Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.028
Filter
1.
Vet Med Sci ; 10(4): e1533, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952278

ABSTRACT

BACKGROUND: Although research on the mechanism and control of pain and inflammation in fish has increased in recent years, the use of analgesic drugs is limited due to the lack of pharmacological information about analgesic drugs. Tolfenamic acid is a non-steroidal anti-inflammatory drug and can be used in fish due to its low side effect profile and superior pharmacokinetic properties. OBJECTIVES: The pharmacokinetics, bioavailability and plasma protein binding of tolfenamic acid were investigated following single intravascular (IV), intramuscular (IM) and oral administration of 2 mg/kg in rainbow trout at 13 ± 0.5°C. METHODS: The experiment was carried out on a total of 234 rainbow trout (Oncorhynchus mykiss). Tolfenamic acid was administered to fish via IV, IM and oral route at a dose of 2 mg/kg. Blood samples were taken at 13 different sampling times until the 72 h after drug administration. The plasma concentrations of tolfenamic acid were quantified using high pressure liquid chromatography-ultraviolet (UV) and pharmacokinetic parameters were assessed using non-compartmental analysis. RESULTS: The elimination half-life (t1/2ʎz) of tolfenamic acid for IV, IM and oral routes was 3.47, 6.75 and 9.19 h, respectively. For the IV route, the volume of distribution at a steady state and total body clearance of tolfenamic acid were 0.09 L/kg and 0.03 L/h/kg, respectively. The peak plasma concentration and bioavailability for IM and oral administration were 8.82 and 1.24 µg/mL, and 78.45% and 21.48%, respectively. The mean plasma protein binding ratio of tolfenamic acid in rainbow trout was 99.48% and was not concentration dependent. CONCLUSIONS: While IM route, which exhibits both the high plasma concentration and bioavailability, can be used in rainbow trout, oral route is not recommended due to low plasma concentration and bioavailability. However, there is a need to demonstrate the pharmacodynamic activity of tolfenamic acid in rainbow trout.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Biological Availability , Blood Proteins , Oncorhynchus mykiss , ortho-Aminobenzoates , Animals , Oncorhynchus mykiss/metabolism , Oncorhynchus mykiss/blood , ortho-Aminobenzoates/pharmacokinetics , ortho-Aminobenzoates/blood , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/blood , Administration, Oral , Blood Proteins/metabolism , Injections, Intramuscular/veterinary , Protein Binding , Injections, Intravenous/veterinary , Half-Life
2.
Can Vet J ; 65(6): 574-580, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827599

ABSTRACT

Background: As a major animal control service provider in the city of Guelph and Wellington County in Ontario, the Guelph Humane Society transports and presents injured or ill raccoons requiring humane euthanasia to the Ontario Veterinary College Health Sciences Centre (OVC-HSC). Issues around handling, transportation, and delays before euthanasia have recently raised some concerns for welfare and the need for means of improving this process. Objective: Investigation of a noncontrolled sedation and analgesia protocol for injured or ill raccoons intended to improve animal welfare by allowing humane handling, transport, and euthanasia following administration by an animal protection officer (APO). Animals and procedure: Twenty-seven injured or ill raccoons requiring transport and euthanasia, as determined by the Guelph Humane Society APOs, were included in the study. Each raccoon was administered acepromazine (0.05 mg/kg), alfaxalone (4 mg/kg), and medetomidine (0.15 mg/kg), intramuscularly, before being transported to the OVC-HSC for humane euthanasia. Results: The combination of acepromazine, alfaxalone, and medetomidine was suitable for administration by APOs and provided the desired sedation depth to allow transport and humane euthanasia. Transit time was the only predictor of sedation depth upon arrival at the OVC-HSC. Two raccoons showed mild physical response to intracardiac injection for euthanasia. Numerical cutoff points of an in-hospital visual analog score of sedation of ≥ 70/100 and duration of sedation of < 62 min showed zero probability of response to euthanasia. Conclusion and clinical relevance: Administration of acepromazine, alfaxalone, and medetomidine at the stated doses provided acceptable sedation and analgesia to improve animal welfare during transport and eventual euthanasia of raccoons.


Évaluation d'un protocole médicamenteux sans groupe témoin de sédation intramusculaire, pré-euthanasie, comprenant de l'alfaxalone 4 %, de la médétomidine et de l'acépromazine pour les ratons laveurs blessés ou malades. Contexte: En tant que fournisseur majeur de services de contrôle des animaux dans la ville de Guelph et dans le comté de Wellington en Ontario, la Guelph Humane Society transporte et présente les ratons laveurs blessés ou malades nécessitant une euthanasie sans cruauté au Ontario Veterinary College Health Sciences Centre (OVC-HSC). Les problèmes liés à la manutention, au transport et aux délais avant l'euthanasie ont récemment soulevé des inquiétudes quant au bien-être et à la nécessité de trouver des moyens d'améliorer ce processus. Objectif: Enquête sur un protocole de sédation et d'analgésie sans groupe témoin pour les ratons laveurs blessés ou malades destiné à améliorer le bien-être des animaux en permettant une manipulation, un transport et une euthanasie sans cruauté après administration par un agent de protection des animaux (APO). Animaux et procédure: Vingt-sept ratons laveurs blessés ou malades nécessitant un transport et une euthanasie, tel que déterminé par les APO de la Guelph Humane Society, ont été inclus dans l'étude. Chaque raton laveur a reçu de l'acépromazine (0,05 mg/kg), de l'alfaxalone (4 mg/kg) et de la médétomidine (0,15 mg/kg), par voie intramusculaire, avant d'être transporté à l'OVC-HSC pour une euthanasie sans cruauté. Résultats: La combinaison d'acépromazine, d'alfaxalone et de médétomidine convenait à l'administration par un APO et fournissait la profondeur de sédation souhaitée pour permettre le transport et l'euthanasie sans cruauté. Le temps de transit était le seul prédicteur de la profondeur de la sédation à l'arrivée à l'OVC-HSC. Deux ratons laveurs ont montré une légère réponse physique à une injection intracardiaque pour l'euthanasie. Les seuils numériques d'un score analogique visuel de sédation à l'hôpital ≥ 70/100 et d'une durée de sédation < 62 min ont montré une probabilité nulle de réponse à l'euthanasie. Conclusion et pertinence clinique: L'administration d'acépromazine, d'alfaxalone et de médétomidine aux doses indiquées a fourni une sédation et une analgésie acceptables pour améliorer le bien-être des animaux pendant le transport et l'euthanasie éventuelle des ratons laveurs.(Traduit par Dr Serge Messier).


