Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.921
1.
J Int Med Res ; 52(6): 3000605241259428, 2024 Jun.
Article En | MEDLINE | ID: mdl-38844785

A few cases have shown that bee stings can be linked to coronary stent thrombosis. However, instances of recurrent myocardial infarction resulting from bee stings among patients who have successfully undergone revascularization treatment are rare. This case report describes a man in his early 60s who experienced an acute myocardial infarction. The left anterior descending coronary artery was revascularized by a drug-eluting stent. Just 1 week later, the patient experienced a second acute myocardial infarction and it occurred immediately after a bee sting. Angiography revealed stent thrombosis so thrombus aspiration was performed. Subsequently, the blood flow in the stent was unobstructed. Follow-up coronary angiography 1 year later revealed no signs of restenosis within the stent. Hymenoptera venoms contains thrombogenic substances that might lead to acute stent thrombosis.


Coronary Angiography , Insect Bites and Stings , Myocardial Infarction , Humans , Male , Myocardial Infarction/etiology , Myocardial Infarction/diagnosis , Insect Bites and Stings/complications , Bees , Animals , Middle Aged , Drug-Eluting Stents/adverse effects
2.
Proc Natl Acad Sci U S A ; 121(24): e2320898121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38833464

The World Health Organization identifies a strong surveillance system for malaria and its mosquito vector as an essential pillar of the malaria elimination agenda. Anopheles salivary antibodies are emerging biomarkers of exposure to mosquito bites that potentially overcome sensitivity and logistical constraints of traditional entomological surveys. Using samples collected by a village health volunteer network in 104 villages in Southeast Myanmar during routine surveillance, the present study employs a Bayesian geostatistical modeling framework, incorporating climatic and environmental variables together with Anopheles salivary antigen serology, to generate spatially continuous predictive maps of Anopheles biting exposure. Our maps quantify fine-scale spatial and temporal heterogeneity in Anopheles salivary antibody seroprevalence (ranging from 9 to 99%) that serves as a proxy of exposure to Anopheles bites and advances current static maps of only Anopheles occurrence. We also developed an innovative framework to perform surveillance of malaria transmission. By incorporating antibodies against the vector and the transmissible form of malaria (sporozoite) in a joint Bayesian geostatistical model, we predict several foci of ongoing transmission. In our study, we demonstrate that antibodies specific for Anopheles salivary and sporozoite antigens are a logistically feasible metric with which to quantify and characterize heterogeneity in exposure to vector bites and malaria transmission. These approaches could readily be scaled up into existing village health volunteer surveillance networks to identify foci of residual malaria transmission, which could be targeted with supplementary interventions to accelerate progress toward elimination.


Anopheles , Bayes Theorem , Malaria , Mosquito Vectors , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Malaria/immunology , Malaria/parasitology , Seroepidemiologic Studies , Insect Bites and Stings/epidemiology , Insect Bites and Stings/immunology , Insect Bites and Stings/parasitology , Sporozoites/immunology
4.
Parasit Vectors ; 17(1): 250, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849919

BACKGROUND: Flea bites could trigger a series of complex molecular responses in the host. However, our understanding of the responses at the molecular level is still relatively limited. This study quantifies the changes in gene expression in mice after flea bites by RNA sequencing (RNA-seq) from their spleens, revealing the potential biological effects of host response to flea bites. METHODS: RNA-seq was used for transcriptome analysis to screen for differentially expressed genes (DEGs) between the control mice group and the flea bite mice group. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on DEGs. Protein-protein interaction (PPI) network analysis on DEGs related to immune processes was performed. Finally, we randomly selected several genes from the screened DEGs to validate the results from the transcriptome data by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: A total of 521 DEGs were identified, including 277 upregulated and 244 downregulated. There were 258 GO terms significantly enriched by upregulated DEGs and 419 GO terms significantly enriched by downregulated DEGs. Among the upregulated DEGs, 22 GO terms were associated with immune cells (e.g., B cells and T cells) and immune regulatory processes, while among the downregulated DEGs, 58 GO terms were associated with immune cells and immune regulatory processes. Through PPI analysis, we found that CD40 molecules with significantly downregulated expression levels after flea bites may play an important role in host immune regulation. Through KEGG pathway enrichment analysis, a total of 26 significantly enriched KEGG pathways were identified. The RT-qPCR analysis results indicated that the transcriptome sequencing results were reliable. CONCLUSIONS: Through in-depth analysis of transcriptome changes in mice caused by flea bites, we revealed that flea bites could stimulate a series of biological and immunological responses in mice. These findings not only provided a deeper understanding of the impact of flea bites on the host but also provided a basis for further research on the interaction between ectoparasites and the host. We believe that digging deeper into the significance of these transcriptome changes will help reveal more about the adaptive response of the host to ectoparasites.


