emerg Microbes Infect ; 13(1): 2361792, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38828793

ABSTRACT

Europe has suffered unprecedented epizootics of high pathogenicity avian influenza (HPAI) clade 2.3.4.4b H5N1 since Autumn 2021. As well as impacting upon commercial and wild avian species, the virus has also infected mammalian species more than ever observed previously. Mammalian species involved in spill over events have primarily been scavenging terrestrial carnivores and farmed mammalian species although marine mammals have also been affected. Alongside reports of detections of mammalian species found dead through different surveillance schemes, several mass mortality events have been reported in farmed and wild animals. In November 2022, an unusual mortality event was reported in captive bush dogs (Speothos venaticus) with clade 2.3.4.4b H5N1 HPAIV of avian origin being the causative agent. The event involved an enclosure of 15 bush dogs, 10 of which succumbed during a nine-day period with some dogs exhibiting neurological disease. Ingestion of infected meat is proposed as the most likely infection route.


Subject(s)
Animals, Wild , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections , Animals , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , United Kingdom/epidemiology , Animals, Wild/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/transmission , Canidae , Influenza in Birds/virology , Influenza in Birds/mortality , Influenza in Birds/transmission
9.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38695722

ABSTRACT

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Iceland/epidemiology , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Genotype , Animals, Wild/virology , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Genome, Viral , Birds/virology
10.
J Virol ; 98(6): e0062624, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38747601

ABSTRACT

Highly pathogenic avian influenza viruses of the H5N1 clade 2.3.4.4b were detected in North America in the winter of 2021/2022. These viruses have spread across the Americas, causing morbidity and mortality in both wild and domestic birds as well as some mammalian species, including cattle. Many surveillance programs for wildlife as well as commercial poultry operations have detected these viruses. In this study, we conducted surveillance of avian species in the urban environment in New York City. We detected highly pathogenic H5N1 viruses in six samples from four different bird species and performed whole-genome sequencing. Sequencing analysis showed the presence of multiple different genotypes. Our work highlights that the interface between animals and humans that may give rise to zoonotic infections or even pandemics is not limited to rural environments and commercial poultry operations but extends into the heart of our urban centers.IMPORTANCEWhile surveillance programs for avian influenza viruses are often focused on migratory routes and their associated stop-over locations or commercial poultry operations, many bird species-including migratory birds-frequent or live in urban green spaces and wetlands. This brings them into contact with a highly dense population of humans and pets, providing an extensive urban animal-human interface in which the general public may have little awareness of circulating infectious diseases. This study focuses on virus surveillance of this interface, combined with culturally responsive science education and community outreach.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Animals , New York City/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Genotype , Humans , Birds/virology , Whole Genome Sequencing , Animals, Wild/virology , Poultry/virology , Influenza, Human/virology , Influenza, Human/epidemiology , Genome, Viral
15.
Viruses ; 16(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38793634

ABSTRACT

Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/µL (blue light) and 1.9 × 103 copies/µL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.


Subject(s)
CRISPR-Cas Systems , Influenza in Birds , Sensitivity and Specificity , Animals , Influenza in Birds/virology , Influenza in Birds/diagnosis , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/classification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Poultry/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Chickens/virology , Birds/virology
16.
Emerg Microbes Infect ; 13(1): 2353292, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712345

ABSTRACT

ABSTRACTRapid evolution of highly pathogenic avian influenza viruses (HPAIVs) is driven by antigenic drift but also by reassortment, which might result in robust replication in and transmission to mammals. Recently, spillover of clade 2.3.4.4b HPAIV to mammals including humans, and their transmission between mammalian species has been reported. This study aimed to evaluate the pathogenicity and transmissibility of a mink-derived clade 2.3.4.4b H5N1 HPAIV isolate from Spain in pigs. Experimental infection caused interstitial pneumonia with necrotizing bronchiolitis with high titers of virus present in the lower respiratory tract and 100% seroconversion. Infected pigs shed limited amount of virus, and importantly, there was no transmission to contact pigs. Notably, critical mammalian-like adaptations such as PB2-E627 K and HA-Q222L emerged at low frequencies in principal-infected pigs. It is concluded that pigs are highly susceptible to infection with the mink-derived clade 2.3.4.4b H5N1 HPAIV and provide a favorable environment for HPAIV to acquire mammalian-like adaptations.