Subject(s)
Acepromazine , Hypnotics and Sedatives , Medetomidine , Pregnanediones , Raccoons , Animals , Medetomidine/administration & dosage , Pregnanediones/administration & dosage , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/pharmacology , Acepromazine/administration & dosage , Male , Female , Euthanasia, Animal , Injections, Intramuscular/veterinary , Animal Welfare
3.
BMC Vet Res ; 20(1): 251, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849822

ABSTRACT

AIM OF THE WORK: The study was conducted to evaluate the influence of theophylline pre-treatment on serum pharmacokinetics and milk elimination of tylosin following single intramuscular (IM) administrations in lactating goats. METHODS AND RESULTS: In a cross-over study, tylosin was injected via intramuscular (IM) at a single dose of 15 mg/kg b.wt. After a one-month washout period goats received theophylline at a daily IM dose of 2 mg/kg b.wt. for seven consecutive days then tylosin was injected IM dose of 15 mg/kg b.wt. two hours after the last theophylline dosing. Blood samples were collected before and at 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, and 24 h post-injection. Samples were left to clot and then centrifuged to yield serum. Milk samples were collected before and at 0.5, 1, 2, 4, 6, 8, 10, 12, 24, 48, and 72 h post-injection from each goat by hand milking. Tylosin serum concentrations were determined by high-performance liquid chromatography (HPLC). Tylosin concentrations versus time were analyzed by a noncompartmental method. Tylosin Cmax significantly declined from 1.73 ± 0.10 to 1.01 ± 0.11 µg/ml, and attained Tmax values of 2 and 1 h, respectively in theophylline-pretreated goats. Moreover, theophylline pretreatment significantly shortened the elimination half-life (t1/2el) from 6.94 to 1.98 h, t1/2ka from 0.62 to 0.36 h and the mean residence time (MRT) from 8.02 to 4.31 h, also Vz/F and AUCs decreased from 11.91 to 7.70 L/kg and from 12.64 to 4.57 µg*h/ml, respectively, consequently, theophylline enhanced the clearance (Cl/F) of tylosin from the body. Similarly, tylosin milk concentrations were significantly lower in theophylline-pretreated goats than in goats that received tylosin alone and were detected up to 24 and 72 h in both groups, respectively. Moreover, the t1/2el and AUCs were significantly decreased from 14.68 ± 1.97 to 4.72 ± 0.48 h, and from 181 to 67.20 µg*h/ml, respectively. CONCLUSIONS: The withdrawal period for tylosin in goat milk is at least 72 h. Theophylline pretreatment significantly decreases serum and milk tylosin concentrations to subtherapeutic levels, which could have serious clinical consequences such as failure of therapy. This means that after administering tylosin to goats, milk from these animals should not be consumed for at least 96 h to ensure that the milk is free from residues of the antibiotic.


Subject(s)
Anti-Bacterial Agents , Cross-Over Studies , Goats , Lactation , Milk , Theophylline , Tylosin , Animals , Goats/metabolism , Theophylline/pharmacokinetics , Theophylline/administration & dosage , Theophylline/blood , Tylosin/pharmacokinetics , Tylosin/administration & dosage , Tylosin/blood , Injections, Intramuscular/veterinary , Milk/chemistry , Female , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Half-Life , Area Under Curve
4.
Open Vet J ; 14(5): 1251-1258, 2024 May.
Article in English | MEDLINE | ID: mdl-38938419