Gene Expression Profiling , Transcriptome , Xenopsylla , Animals , Mice , Xenopsylla/genetics , Insect Bites and Stings/immunology , Gene Ontology , Protein Interaction Maps , Spleen/immunology , Spleen/metabolism , Female , Sequence Analysis, RNA
5.
Med Clin North Am ; 108(4): 757-776, 2024 Jul.
Article En | MEDLINE | ID: mdl-38816116

Stinging insects are a frequent cause of local and systemic hypersensitivity reactions, including anaphylaxis. For those with a history of life-threatening anaphylaxis, venom immunotherapy is effective, safe, and can be life-saving. Arachnids are a much less common source of envenomation through bites or stings and are less likely to cause a hypersensitivity reaction. However, recognizing the clinical manifestations when they do present is important for accurate diagnosis and treatment, and, when indicated, consideration of other diagnoses.


Anaphylaxis , Insect Bites and Stings , Humans , Insect Bites and Stings/complications , Anaphylaxis/therapy , Anaphylaxis/diagnosis , Anaphylaxis/etiology , Animals , Hypersensitivity/therapy , Hypersensitivity/diagnosis , Arthropod Venoms/immunology , Arthropod Venoms/adverse effects , Desensitization, Immunologic/methods , Venom Hypersensitivity
6.
Front Immunol ; 15: 1368066, 2024.
Article En | MEDLINE | ID: mdl-38751433

Introduction: Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of human cohorts for exposure to potentially infectious mosquitoes. Methods: We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naive at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify immunogenic Aedes aegypti salivary proteins and measure total anti-Ae. aegypti IgG. Results: We found a correlation (rs=0.86) between IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic versus symptomatic dengue. Discussion: The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.


Aedes , Dengue , Insect Proteins , Mosquito Vectors , Salivary Proteins and Peptides , Humans , Aedes/immunology , Aedes/virology , Animals , Salivary Proteins and Peptides/immunology , Child , Mosquito Vectors/immunology , Mosquito Vectors/virology , Dengue/immunology , Dengue/transmission , Insect Proteins/immunology , Female , Child, Preschool , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Cambodia , Longitudinal Studies , Dengue Virus/immunology , Adolescent , Insect Bites and Stings/immunology
7.
PLoS One ; 19(5): e0298919, 2024.
Article En | MEDLINE | ID: mdl-38805442

BACKGROUND: A simple treated fabric device for passively emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against nocturnal Anopheles and Culex mosquitoes for several months. Here these transfluthrin emanators were assessed in Port-au-Prince, Haiti against outdoor-biting Aedes. METHODS: Transfluthrin emanators were distributed to participating households in poor-to-middle class urban neighbourhoods and evaluated once every two months in terms of their effects on human landing rates of wild Aedes populations. A series of three such entomological assessment experiments were conducted, to examine the influence of changing weather conditions, various transfluthrin formulations and emanator placement on protective efficacy measurements. Laboratory experiments assessed resistance of local Aedes aegypti to transfluthrin and deltamethrin, and the irritancy and repellency of the transfluthrin-treated fabric used in the field. RESULTS: Across all three entomological field assessments, little evidence of protection against wild Ae. aegypti was observed, regardless of weather conditions, transfluthrin formulation or emanator placement: A generalized linear mixed model fitted to the pooled data from all three assessment rounds (921 females caught over 5129 hours) estimated a relative landing rate [95% Confidence interval] of 0.87 [0.73, 1.04] for users of treated versus untreated emanators (P = 0.1241). Wild Ae. aegypti in this setting were clearly resistant to transfluthrin when compared to a fully susceptible colony. CONCLUSIONS: Transfluthrin emanators had little if any apparent effect upon Aedes landing rates by wild Ae. aegypti in urban Haiti, and similar results have been obtained by comparable studies in Tanzania, Brazil and Peru. In stark contrast, however, parallel sociological assessments of perspectives among these same end-users in urban Haitian communities indicate strong satisfaction in terms of perceived protection against mosquitoes. It remains unclear why the results obtained from these complementary entomological and sociological assessments in Haiti differ so much, as do those from a similar set of studies in Brazil. It is encouraging, however, that similar contrasts between the entomological and epidemiological results of a recent large-scale assessment of another transfluthrin emanator product in Peru, which indicate they provide useful protection against Aedes-borne arboviral infections, despite apparently providing only modest protection against Aedes mosquito bites.


