Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.596
Filter
1.
Rev. biol. trop ; 72(1): e52916, ene.-dic. 2024. tab, graf
Article in Spanish | SaludCR, LILACS | ID: biblio-1559320

ABSTRACT

Resumen Introducción: Varias presiones antrópicas sufren los ecosistemas acuáticos del piedemonte llanero en Colombia. La respuesta a estresores ambientales aún se desconoce en organismos bioindicadores como Leptohyphidae. Objetivo: Determinar la diversidad de ninfas de Leptohyphidae del río Quenane-Quenanito, en dos periodos hidrológicos contrastantes y su relación con algunas variables fisicoquímicas. Métodos: En diciembre (2014) y febrero (2015) se recolectaron organismos con red Surber en seis estaciones a lo largo del río. Se analizó la diversidad alfa y beta y se aplicó análisis de redundancia y modelos lineales generalizados con el fin de establecer la relación entre los taxones y las variables ambientales. Resultados: Se identificaron 369 organismos pertenecientes a cuatro géneros (Amanahyphes, Traverhyphes, Tricorythopsis y Tricorythodes), dos especies y ocho morfoespecies. Se reporta por primera vez para el departamento del Meta Amanahyphes saguassu. Se registró la mayor diversidad de ninfas en la transición a la sequía y la mayor abundancia en sequía. La diversidad beta señaló que la configuración del ensamblaje cambia a nivel espacial y temporal. Conclusiones: Los organismos de Leptohyphidae prefieren hábitats de corrientes, particularmente en el periodo de sequía, donde hallan alimento (hojarasca, detritos) y refugio para establecerse exitosamente; actividades antrópicas como la urbanización afectan notablemente la diversidad. La alta diversidad registrada en este pequeño río de piedemonte llanero refleja la necesidad de incrementar este tipo de trabajos y esfuerzos de recolección de material de estudio en la región.


Abstract Introduction: Various anthropic pressures affect the aquatic ecosystems of the foothills of Colombia. The response to environmental stressors is still unknown in bioindicator organisms such as Leptohyphidae. Objective: To determine the diversity of Leptohyphidae nymphs of the Quenane-Quenanito river, in two contrasting hydrological periods and its relationship with some physicochemical variables. Methods: In December (2014) and February (2015), organisms were collected with a Surber net at six stations along the current. Alpha and beta diversity was analyzed and redundancy analysis and generalized linear model were applied to establish the relationship between taxa and environmental variables. Results: Were identified 369 organisms belonging to four genera (Amanahyphes, Traverhyphes, Tricorythopsis, and Tricorythodes), two species, and eight morphospecies. Amanahyphes saguassu is reported for the first time for the Meta department. High diversity of Leptohyphidae nymphs was recorded in the transition to drought season and greater abundance in drought. Beta diversity indicated that the configuration of the assemblage changes spatially and temporally. Conclusions: Leptohyphidae organisms prefer fast habitats, particularly in the dry period where they find food (leaf litter, detritus) and shelter to establish themselves successfully; anthropic activities such as urbanization notably affect diversity. The high diversity recorded in this small river in the foothills of the plains reflects the need to increase this type of works and collection efforts of study material in the region.


Subject(s)
Animals , Ephemeroptera/classification , Water Quality , Colombia , Insecta/classification
2.
Neotrop Entomol ; 53(4): 746-758, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967879

ABSTRACT

The order Plecoptera constitutes a relatively small group of aquatic insects, encompassing 17 extant families and comprising over 4400 valid species. In Brazil, the number of valid extant species is 207, located in two families: Perlidae (149) and Gripopterygidae (58). Despite extensive research on the southeastern region of Brazil, there is a notable scarcity of comprehensive studies consolidating geographical records and species richness of Plecoptera in the state of Minas Gerais. This study seeks to increase and refine our understanding of Plecoptera within Minas Gerais, focusing on its diversity and distribution. The initial phase involved a thorough review of articles documenting Plecoptera species in the state. Subsequently, biological material from the Museum of Entomology at the Federal University of Viçosa collection was meticulously identified, and its geographical records were incorporated. Utilizing this dataset, we compiled an updated list of Plecoptera species documented in Minas Gerais. Geographical coordinates of collection points were then mapped and graphically represented to elucidate the geographic and altitudinal distribution of these species. A total of 42 Plecoptera species were identified within the state of Minas Gerais, adding many occurrence records and documenting the first record of Gripopteryx pinima for the state. Despite these advancements, knowledge gaps persist, particularly in the mesoregions of Triângulo/Alto Paranaíba, Oeste de Minas, Vale do Mucuri, and Campo das Vertentes. This endeavor serves as an initial foundation to stimulate further collections and investments in undersampled areas, fostering future monitoring and conservation initiatives for aquatic environments.