ABSTRACT

Background: The intramuscular (IM) administration of 7.5-10 mg/kg of alfaxalone produces anesthetic effects that enable endotracheal intubation with mild cardiorespiratory depression in dogs. However, the effects of IM co-administration of medetomidine, butorphanol, and alfaxalone on cardiorespiratory function under inhalation anesthesia have not been studied. Aim: To assess the cardiorespiratory function following the IM co-administration of 5 µg/kg of medetomidine, 0.3 mg/kg of butorphanol, and 2.5 mg/kg of alfaxalone (MBA) in dogs anesthetized with sevoflurane. Methods: Seven intact healthy Beagles (three males and four females, aged 3-6 years old and weighing 10.0-18.1 kg) anesthetized with a predetermined minimum alveolar concentration (MAC) of sevoflurane were included in this study. The baseline cardiorespiratory variable values were recorded using the thermodilution method with a pulmonary artery catheter after stabilization for 15 minutes at 1.3 times their individual sevoflurane MAC. The cardiorespiratory variables were measured again following the IM administration of MBA. Data are expressed as median [interquartile range] and compared with the corresponding baseline values using the Friedman test and Sheff's method. A p < 0.05 was considered statistically significant. Results: The intramuscular administration of MBA transiently decreased the cardiac index [baseline: 3.46 (3.18-3.69), 5 minutes: 1.67 (1.57-1.75) l/minute/m2 : p < 0.001], respiratory frequency, and arterial pH. In contrast, it increased the systemic vascular resistance index [baseline: 5,367 (3,589-6,617), 5 minutes:10,197 (9,955-15,005) dynes second/cm5/m2 : p = 0.0092], mean pulmonary arterial pressure, and arterial partial pressure of carbon dioxide. Conclusion: The intramuscular administration of MBA in dogs anesthetized with sevoflurane transiently decreased cardiac output due to vasoconstriction. Although spontaneous breathing was maintained, MBA administration resulted in respiratory acidosis due to hypoventilation. Thus, it is important to administer MBA with caution to dogs with insufficient cardiovascular function. In addition, ventilatory support is recommended.


Subject(s)
Anesthetics, Inhalation , Butorphanol , Medetomidine , Pregnanediones , Sevoflurane , Animals , Sevoflurane/administration & dosage , Sevoflurane/pharmacology , Butorphanol/administration & dosage , Butorphanol/pharmacology , Medetomidine/administration & dosage , Medetomidine/pharmacology , Dogs/physiology , Pregnanediones/administration & dosage , Pregnanediones/pharmacology , Male , Female , Injections, Intramuscular/veterinary , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacology , Heart Rate/drug effects , Blood Pressure/drug effects
5.
Vet J ; 305: 106130, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734403

ABSTRACT

Tildipirosin is a macrolide antimicrobial. It is authorised for the treatment and prevention of respiratory disease in cattle and pigs. There are no data on its administration in crocodiles. Therefore, this study evaluated the disposition kinetics of tildipirosin after intravenous (dose: 2 mg/kg) and intramuscular (doses: 2 and 4 mg/kg) administration in two crocodilian species (estuarine and freshwater; n = 5). Tildipirosin plasma concentrations were quantified by a validated HPLC method. Plasma concentrations obtained at each extraction time were analysed by non-compartmental methods. In the estuarine and freshwater crocodiles, the apparent volumes of distribution of tildipirosin after intravenous administration were 0.36 ± 0.10 and 1.48 ± 0.26 L/kg, respectively. These values, suggesting poorer tissue distribution, were much lower than those obtained in mammals. There was complete bioavailability of tildipirosin after intramuscular route at a dose of 2 mg/kg; however, at a dose of 4 mg/kg the bioavailability decreased by about 20-25 %. Furthermore, the pharmacokinetics of tildipirosin were markedly different in the two crocodilian species. Considering a MIC of 0.5 µg/mL, the surrogate marker AUC0-24/MIC indicates that tildipirosin would greatly exceed the value of 65 h for both crocodile species and dose levels tested. This suggests that both doses (2 and 4 mg/kg) may provide a bactericidal effect. Therefore, based on the absence of adverse reactions following the administration of tildipirosin in both crocodilian species, and considering its favourable pharmacokinetic properties, tildipirosin may be useful in treating infections in these reptiles.


Subject(s)
Alligators and Crocodiles , Tylosin , Animals , Tylosin/analogs & derivatives , Tylosin/pharmacokinetics , Tylosin/administration & dosage , Injections, Intramuscular/veterinary , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Injections, Intravenous/veterinary , Fresh Water , Half-Life , Biological Availability , Area Under Curve
6.
Vet Parasitol ; 328: 110179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579607

ABSTRACT

In this study the efficacy of an intramuscular formulation of toltrazuril combined with gleptoferron for the control of porcine cystoisosporosis caused by Cystoisospora suis was investigated. The study was carried out on three Belgian farms with a confirmed history of C. suis infections. As none of the farms implemented a standardized toltrazuril treatment regimen for their piglets, the presence of resistant C. suis strains seems improbable. In total 90 litters, representing 1249 piglets, were included in the study and randomly allocated to either the treatment or control group. Piglets in the treatment group received a single intramuscular injection, containing 45 mg toltrazuril and 200 mg gleptoferron, between 1 and 3 days of age. Piglets in the control group received a single injection with only 200 mg gleptoferron. The effect of treatment on oocyst excretion, expressed in oocysts per gram of feces (OPG), average daily weight gain (ADG) and mortality was determined both pre- and post-weaning. A significant decrease in OPG as well as a decrease in the number of litters (pre-weaning) and pens (post-weaning) that tested positive for cystoisosporosis, was observed in the treated animals compared to the controls. Furthermore, treatment resulted in an increased ADG during the period from day 1 to day 21 (p-value: 0.03881). There was no significant difference in mortality observed between the treatment group to the control group (p-value: 0.2167). To our knowledge, this is the first report on the effect of toltrazuril on oocyst excretion after weaning. This finding highlights the potential long-term benefits of the treatment beyond the initial administration.