Aedes , Cyclopropanes , Fluorobenzenes , Insecticides , Mosquito Control , Animals , Aedes/drug effects , Cyclopropanes/pharmacology , Haiti , Mosquito Control/methods , Humans , Insecticides/pharmacology , Female , Pyrethrins/pharmacology , Mosquito Vectors/drug effects , Insecticide Resistance , Insect Bites and Stings/prevention & control , Nitriles/pharmacology , Family Characteristics , Insect Repellents/pharmacology
8.
Nat Commun ; 15(1): 4626, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816383

The human infectious reservoir of Plasmodium falciparum is governed by transmission efficiency during vector-human contact and mosquito biting preferences. Understanding biting bias in a natural setting can help target interventions to interrupt transmission. In a 15-month cohort in western Kenya, we detected P. falciparum in indoor-resting Anopheles and human blood samples by qPCR and matched mosquito bloodmeals to cohort participants using short-tandem repeat genotyping. Using risk factor analyses and discrete choice models, we assessed mosquito biting behavior with respect to parasite transmission. Biting was highly unequal; 20% of people received 86% of bites. Biting rates were higher on males (biting rate ratio (BRR): 1.68; CI: 1.28-2.19), children 5-15 years (BRR: 1.49; CI: 1.13-1.98), and P. falciparum-infected individuals (BRR: 1.25; CI: 1.01-1.55). In aggregate, P. falciparum-infected school-age (5-15 years) boys accounted for 50% of bites potentially leading to onward transmission and had an entomological inoculation rate 6.4x higher than any other group. Additionally, infectious mosquitoes were nearly 3x more likely than non-infectious mosquitoes to bite P. falciparum-infected individuals (relative risk ratio 2.76, 95% CI 1.65-4.61). Thus, persistent P. falciparum transmission was characterized by disproportionate onward transmission from school-age boys and by the preference of infected mosquitoes to feed upon infected people.


Anopheles , Insect Bites and Stings , Malaria, Falciparum , Mosquito Vectors , Plasmodium falciparum , Humans , Anopheles/parasitology , Anopheles/physiology , Animals , Plasmodium falciparum/physiology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/genetics , Malaria, Falciparum/transmission , Malaria, Falciparum/parasitology , Male , Adolescent , Child , Child, Preschool , Female , Kenya/epidemiology , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Adult , Feeding Behavior , Young Adult , Infant
9.
PLoS Negl Trop Dis ; 18(5): e0012202, 2024 May.
Article En | MEDLINE | ID: mdl-38814990

INTRODUCTION: Plague continues to be a major public health concern in African countries. Several social practices and environmental conditions have been associated with the reoccurrence of bubonic plague, especially in places where the disease is prevalent. Therefore, it remains important to understand people knowledge, behavior and practices related to disease risks in order to identify factors that may hinder prevention and control strategies in the foci. METHODS AND RESULTS: A study survey of 100 households was conducted in Mbulu district to assess plague knowledge, factors that influence flea bite and measures used for rodent and flea control. Majority of participants (86%) were familiar with the plague disease and about (50%) mentioned swelling lymph nodes as a common symptom. Most of the participants (62%) claimed to observe human plague cases during the long rain season. The majority of participants (97%) reported to experience flea bite in their domestic settings, with most stating that they experienced more flea bites during the dry season. Houses with livestock had a greater likelihood of flea bite (OR = 2.7; 95% CI: 0.36-18.80, p = 0.267) compared to houses with no livestock. Furthermore, residents reported using both local and chemical methods to control rodents and flea inside houses. Most respondents preferred using local methods in flea control. Respondents stated that the efficacy of flea control methods being applied ranged from few days to several months. There was limited knowledge of the residual effects of the agricultural chemicals being used to control fleas among the surveyed community. CONCLUSION: Our study highlights the importance of raising awareness and adopting effective control methods for controlling fleas and lower the risk of plague transmission and other flea borne diseases in the local communities. Sensitization of the local community on the use of appropriate chemicals for flea control is urgent to avoid any potential long-term impacts of the residual effects on the health of the local communities.