Subject(s)
Animal Distribution , Biodiversity , Brazil , Animals , Insecta/classification
3.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000286

ABSTRACT

The FibH gene, crucial for silk spinning in insects, encodes a protein that significantly influences silk fiber mechanics. Due to its large size and repetitive sequences, limited known sequences of insect FibH impede comprehensive understanding. Here, we analyzed 114 complete FibH gene sequences from Lepidoptera (71 moths, 24 butterflies) and 13 Trichoptera, revealing single-copy FibH in most species, with 2-3 copies in Hesperinae and Heteropterinae (subfamily of skippers). All FibH genes are structured with two exons and one intron (39-45 bp), with the second exon being notably longer. Moths exhibit higher GC content in FibH compared to butterflies and Trichoptera. The FibH composition varies among species, with moths and butterflies favoring Ala, Gly, Ser, Pro, Gln, and Asn, while Trichoptera FibH is enriched in Gly, Ser, and Arg, and has less Ala. Unique to Trichoptera FibH are Tyr, Val, Arg, and Trp, whereas Lepidoptera FibH is marked by polyAla (polyalanine), polySer (polyserine), and the hexapeptide GAGSGA. A phylogenetic analysis suggests that Lepidoptera FibH evolved from Trichoptera, with skipper FibH evolving from Papilionoidea. This study substantially expands the FibH repertoire, providing a foundation for the development of artificial silk.


Subject(s)
Evolution, Molecular , Fibroins , Phylogeny , Fibroins/genetics , Fibroins/chemistry , Animals , Insect Proteins/genetics , Amino Acid Sequence , Insecta/genetics , Insecta/classification
4.
An Acad Bras Cienc ; 96(3): e20230784, 2024.
Article in English | MEDLINE | ID: mdl-38985032

ABSTRACT

A Collapsible Light Trap (CLT) for collecting insects, particularly aquatic insects, is described here. CLT is a modified Pennsylvania Light Trap with the advantage of being collapsible and lightweight to be carried in a small backpack and very easy to set up in the field. CLT is equipped with LED light strip wrapped around a PVC tube and can be connected to a regular 12 V / 7 Ah battery, running for more than 48 uninterrupted hours. Complete CLT weighs 0.8-1.0 kg, depending on the metal used, and the battery weighs around 2 kg, being easily transportable to more remote collecting areas. Over the years, CLTs have been used for collecting and describing the diversity of aquatic insects from Brazil, particularly caddisflies. Depending on the locality, only one trap for one night can collect over a thousand insect specimens and more than 200 individuals of caddisflies.


Subject(s)
Insecta , Animals , Insecta/classification , Brazil , Light , Equipment Design
5.
PLoS One ; 19(7): e0305824, 2024.
Article in English | MEDLINE | ID: mdl-39018276

ABSTRACT

Kempnyia (Plecoptera: Perlidae) is an endemic genus of Brazilian stoneflies that has 36 valid species and is distributed primarily in the Atlantic Forest and the mountainous areas of Central Brazil, particularly in Goiás and Tocantins states. Despite being the Brazilian genus with the most DNA sequences available on GenBank, integrative studies on the genus began only recently, in 2014. In this context, herein we studied the morphology and molecular data of Kempnyia specimens deposited in the Aquatic Biology Laboratory (UNESP, Assis) and the Entomology Museum of the Federal University of Viçosa (UFVB, Viçosa) collections. For the integrative approach adopted, in addition to studying the specimens morphologically, we used sequences of the COI mitochondrial gene combined with the following species delimitation methods: Automatic Barcode Gap Discovery (ABGD), both primary (ABGDp) and recursive (ABGDr) partitions; Assemble Species by Automatic Partitioning (ASAP); Poisson Tree Processes (PTP) and the Bayesian implementation of the Poisson Tree Processes (bPTP). As a result, we provided 28 new COI sequences of 21 species and support the description of four new species, namely, K. guarani sp. nov., K. tupiniquim sp. nov., K. una sp. nov., and K. zwickii sp. nov., consequently increasing the known diversity of the genus to 40 species. We also discuss the morphological variations observed in other species of the genus and provide several new geographic records. Therefore, our study brings new insights into the values of intra- and interspecific molecular divergence within Kempnyia, serving as a basis for new studies.


Subject(s)
Phylogeny , Animals , Brazil , Electron Transport Complex IV/genetics , DNA Barcoding, Taxonomic , Bayes Theorem , Insecta/classification , Insecta/genetics , Insecta/anatomy & histology , Neoptera/genetics , Neoptera/classification , Neoptera/anatomy & histology , Species Specificity , Female
6.
PLoS One ; 19(7): e0305757, 2024.
Article in English | MEDLINE | ID: mdl-39024343

ABSTRACT

Citizen Science is a powerful tool for biodiversity research, as it facilitates data recording at large scales that would otherwise be impossible to cover by standard academic research. Despite its benefits, the accuracy of citizen science data remains a subject of concern among scientists, with varying results reported so far. Neither citizen science data nor academic records are immune to biases, which can significantly impact the quality and reliability of observations. Here, using insects in the Iberian Peninsula as a case study, we compare data collected by participatory platforms to those obtained through academic research projects, and assess their taxonomic, spatial, temporal, and environmental biases. Results show a prominent taxonomic bias in both academic and citizen science data, with certain insect orders receiving more attention than others. These taxonomic biases are conserved between different participatory platforms, as well as between groups of users with different levels of contribution performance. The biases captured by leading contributors in participatory platforms mirrored those of sporadic users and academic data. Citizen science data had higher spatial coverage and less spatial clustering than academic data, showing also clearer trends in temporal seasonality. Environmental coverage over time was more stable in citizen science than in academic records. User behaviour, preference, taxonomical expertise, data collection methodologies and external factors may contribute to these biases. This study shows the multifaceted nature of biases present in academic records and citizen science platforms. The insights gained from this analysis emphasize the need for careful consideration of these biases when making use of biodiversity data from different sources. Combining academic and citizen science data enhances our understanding of biodiversity, as their integration offers a more comprehensive perspective than relying solely on either dataset alone, especially since biases in these two types of data are not always the same.