Subject(s)
Coccidiosis , Coccidiostats , Oocysts , Swine Diseases , Triazines , Weaning , Animals , Triazines/administration & dosage , Triazines/pharmacology , Swine , Swine Diseases/drug therapy , Swine Diseases/parasitology , Coccidiosis/drug therapy , Coccidiosis/veterinary , Coccidiosis/parasitology , Oocysts/drug effects , Coccidiostats/administration & dosage , Coccidiostats/pharmacology , Coccidiostats/therapeutic use , Sarcocystidae/drug effects , Animals, Newborn , Feces/parasitology , Injections, Intramuscular/veterinary , Weight Gain/drug effects
7.
Vet Med Sci ; 10(3): e1393, 2024 05.
Article in English | MEDLINE | ID: mdl-38640108

ABSTRACT

BACKGROUND: Various anti-parasitic drugs are used to control donkey parasitic diseases. The abuse of donkey drugs leads to the disposition of residues in the edible parts of treated donkeys. OBJECTIVES: The aim of this study was to (1) analyse the pharmacokinetics of ABZSO to serve as reference for the dosage regimen in donkey; and (2) calculate the withdrawal times of the ABZSO in the tissue of the donkey. METHODS: The concentrations of ABZSO and its metabolites in plasma and tissues were determined using high-performance liquid chromatography with an ultraviolet detector. Pharmacokinetic analysis was performed by the programme 3p97. RESULTS: The plasma concentrations of ABZSO and ABZSO2 concentration-time data in donkey conformed to the absorption one-compartment open model. The t 1 / 2 k e ${{{t1}} \!\mathord{/ {\vphantom { {2{{k}_{\mathrm{e}}}}}}}}$ of ABZSO was 0.67 h, whereas the t1/2 k e was 12.93 h; the Cmax and the Tp were calculated as 0.58 µg mL-1 and 3.01 h. The Vd/F of ABZSO was estimated to be 10.92 L kg-1; the area under the curve (AUC) was 12.81 µg mL-1 h. The Cmax and AUC values of ABZSO were higher than those of ABZSO2; however, t1/2 K e and Vd/F were lower. Other pharmacokinetics parameters were similar between the two metabolites. CONCLUSIONS: The results revealed that ABZSO2 was the main metabolite of ABZSO in donkey plasma. The concentrations of ABZSO and its chief metabolite (ABZSO2) were detected in liver, kidney, skin and muscle; however, ABZ-SO2NH2 was only detected in liver and kidney. The results also revealed that the depletion of ABZSO and its metabolite in donkey was longer, especially in skin.


Subject(s)
Albendazole/analogs & derivatives , Anthelmintics , Animals , Anthelmintics/pharmacokinetics , Injections, Intramuscular/veterinary , Equidae/metabolism , Albendazole/pharmacokinetics
8.
J Vet Pharmacol Ther ; 47(4): 300-307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520083

ABSTRACT

The pharmacokinetics of florfenicol (FFC) in green sea and hawksbill sea turtles were evaluated following intramuscular (i.m.) administration at two different dosages of 20 or 30 mg/kg body weight (b.w.). This study (longitudinal design) used 5 green sea and 5 hawksbill sea turtles for the two dosages. Blood samples were collected at assigned times up to 168 h. FFC plasma samples were analyzed using validated high-performance liquid chromatography equipped with diode array detection. The pharmacokinetic analysis was performed using a non-compartment approach. The FFC plasma concentrations increased with the dosage. The elimination half-life was similar between the treatment groups (range 19-25 h), as well as the plasma protein binding (range 18.59%-20.65%). According to the surrogate PK/PD parameter (T > MIC, 2 µg/mL), the 20 and 30 mg/kg dosing rates should be effective doses for susceptible bacterial infections in green sea and hawksbill sea turtles.


Subject(s)
Anti-Bacterial Agents , Thiamphenicol , Turtles , Animals , Turtles/blood , Turtles/metabolism , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacokinetics , Thiamphenicol/administration & dosage , Thiamphenicol/blood , Injections, Intramuscular/veterinary , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Half-Life , Area Under Curve , Dose-Response Relationship, Drug
9.
Res Vet Sci ; 171: 105207, 2024 May.
Article in English | MEDLINE | ID: mdl-38460204

ABSTRACT

This double-blinded randomized cross-over study compared the muscle tissue oxygen saturation (StO2) measured at the sartorius muscle after intramuscular (IM) injection of dexmedetomidine hydrochloride (HCl) and co-administration of vatinoxan HCl, a peripheral α2-adrenoceptor antagonist, and medetomidine HCl in healthy privately-owned dogs undergoing intradermal testing (IDAT). After written owner consent, dogs received IM injections of either dexmedetomidine (0.5 mg/m2, DEX) or medetomidine (1 mg/m2) and vatinoxan (20 mg/m2) (MVX). Once sedated, intradermal injections were given on the lateral thorax of each dog, and the study was repeated with the alternative sedation on the opposite side one week later. At the end of the study, sedation was reversed with atipamezole (5 mg/m2). Depth of sedation, cardiopulmonary parameters, StO2, and rectal temperature were recorded and compared using mixed effect linear models (α ≤ 0.05). MVX achieved adequate sedation faster [median (interquartile range), 10 (8, 10) minutes] compared to DEX [18 (15, 22) minutes; hazard ratio = 7.44, p = 0.013), with higher scores at 10- and 15-min post-injection. StO2 was significantly reduced for 30 min after injection (p < 0.001), independently of the treatment (p = 0.68). Cardiopulmonary variables favored MVX. However, higher heart rate did not correlate with improved StO2. There was no difference in either subjective or objective assessment of the wheal size between sedations (p > 0.05). Both sedation protocols, MVX and DEX, were deemed suitable for IDAT in dogs, with mild reductions in StO2 measured at the sartorius muscle that were not significantly different between treatments.