Health Knowledge, Attitudes, Practice , Plague , Siphonaptera , Plague/epidemiology , Plague/prevention & control , Plague/transmission , Tanzania/epidemiology , Humans , Animals , Female , Adult , Male , Siphonaptera/microbiology , Middle Aged , Young Adult , Surveys and Questionnaires , Rodentia , Adolescent , Insect Bites and Stings/epidemiology , Insect Bites and Stings/prevention & control , Endemic Diseases
10.
PLoS One ; 19(5): e0299722, 2024.
Article En | MEDLINE | ID: mdl-38809841

BACKGROUND: A low technology emanator device for slowly releasing vapour of the volatile pyrethroid transfluthrin was recently developed in Tanzania that provides robust protection against night biting Anopheles and Culex vectors of malaria and filariasis for several months. Here these same emanator devices were assessed in Dar es Salaam city, as a means of protection against outdoor-biting Aedes (Stegomia) aegypti, the most important vector of human arboviruses worldwide, in parallel with similar studies in Haiti and Brazil. METHODS: A series of entomological experiments were conducted under field and semi-field conditions, to evaluate whether transfluthrin emanators protect against wild Ae. aegypti, and also compare the transfluthrin responsiveness of Ae. aegypti originating from wild-caught eggs to established pyrethroid-susceptible Ae. aegypti and Anopheles gambiae colonies. Preliminary measurements of transfluthrin vapour concentration in air samples collected near treated emanators were conducted by gas chromatography-mass spectrometry. RESULTS: Two full field experiments with four different emanator designs and three different transfluthrin formulations consistently indicated negligible reduction of human landing rates by wild Ae. aegypti. Under semi-field conditions in large cages, 50 to 60% reductions of landing rates were observed, regardless of which transfluthrin dose, capture method, emanator placement position, or source of mosquitoes (mildly pyrethroid resistant wild caught Ae. aegypti or pyrethroid-susceptible colonies of Ae. aegypti and An. gambiae) was used. Air samples collected immediately downwind from an emanator treated with the highest transfluthrin dose (15g), contained 12 to 19 µg/m3 transfluthrin vapour. CONCLUSIONS: It appears unlikely that the moderate levels of pyrethroid resistance observed in wild Ae. aegypti can explain the modest-to-undetectable levels of protection exhibited. While potential inhalation exposure could be of concern for the highest (15g) dose evaluated, 3g of transfluthrin appears sufficient to achieve the modest levels of protection that were demonstrated entomologically. While the generally low levels of protection against Aedes reported here from Tanzania, and from similar entomological studies in Haiti and Brazil, are discouraging, complementary social science studies in Haiti and Brazil suggest end-users perceive valuable levels of protection against mosquitoes. It therefore remains unclear whether transfluthrin emanators have potential for protecting against Aedes vectors of important human arboviruses.


Aedes , Cyclopropanes , Fluorobenzenes , Insecticides , Mosquito Control , Animals , Tanzania , Aedes/drug effects , Cyclopropanes/pharmacology , Mosquito Control/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Humans , Anopheles/drug effects , Insect Bites and Stings/prevention & control , Pyrethrins
11.
Sci Rep ; 14(1): 11476, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769342