Subject(s)
Influenza A Virus, H5N1 Subtype , Mink , Orthomyxoviridae Infections , Swine Diseases , Animals , Mink/virology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Swine , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/isolation & purification , Swine Diseases/virology , Swine Diseases/transmission , Spain , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Shedding
18.
Res Vet Sci ; 173: 105279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704977

ABSTRACT

Emerging pathogens can threaten human and animal health, necessitating reliable surveillance schemes to enable preparedness. We evaluated the repeatability and reproducibility of a method developed previously during a single year at one study site. Hunter-harvested ducks and geese were sampled for avian influenza virus at three discrete locations in the UK. H5N1 highly pathogenic avian influenza (HPAIV) was detected in four species (mallard [Anas platyrhynchos], Eurasian teal [Anas crecca], Eurasian wigeon [Mareca penelope] and pink-footed goose [Anser brachyrhynchus]) across all three locations and two non-HPAIV H5N1, influenza A positive detections were made from a mallard and Eurasian wigeon at two locations. Virus was detected within 1-to-4 days of sampling at every location. Application of rapid diagnostic methods to samples collected from hunter-harvested waterfowl offers potential as an early warning system for the surveillance and monitoring of emerging and existing strains of avian influenza A viruses in key avian species.


Subject(s)
Ducks , Geese , Influenza in Birds , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , United Kingdom/epidemiology , Ducks/virology , Reproducibility of Results , Geese/virology , Influenza A Virus, H5N1 Subtype/isolation & purification
19.
Comp Immunol Microbiol Infect Dis ; 109: 102182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640701

ABSTRACT

In the 2021/22 winter, one H5N1 and nine H5N8 high pathogenicity avian influenza viruses (HPAIVs) of clade 2.3.3.4b were isolated from the water in crane roosts on the Izumi plain, Japan. Additionally, we isolated low pathogenicity avian influenza viruses (LPAIVs) of five subtypes: H1N1, H4N2, H4N6, H7N7, and H10N4. H5N8 HPAIVs belonging to the G2a group were isolated throughout winter, whereas H5N1 HPAIV belonging to the G2b group were isolated only in early winter. These findings suggest co-circulation of both G2a and G2b HPAIVs in early winter. Although two H7N7 LPAIVs were isolated from cranes' roost water collected on the same day, the gene constellations of the two isolates were clearly different, indicating the contemporary invasion of at least two different genotypes of H7N7 LPAIVs in the Izumi plain. This study underscores the importance of monitoring both HPAIVs and LPAIVs to understand avian influenza virus ecology in migratory waterfowl populations.


Subject(s)
Birds , Genotype , Influenza in Birds , Phylogeny , Seasons , Japan , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Birds/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Water Microbiology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza A virus/classification , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/pathogenicity , Influenza A Virus, H7N7 Subtype/isolation & purification
20.
Virol Sin ; 39(3): 358-368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679333

ABSTRACT

The recent concurrent emergence of H5N1, H5N6, and H5N8 avian influenza viruses (AIVs) has led to significant avian mortality globally. Since 2020, frequent human-animal interactions have been documented. To gain insight into the novel H5 subtype AIVs (i.e., H5N1, H5N6 and H5N8), we collected 6102 samples from various regions of China between January 2021 and September 2022, and identified 41 H5Nx strains. Comparative analyses on the evolution and biological properties of these isolates were conducted. Phylogenetic analysis revealed that the 41 H5Nx strains belonged to clade 2.3.4.4b, with 13 related to H5N1, 19 to H5N6, and 9 to H5N8. Analysis based on global 2.3.4.4b viruses showed that all the viruses described in this study were likely originated from H5N8, exhibiting a heterogeneous evolutionary history between H5N1 and H5N6 during 2015-2022 worldwide. H5N1 showed a higher rate of evolution in 2021-2022 and more sites under positive selection pressure in 2015-2022. The antigenic profiles of the novel H5N1 and H5N6 exhibited notable variations. Further hemagglutination inhibition assay suggested that some A(H5N1) viruses may be antigenically distinct from the circulating H5N6 and H5N8 strains. Mammalian challenge assays demonstrated that the H5N8 virus (21GD001_H5N8) displayed the highest pathogenicity in mice, followed by the H5N1 virus (B1557_H5N1) and then the H5N6 virus (220086_H5N6), suggesting a heterogeneous virulence profile of H5 AIVs in the mammalian hosts. Based on the above results, we speculate that A(H5N1) viruses have a higher risk of emergence in the future. Collectively, these findings unveil a new landscape of different evolutionary history and biological characteristics of novel H5 AIVs in clade 2.3.4.4b, contributing to a better understanding of designing more effective strategies for the prevention and control of novel H5 AIVs.


Subject(s)
Evolution, Molecular , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Animals , China/epidemiology , Influenza in Birds/virology , Influenza in Birds/epidemiology , Mice , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/classification , Influenza A Virus, H5N8 Subtype/isolation & purification , Virulence , Influenza A virus/genetics , Influenza A virus/pathogenicity , Influenza A virus/classification , Chickens/virology , Mice, Inbred BALB C , Female , Birds/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...