Subject(s)
Dexmedetomidine , Medetomidine , Quinolizines , Dogs , Animals , Medetomidine/pharmacology , Hypnotics and Sedatives/pharmacology , Dexmedetomidine/pharmacology , Heart Rate , Injections, Intramuscular/veterinary , Muscles , Cross-Over Studies
10.
Res Vet Sci ; 170: 105187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422840

ABSTRACT

To assess the effects of the acute inflammatory response (AIR) induced by Escherichia coli lipopolysaccharide (LPS) on plasma and tissue disposition of florfenicol (FFC) and its metabolite florfenicol amine (FFC-a), after its intramuscular (IM) administration, twenty-two New Zealand rabbits were randomly distributed in two experimental groups: Group 1 (LPS) was treated with three intravenous doses of 2 µg LPS/kg bw, before an intramuscular dose of 20 mg/kg FFC twenty-four h after the first LPS or SS injection; Group 2 (Control) was treated with saline solution (SS) in equivalent volumes as LPS-treated group. Blood samples were collected before (T0) and at different times after FFC administration. Acute inflammatory response was assessed in a parallel study where significant increases in body temperature, C-reactive protein concentrations and leukopenia were observed in the group treated with LPS. In another two groups of rabbits, 4 h after FFC treatment, rabbits were euthanized and tissue samples were collected for analysis of FFC and FFC-a concentrations. Pharmacokinetic parameters of FFC that showed significantly higher values in LPS-treated rabbits compared with control rabbits were absorption half-life, area under the curve, mean residence time and clearance /F (Cl/F). Elimination half-life and mean residence time of FFC-a were significantly higher in LPS-treated rabbits, whereas the metabolite ratio of FFC-a decreased significantly. Significant differences in tissue distribution of FFC and FFC-a were observed in rabbits treated with LPS. Modifications in plasma and tissue disposition of FFC and FFC-a were attributed mainly to haemodynamic modifications induced by the AIR through LPS administration.


Subject(s)
Endotoxemia , Thiamphenicol , Thiamphenicol/analogs & derivatives , Rabbits , Animals , Lipopolysaccharides , Anti-Bacterial Agents , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Endotoxemia/veterinary , Escherichia coli/metabolism , Thiamphenicol/pharmacokinetics , Inflammation/veterinary , Half-Life , Injections, Intramuscular/veterinary
11.
J Vet Pharmacol Ther ; 47(2): 150-153, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38204379

ABSTRACT

Flunixin meglumine is a nonsteroidal anti-inflammatory drug approved to manage pyrexia associated with swine respiratory disease. In the United States, no analgesic drugs are approved for use in swine by the FDA, although they are needed to manage painful conditions. This study evaluated the pharmacokinetics and relative bioavailability of intranasal versus intramuscular flunixin in grower pigs. Six pigs received 2.2 mg/kg flunixin either intranasally via atomizer or intramuscularly before receiving flunixin via the opposite route following a 5-day washout period. Plasma samples were collected over 60 h and analysed using ultra-performance liquid chromatography and tandem mass spectrometry to detect flunixin plasma concentrations. A non-compartmental pharmacokinetic analysis was performed. The median Cmax was 4.0 µg/mL and 2.7 µg/mL for intramuscular and intranasal administration, respectively, while the median AUCinf was 6.9 h µg/mL for intramuscular administration and 4.9 h µg/mL for intranasal administration. For both routes, the median Tmax was 0.2 h, and flunixin was detectable in some samples up to 60 h post-administration. Intranasal delivery had a relative bioavailability of 88.5%. These results suggest that intranasal flunixin has similar, although variable, pharmacokinetic parameters to the intramuscular route, making it a viable route of administration for use in grower swine.


Subject(s)
Clonixin , Clonixin/analogs & derivatives , Swine Diseases , Animals , Swine , Administration, Intranasal/veterinary , Injections, Intravenous/veterinary , Clonixin/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Analgesics/therapeutic use , Injections, Intramuscular/veterinary , Swine Diseases/drug therapy
12.
J Vet Pharmacol Ther ; 47(3): 215-225, 2024 May.
Article in English | MEDLINE | ID: mdl-38189474

ABSTRACT

Enrofloxacin (ENR) residues in yellow catfish (Pelteobagrus fulvidraco) often exceed the standard due to excessive use. This study explored the pharmacokinetics of ENR and its metabolite ciprofloxacin (CIP) in yellow catfish following a single dose of 10 mg/kg body weight via intramuscular injection (IM), oral gavage (PO), or a 5-h drug bath at 10 mg/L and 25°C. High-performance liquid chromatography-mass spectrometry was used to determine the ENR and CIP concentrations in various tissues. The highest ENR concentration occurred with IM administration, peaking at 4.124 mg/L in the plasma, 8.359 mg/kg in the kidney, 6.272 mg/kg in the liver, and 5.192 mg/kg in the muscle. However, PO administration resulted in the longest metabolic time, with elimination half-lives of 56.47 h in plasma, 86.43 h in the kidney, 76.25 h in the liver, and 64.75 h in muscle. Additionally, the area under the concentration-time curve values for IM, PO, and bath administration in yellow catfish plasma were 108.36, 88.96, and 22.08 mg·h/L, respectively. These results indicate the effectiveness of all three administration methods in treating bacterial diseases in yellow catfish. The selection of an appropriate administration method depends on the minimal inhibitory concentration of ENR against pathogenic bacteria. Yellow catfish subjected to PO and IM administration require longer resting periods before they can be marketed than those receiving drug bath administration.