Entomological evaluations of vector control tools often use human landing catches (HLCs) as a standard measure of a direct human-vector contact. However, some tools have additional characteristics, such as mortality, and HLCS are not sensitive for measuring other effects beyond landing inhibition. Therefore, additional measures may need to be considered when evaluating these tools for public health use. This study has two main aims (1) the evaluate the accuracy of HLCs as a proxy for feeding and (2) to compare the predicted reduction in vectorial capacity when we do and do not consider these additional characteristics. To achieve this, we analyse previously published semi-field data from an experiment which used HLCs and another where mosquitoes were allowed to feed in the presence of different dosages of the volatile pyrethroid spatial repellent, transfluthrin. We compare results for two mathematical models: one which only considers the reduction in feeding effect and one which also considers mortality before and after feeding (using data gathered by the aspiration of mosquitoes after the semi-field feeding/landing period and 24 h survival monitoring). These Bayesian hierarchical models are parameterised using Bayesian inference. We observe that, for susceptible mosquitoes, reduction in landing is underestimated by HLCs. For knockdown resistant mosquitoes the relationship is less clear; with HLCs sometimes appearing to overestimate this characteristic. We find HLCs tend to under-predict the relative reduction in vectorial capacity in susceptible mosquitoes while over-predicting this impact in knockdown-resistant mosquitoes. Models without secondary effects have lower predicted relative reductions in vectorial capacities. Overall, this study highlights the importance of considering additional characteristics to reduction in biting of volatile pyrethroid spatial repellents. We recommend that these are considered when evaluating novel vector control tools.


Insect Bites and Stings , Mosquito Control , Mosquito Vectors , Animals , Humans , Mosquito Control/methods , Mosquito Vectors/physiology , Mosquito Vectors/drug effects , Insect Bites and Stings/prevention & control , Feeding Behavior , Insect Repellents/pharmacology , Cyclopropanes/pharmacology , Fluorobenzenes/pharmacology , Insecticides/pharmacology , Models, Theoretical
12.
PLoS Biol ; 22(5): e3002625, 2024 May.
Article En | MEDLINE | ID: mdl-38771885

Yersinia pestis, the causative agent of plague, is a highly lethal vector-borne pathogen responsible for killing large portions of Europe's population during the Black Death of the Middle Ages. In the wild, Y. pestis cycles between fleas and rodents; occasionally spilling over into humans bitten by infectious fleas. For this reason, fleas and the rats harboring them have been considered the main epidemiological drivers of previous plague pandemics. Human ectoparasites, such as the body louse (Pediculus humanus humanus), have largely been discounted due to their reputation as inefficient vectors of plague bacilli. Using a membrane-feeder adapted strain of body lice, we show that the digestive tract of some body lice become chronically infected with Y. pestis at bacteremia as low as 1 × 105 CFU/ml, and these lice routinely defecate Y. pestis. At higher bacteremia (≥1 × 107 CFU/ml), a subset of the lice develop an infection within the Pawlowsky glands (PGs), a pair of putative accessory salivary glands in the louse head. Lice that developed PG infection transmitted Y. pestis more consistently than those with bacteria only in the digestive tract. These glands are thought to secrete lubricant onto the mouthparts, and we hypothesize that when infected, their secretions contaminate the mouthparts prior to feeding, resulting in bite-based transmission of Y. pestis. The body louse's high level of susceptibility to infection by gram-negative bacteria and their potential to transmit plague bacilli by multiple mechanisms supports the hypothesis that they may have played a role in previous human plague pandemics and local outbreaks.


Pediculus , Plague , Yersinia pestis , Animals , Yersinia pestis/pathogenicity , Yersinia pestis/physiology , Pediculus/microbiology , Pediculus/physiology , Humans , Plague/transmission , Plague/microbiology , Insect Vectors/microbiology , Insect Vectors/parasitology , Insect Bites and Stings/microbiology , Female , Male
13.
Article Zh | MEDLINE | ID: mdl-38802315

Wasp sting refers to a series of clinical syndromes caused by the venom in the tail poison sac of the poisonous bee when attacking the attacked body, mainly manifested as local skin damage, systemic allergic reaction and multi-organ dysfunction syndrome (MODS) . Wasp venom can also act on the nervous system, and cause rare complications such as cerebral hemorrhage, subarachnoid hemorrhage, cerebral infarction, epilepsy, encephalitis, and Parkinson's disease, which can seriously affect the prognosis. This review will elaborate the above complications for clinical reference.


Insect Bites and Stings , Wasps , Animals , Humans , Insect Bites and Stings/complications , Wasp Venoms , Nervous System Diseases/etiology , Multiple Organ Failure/etiology
14.
Malar J ; 23(1): 166, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807105

BACKGROUND: Deforestation is an important driver of malaria dynamics, with a relevant impact on mosquito ecology, including larval habitat availability, blood-feeding behaviour, and peak biting time. The latter is one of several entomological metrics to evaluate vectorial capacity and effectiveness of disease control. This study aimed to test the effect of forest cover percentage on the peak biting time of Plasmodium-uninfected and infected Nyssorhynchus darlingi females. METHODS: Mosquitoes were captured utilizing human landing catch (HLC) in the peridomestic habitat in field collections carried out in the wet, wet-dry transition, and dry seasons from 2014 to 2017 in areas with active malaria transmission in Amazonian Brazil. The study locations were in rural settlements in areas with the mean annual malaria parasite incidence (Annual Parasite Incidence, API ≥ 30). All Ny. darlingi females were tested for Plasmodium spp. infection using real time PCR technique. Forest cover percentage was calculated for each collection site using QGIS v. 2.8 and was categorized in three distinct deforestation scenarios: (1) degraded, < 30% forest cover, (2) intermediate, 30-70% forest cover, and (3) preserved, > 70% forest cover. RESULTS: The highest number of uninfected female Ny. darlingi was found in degraded landscape-sites with forest cover < 30% in any peak biting time between 18:00 and 0:00. Partially degraded landscape-sites, with (30-70%) forest cover, showed the highest number of vivax-infected females, with a peak biting time of 21:00-23:00. The number of P. falciparum-infected mosquitoes was highest in preserved sites with > 70% forest cover, a peak biting at 19:00-20:00, and in sites with 30-70% forest cover at 22:00-23:00. CONCLUSIONS: Results of this study show empirically that degraded landscapes favour uninfected Ny. darlingi with a peak biting time at dusk (18:00-19:00), whereas partially degraded landscapes affect the behaviour of Plasmodium-infected Ny. darlingi by shifting its peak biting time towards hours after dark (21:00-23:00). In preserved sites, Plasmodium-infected Ny. darlingi bite around dusk (18:00-19:00) and shortly after (19:00-20:00).


Feeding Behavior , Forests , Mosquito Vectors , Animals , Brazil , Female , Mosquito Vectors/physiology , Mosquito Vectors/parasitology , Conservation of Natural Resources , Insect Bites and Stings/epidemiology , Seasons , Malaria/transmission
16.
Allergy Asthma Proc ; 45(3): 195-200, 2024 May 01.
Article En | MEDLINE | ID: mdl-38755779

Introduction: Hymenoptera venom immunotherapy (VIT) is the only therapy that protects patients with Hymenoptera venom allergy by preventing systemic reactions after a new sting. Various extracts for VIT are available and used. VIT administration consists of an induction phase and a maintenance phase. Depot preparations of Hymenoptera VIT extracts are typically used for cluster and conventional protocols, and the maintenance phase. Many patients with Hymenoptera allergy need to achieve tolerance quickly because of the high risk of re-sting and possible anaphylaxis. Objective: Our study aimed to show the safety and efficacy of an accelerated regimen with depot preparations on aluminum hydroxide by using relatively high starting doses in a heterogeneous group of patients. Methods: The research focused on a group of patients with a history of severe systemic reactions to Hymenoptera stings, with the necessity of swift immunization due to high occupational risks. Aluminum hydroxide depot extracts either of Vepula species or Apis mellifera extracts were used. Results: The induction protocol was started with the highest concentration of depot venom extract of 100,000 standard quality unit and was well tolerated by 19 of 20 patients. Onne patient presented with a mild systemic reaction during the accelerated induction schedule, which was promptly treated with intravenous steroids and intramuscular H1 antihistamine; when switched to a conventional induction protocol, he had a similar reaction but finally reached maintenance with an H1-antagonist premedication. Conclusion: If validated, the accelerated induction protocol by using depot aluminum adsorbed extracts with the highest concentration of venom from the beginning could offer a streamlined and accessible treatment modality for patients diagnosed with anaphylaxis from bee and wasp venoms in need of rapid desensitization.