Subject(s)
Anti-Bacterial Agents , Catfishes , Enrofloxacin , Animals , Catfishes/metabolism , Enrofloxacin/pharmacokinetics , Enrofloxacin/administration & dosage , Injections, Intramuscular/veterinary , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Administration, Oral , Half-Life , Area Under Curve , Ciprofloxacin/pharmacokinetics , Ciprofloxacin/administration & dosage , Ciprofloxacin/blood
13.
J Vet Pharmacol Ther ; 47(1): 36-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37593974

ABSTRACT

Toltrazuril (TZR) is currently the only registered chemotherapeutic drug in the European Union for the treatment of Cystoisospora suis. This study investigated the comparative pharmacokinetics and tissue concentration-time profiles of TZR and its active metabolite, toltrazuril sulfone (TZR-SO2 ), after oral (per os, p.o.) and intramuscular (i.m.) administration to suckling piglets. Following a single administration of TZR orally at 50 mg/piglet or intramuscularly at 45 mg/piglet, higher concentrations of TZR and TZR-SO2 were observed in all three investigated tissues after p.o. administration. The mean TZR concentration in serum peaked at 14 µg/mL (34.03 h) and 5.36 µg/mL (120 h), while TZR-SO2 peaked at 14.12 µg/mL (246 h) and 9.92 µg/mL (330 h) after p.o. and i.m. administration, respectively. TZR was undetectable in the liver after p.o. administration (18 days) and in the jejunum (24 days) after i.m. injection, while TZR-SO2 was still detectable in all three tissues after 36 days regardless of administration routes. This study showed that p.o. formulation exhibited faster absorption and higher serum/tissue TZR/TZR-SO2 concentrations than i.m. formulation. Both formulations generated sufficient therapeutic concentrations in the serum and jejunum, and sustained enough time to protect against Cystoisospora suis infection in the piglets.


Subject(s)
Coccidiostats , Animals , Swine , Administration, Oral , Triazines , Sulfones , Injections, Intramuscular/veterinary
14.
J Vet Pharmacol Ther ; 47(1): 54-59, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715547

ABSTRACT

The pharmacokinetics were described of meloxicam (MLX) in green sea turtles (Chelonia mydas), following a single intravenous (i.v.) and intramuscular (i.m.) administrations at one of two dosages of 0.1 or 0.2 mg/kg body weight (b.w.). The sample of 20 green sea turtles was divided into four groups (n = 5) using a randomization procedure according to a parallel study design. Blood samples were collected at pre-assigned times up to 168 h. MLX in the plasma was cleaned-up and quantified using a validated high-performance liquid chromatography method with UV detection. The concentration of MLX in the experimental green sea turtles with respect to time was pharmacokinetically analyzed using a non-compartment model. MLX plasma concentrations were quantifiable for up to 72 and 120 h after i.v. at dosages of 0.1 and 0.2 mg/kg b.w., respectively, whereas it was measurable for up to 168 h after i.m. administration at both dosages. The long elimination half-life value of MLX (28 h) obtained in green sea turtles after i.v. administration was consistent with the quite slow clearance rate for both dosages. The average maximum concentration (Cmax ) values of MLX were 1.05 µg/mL and 4.26 µg/mL at dosages of 0.1 and 0.2 mg/kg b.w., respectively, with their elimination half-life values being 37.26 h and 30.64 h, respectively, after i.m. administrations. The absolute i.m. bioavailability was approximately 110%. These results suggested that i.m. administration of MLX at a dosage of 0.2 mg/kg b.w. was likely to be effective for clinical use in green sea turtles (Chelonia mydas). However, further studies are needed to determine the pharmacodynamic properties and clinical efficacy of MLX for the treatment of inflammatory disease after single and multiple dosages.


Subject(s)
Turtles , Animals , Meloxicam , Half-Life , Injections, Intramuscular/veterinary , Administration, Intravenous/veterinary
15.
J Vet Pharmacol Ther ; 47(1): 48-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37381629

ABSTRACT

To date, the pharmacokinetics of fluoroquinolones in estuarine crocodiles (Crocodylus porosus) have been reported for enrofloxacin but not for marbofloxacin (MBF), which is a broad-spectrum antibiotic used only in veterinary medicine. This study investigated the pharmacokinetics of MBF after intramuscular administration at two difference dosages (2 and 4 mg/kg body weight) in estuarine crocodiles and estimated pharmacokinetic/pharmacodynamic (PK/PD) surrogate parameters for the optimization of dosage regimens. Ten treated estuarine crocodiles were divided into two groups (n = 5) using a randomization procedure according to a parallel study design. Blood samples were collected at assigned times up to 168 h. MBF plasma samples were cleaned up using liquid-liquid extraction and analyzed using a validated high-performance liquid chromatography method with fluorescence detection. A non-compartment approach was used to fit the plasma concentration of MBF vs time curve for each crocodile. The plasma concentrations of MBF were quantifiable for up to 168 h in both groups. The elimination half-life values of MBF were long (33.99 and 39.28 h for 2 and 4 mg/kg, respectively) with no significant differences between the groups. The average plasma protein binding of MBF was 30.85%. According to the surrogated PK/PD parameter (AUC0-24 -to-MIC ratio >100-125), the 2 and 4 mg/kg dosing rates should be effective for bacteria with MIC values lower than 0.125 µg/mL and 0.35 µg/mL, respectively.