Desensitization, Immunologic , Hymenoptera , Humans , Desensitization, Immunologic/methods , Desensitization, Immunologic/adverse effects , Animals , Adult , Male , Female , Middle Aged , Hymenoptera/immunology , Aluminum Hydroxide , Insect Bites and Stings/immunology , Insect Bites and Stings/therapy , Treatment Outcome , Young Adult , Allergens/immunology , Allergens/administration & dosage , Adolescent , Hypersensitivity/therapy , Hypersensitivity/immunology , Arthropod Venoms/immunology , Aged , Bee Venoms/immunology , Bee Venoms/administration & dosage , Bee Venoms/adverse effects
17.
J Vis Exp ; (206)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38738868

Mosquitoes, notorious as the deadliest animals to humans due to their capacity to transmit diseases, pose a persistent challenge to public health. The primary prevention strategy currently in use involves chemical repellents, which often prove ineffective as mosquitoes rapidly develop resistance. Consequently, the invention of new preventive methods is crucial. Such development hinges on a thorough understanding of mosquito biting behaviors, necessitating an experimental setup that accurately replicates actual biting scenarios with controllable testing parameters and quantitative measurements. To bridge this gap, a bio-hybrid atomic force microscopy (AFM) probe was engineered, featuring a biological stinger - specifically, a mosquito labrum - as its tip. This bio-hybrid probe, compatible with standard AFM systems, enables a near-authentic simulation of mosquito penetration behaviors. This method marks a step forward in the quantitative study of biting mechanisms, potentially leading to the creation of effective barriers against vector-borne diseases (VBDs) and opening new avenues in the fight against mosquito-transmitted illnesses.


Culicidae , Microscopy, Atomic Force , Animals , Microscopy, Atomic Force/methods , Culicidae/physiology , Insect Bites and Stings/prevention & control
19.
Front Immunol ; 15: 1335307, 2024.
Article En | MEDLINE | ID: mdl-38633260

Introduction: Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods: To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results: A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion: Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.


Insect Bites and Stings , Phlebotomus , Animals , Humans , Phlebotomus/parasitology , Leukocytes, Mononuclear , Immunity, Cellular , Antigens , Immunoglobulin G , Salivary Proteins and Peptides
20.
Vet Med Sci ; 10(3): e1462, 2024 05.
Article En | MEDLINE | ID: mdl-38659360

BACKGROUND: Culicoides is a genus of ubiquitous biting midges (Ceratopogonidae). Female midges have blood-sucking habit. They not only bite and harass humans and animals but also may be an important vector of disease transmission. Therefore, building an animal allergy model caused by Culicoides biting is very beneficial for studying its pathogenesis and exploring the therapeutic methods. MATERIAL AND METHOD: Kunming mice were used in this study to build the model and sensitised by two-step injection of midge extracts. Scratching behaviour and histological examination were used to check the immediate and delayed responses. Immunoglobulin E (IgE) and Immunoglobulin G (IgG) were detected using indirect enzyme-linked immunosorbent assay (ELISA) assay. Splenic cell proliferation and cytokine production were determined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and ELISA assays. The response of cytokine gene expression to midge stimulation was analysed through quantitative real-time polymerase chain reaction (qPCR). RESULTS: Behavioural results revealed a significant increase in scratching frequency among the midge-sensitised animals (p < 0.05). Histological examination showed more inflammatory cytokine infiltration at the injection site of midge-sensitised mice comparing to the ones in the control group. The serum levels of IgE and IgG1 antibodies in the midge-sensitised group were significantly elevated (p < 0.05). After splenocytes were stimulated in vitro with midge extracts, the midge-sensitised group's splenocyte count significantly increased in comparison to the control group. The midge-sensitised group's qPCR data revealed a down-regulation of tumor necrosis factor alpha (TNF-α) expression and an increase in the expression of interleukin (IL)-4, IL-5, IL-10 and IL-13 but not in the control group (p < 0.05). CONCLUSIONS: In this study, an animal model of Culicoides-mouse sensitisation was successfully constructed using a two-step method. The mode of administration of the model was in good agreement with the natural immune pathway, and the immune response induced by the sensitisation of the model was similar to that produced by the bite of a midge.


Ceratopogonidae , Disease Models, Animal , Hypersensitivity , Animals , Ceratopogonidae/physiology , Mice , Female , Hypersensitivity/veterinary , Hypersensitivity/immunology , Insect Bites and Stings/veterinary , Insect Bites and Stings/immunology
...