Subject(s)
Alligators and Crocodiles , Animals , Area Under Curve , Injections, Intramuscular/veterinary , Fluoroquinolones/pharmacokinetics
16.
J Vet Pharmacol Ther ; 47(3): 157-167, 2024 May.
Article in English | MEDLINE | ID: mdl-38151755

ABSTRACT

Alfaxalone is a commonly employed veterinary anaesthetic induction and sedation agent. A 4% w/v preserved, aqueous formulation of alfaxalone 'RD0387' (A4%) has recently been developed. To evaluate the sedative effects of A4%, three doses, 5 mg kg-1 (A5); 7.5 mg kg-1 (A7.5) and 10 mg kg-1 (A10) were administered intramuscularly into the epaxial musculature of six healthy adult mixed-breed dogs in an experimental, randomized, blinded, crossover study. Sedation time variables, quality of sedation (including onset of sedation and recovery), physiological variables, response to cephalic vein catheterization and frequency of undesirable events were recorded. Continuous variables were analysed between treatments (one-way ANOVA or restricted maximum likelihood modelling) and within treatments compared with baseline (Tukey's test). Categorical data were analysed between treatments (Kruskal-Wallis' test) and within treatments from baseline (Dunn's test). Significance was set at p < .05. All dogs became sedated (laterally recumbent) and sedation onset was significantly faster in groups A7.5 (9.8 ± 5.3 min) and A10 (9.1 ± 5.6 min) compared to A5 (25.6 ± 16.1 min) (p = .033, p = .027, respectively). Duration of sedation was significantly longer in A10 (168.5 ± 70.6 min) and A7.5 (143.8 ± 58 min) compared to A5 (63.8 ± 28.2 min) (p = .005 and p = .003, respectively). Dogs in A10 had a superior quality of onset of sedation compared to A5 (p = .028). Sedation scores and quality of recovery from sedation were not significantly different between doses. Two dogs (2/6) in A5 were insufficiently sedated for cephalic catheterization. Ataxia was the most frequently observed undesirable event with an overall frequency of 78% (14/18) and 89% (16/18) during sedation onset and recovery, respectively. Overall, A4% administered IM in dogs at 7.5 and 10 mg kg-1 resulted in sufficient sedation for IV catheterization in dogs. To improve the speed and quality of the sedation, it is recommended that future research focuses on combining A4% with other sedative or analgesic drugs.


Subject(s)
Cross-Over Studies , Hypnotics and Sedatives , Pregnanediones , Animals , Dogs , Pregnanediones/administration & dosage , Pregnanediones/pharmacology , Injections, Intramuscular/veterinary , Male , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/pharmacology , Female , Dose-Response Relationship, Drug
17.
Vet Anaesth Analg ; 50(6): 477-484, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37620232

ABSTRACT

OBJECTIVE: To determine the pharmacokinetics and bioavailability of meloxicam following intravenous (IV), intramuscular (IM), and oral administrations at a dose of 1.0 mg kg-1 in Pekin ducks. STUDY DESIGN: Randomized experimental trial. ANIMALS: A total of 18 clinically healthy male Pekin ducks. METHODS: Pekin ducks were randomly assigned to three groups of six ducks: IV, IM and oral. Meloxicam (1.0 mg kg-1) was administered to each Pekin duck. A non-compartmental analysis was used to evaluate pharmacokinetic parameters. RESULTS: No local or systemic adverse effects were observed in any bird. Meloxicam was detected in the plasma up to 120 hours following IV, IM or oral administration. The elimination half-life of the IV route was slightly shorter than that of the IM and oral routes (p < 0.05). Following IV administration, volume of distribution at steady state and total clearance were 133.17 mL kg-1 and 6.68 mL kg-1 hour-1, respectively. The mean absorption time was 2.29 hours for IM and 1.13 hours for oral route. There were significant differences between IM and oral administration for the peak plasma concentration (Cmax), time to reach Cmax and bioavailability (p < 0.05). CONCLUSIONS AND CLINICAL RELEVANCE: Meloxicam showed long elimination half-life and high bioavailability following IM and oral administration. Meloxicam in Pekin ducks provided the effective therapeutic concentration indicated in other species for up to 48 hours. However, there is a need to determine the clinical efficacy of meloxicam in Pekin ducks.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Ducks , Male , Animals , Meloxicam , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Biological Availability , Area Under Curve , Half-Life , Injections, Intravenous/veterinary , Administration, Oral , Injections, Intramuscular/veterinary , Administration, Intravenous/veterinary
18.
Vet Anaesth Analg ; 50(5): 421-429, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37507249

ABSTRACT

OBJECTIVE: To compare the effect of two anaesthetic protocols on heart rate (HR), time to muscle relaxation and tracheal intubation and time to surgical plane of anaesthesia, in Trachemys scripta spp. undergoing oophorectomy. STUDY DESIGN: Prospective randomized clinical study. ANIMALS: A total of 43 healthy female turtles. METHODS: Morphine (1.5 mg kg-1) was injected subcutaneously 2 hours before anaesthesia induction. The turtles were randomly administered either medetomidine (0.2 mg kg-1) and ketamine (10 mg kg-1) (group MK; n = 23) or alfaxalone (20 mg kg-1) (group A; n = 20) intramuscularly followed by bupivacaine (2 mg kg-1) administered subcutaneously along the incision site. Anaesthesia was maintained with isoflurane delivered in oxygen (100%). HR and the anaesthetic depth score (ADS) were recorded every 5 minutes from induction to recovery. A Friedman test followed by Wilcoxon tests with Bonferroni adjustment were used to compare these non-parametric data (HR and ADS) between groups and over time. Time to muscle relaxation of neck and limbs (TMR), tracheal tube insertion (TTTI) and stage of surgical anaesthesia (TADS≤3) were recorded and compared between groups using a Welch's t test after logarithmic transformation. RESULTS: Median values of TMR, TTTI and TADS≤3 were 4, 9.5 and 25 minutes in group A, respectively, and 14, 20 and 35 minutes in group MK (TMR, TTTIp ≤ 0.0001; TADS≤3p = 0.001). Plane of anaesthesia was significantly deeper in group A than in group MK for the first 20 minutes (p < 0.01). HR at 10 and 15 minutes post injection was significantly lower in group MK (28 beats minute-1) than in group A (36 and 34 beats minute-1) (p < 0.02). CONCLUSIONS AND CLINICAL RELEVANCE: After intramuscular injection in Trachemys scripta spp., tracheal intubation, muscle relaxation and a surgical plane of anaesthesia developed faster with alfaxalone than medetomidine-ketamine.


Subject(s)
Anesthesia , Anesthetics , Ketamine , Turtles , Female , Animals , Ketamine/pharmacology , Medetomidine/pharmacology , Prospective Studies , Anesthesia/veterinary , Anesthesia/methods , Anesthetics/pharmacology , Injections, Intramuscular/veterinary , Sterilization
19.
Poult Sci ; 102(9): 102869, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37390554

ABSTRACT

This study aimed to determine the pharmacokinetics of meloxicam in pigeons. Twenty-four 7-wk-old meat pigeons (Columba livia) were randomly divided into 3 groups (PO, IM, and IV) and given a single dose of 1 mg/kg body weight of meloxicam. Plasma samples were taken at predetermined times, which were then analyzed using a validated high-performance liquid chromatography (HPLC) method and subjected to noncompartmental analysis using Phoenix software. Results indicated that meloxicam was absorbed effectively and quickly after PO and IM dosing. Peak concentrations (0.83 ± 0.21 and 1.59 ± 0.49 µg/mL) were achieved at 2 and 0.26 h, respectively, with mean absorption times of 2.56 ± 1.50 and 1.47 ± 0.89 h. Bioavailability was high at 86.31 ± 43.45% and 81.57 ± 52.58%, respectively, and the area under the concentration-time curve (AUC0-∞) was 5.33 ± 2.68 and 5.03 ± 3.26 h·µg/mL. After IV administration, the elimination was faster with a total body clearance (CL) of 188.75 ± 83.23 mL/h/kg, an elimination half-life (t1/2λz) of 1.76 ± 0.56 h, and a volume of distribution at steady-state (VSS) of 427.50 ± 188.43 mL/kg. Considering the lack of a precise analgesic threshold of meloxicam in pigeons and the notable differences in its analgesic threshold among various animal species, formulating a dosing regimen in pigeons presented a significant challenge. Based on the previous analgesic threshold (3.5 µg/mL) in parrots, a higher dose (e.g., 2 mg/kg) or shorter dosing interval (e.g., every 6 h) is recommended for treating pain in pigeons. Nonetheless, further pharmacodynamic research is required to verify these recommendations.


Subject(s)
Columbidae , Thiazines , Animals , Meloxicam , Anti-Inflammatory Agents, Non-Steroidal , Thiazines/pharmacokinetics , Thiazoles/pharmacokinetics , Area Under Curve , Half-Life , Chickens , Administration, Oral , Injections, Intravenous/veterinary , Injections, Intramuscular/veterinary
20.
J Vet Sci ; 24(3): e43, 2023 May.
Article in English | MEDLINE | ID: mdl-37271511

ABSTRACT

BACKGROUND: Meloxicam is used widely for exotic animal analgesia, but its toxicity in common raptor species in Thailand is unclear. OBJECTIVES: This study evaluated the single-dose effect of intramuscular meloxicam in common raptor species in Thailand for short-term and long-term periods. METHODS: Twenty-two raptors were administered a single 1 mg/kg dose of meloxicam individually via intramuscular injection. The following were evaluated: clinical appearance, body weight, body condition score, body temperature, fecal appearance, complete blood cell count, and biochemistry panel before (day 0) and after the injection (1, 7, and 30 days). The collected samples were categorized into three groups: Brahminy kite (Haliastur indus) (n = 10), adult Barn owl (Tyto javanica) (n = 4), and juvenile Barn owl (n = 8). RESULTS: None of the raptors in the study groups showed any abnormalities. The hematological profiles were significantly different in the short-term period (day 1 and day 7). The creatinine, aspartate aminotransferase, and creatinine kinase increased in several groups. On the other hand, the packed cell volume decreased in the Brahminy kite and juvenile Barn owl groups. According to the findings, an intramuscular injection of 1 mg/kg meloxicam affected the blood biochemistry panel of the muscle, but the affected raptors recovered within one week. CONCLUSIONS: An intramuscular injection of meloxicam at a single 1 mg/kg dose in Brahminy kites and Barn owls was not associated with the morbidity, hepatotoxicity, gastrointestinal toxicity, and nephrotoxicity in the short- and long-term periods.


Subject(s)
Hematology , Raptors , Strigiformes , Animals , Meloxicam , Injections, Intramuscular/veterinary , Creatinine
SELECTION OF CITATIONS
SEARCH DETAIL
...