Subject(s)
Bias , Biodiversity , Citizen Science , Insecta , Animals , Insecta/classification , Humans , Spain
7.
Braz J Biol ; 84: e282077, 2024.
Article in English | MEDLINE | ID: mdl-39046051

ABSTRACT

The complexity of the agroecosystem can also be assessed by the different land uses in the system and the surroundings, being a relevant way to assess the heterogeneity of the landscape and the effects on the community of interest, in this case, entomofauna. Thus, the objective of this work is to verify how the use of soil in the surroundings of Chilean lettuce horticultural systems, in the Coquimbo Region, alters the entomological community of the crop. Insect sampling was conducted (February 2021 to March 2022) using yellow pan traps. Two sites will be sampled on each of the seven studied lettuce crops. Land use and land cover classes were defined: Forests, water bodies, shrub vegetation, grasslands, barren lands, impermeable surfaces, and urban areas. After land use and land cover classification, buffers of 500 to 5,000 m were created around each data collection point. For data analysis, the percentages of land use of different classes were compared with the ecological attributes: Abundance of insects, abundance of insect pests, richness of entomological families and types of oral apparatus (licker-sucker, mandible, picker-sucker, and sucker). Land uses at different distances from horticultural systems affected the entomological community.


Subject(s)
Insecta , Lactuca , Animals , Lactuca/classification , Insecta/classification , Chile , Horticulture , Biodiversity , Crops, Agricultural/classification , Population Density , Soil/chemistry
8.
An Acad Bras Cienc ; 96(2): e20230974, 2024.
Article in English | MEDLINE | ID: mdl-38896694

ABSTRACT

Conservation Units (CUs) tend to have a high richness of herbivorous insects, including gall-inducing insects. Despite this, gall surveys carried out in these environments are punctual and some units have never had their galls investigated, such as the Chapada Diamantina National Park, Bahia (Chapada Diamantina Parna). Aiming to reduce this gap and contribute to future studies in CUs, this study aimed to survey the galls of the Chapada Diamantina Parna, Lençóis, as well as to investigate trends in research on galls in CUs in Brazil. For that, collections were carried out on monthly trips for one year. Published gall surveys were compiled. A total of 107 morphotypes induced in 88 host species were recorded. Most galls are formed in leaves, globoid in shape, green in color, and induced by Cecidomyiidae. This park has a relatively high richness of galls compared to other CUs, demonstrating its importance in the conservation of gall-inducing insects. The results also revealed that the number of surveys has been increasing over the years and that the Southeast concentrates the largest number of studies, a region that also gathers the largest number of specialists, demonstrating a geographic bias in the data.


Subject(s)
Biodiversity , Insecta , Parks, Recreational , Plant Tumors , Animals , Brazil , Plant Tumors/parasitology , Insecta/classification , Conservation of Natural Resources
9.
Braz J Biol ; 84: e281588, 2024.
Article in English | MEDLINE | ID: mdl-38896730

ABSTRACT

Terminalia argentea tree, native to Brazil, is widely used in landscaping, recovering degraded areas, its wood, coal production, and the bark or leaf extracts has medicinal use. Despite of its importance, the arthropod fauna associated to this plant and its interspecific relationships still needs further studies. The objectives of this study were to evaluate the arthropods, their ecological indices and the distribution in the leaf faces on T. argentea saplings. The numbers of phytophagous insects (e.g., Cephalocoema sp.), pollinators (e.g., Tetragonisca angustula), and natural enemies (e.g., Oxyopidae), and their ecological indices (e.g., species richness), were higher on the adaxial leaf faces on T. argentea saplings. Aggregated distribution of phytophagous insects (e.g., Aphis spiraecola), pollinators (e.g., Trigona spinipes), and natural enemies (e.g., Camponotus sp.) on T. argentea saplings was observed. Abundance, diversity, and species richness of natural enemies correlated, positively, with those of phytophagous and pollinators insects. Predators and tending ants followed their prey and sucking insects, respectively. Tending ants protected sucking insects against predators, and reduced chewing insects. The high number of Cephalocoema sp. on T. argentea saplings is a problem, because this insect can feed on leaves of this plant, but its preference for the adaxial leaf face favors its control. The aggregation behavior of arthropods on T. argentea saplings favors the control of potential pests of this plant. There seems to be competition between tending ants for space and food resources on T. argentea saplings.


Subject(s)
Arthropods , Plant Leaves , Terminalia , Animals , Plant Leaves/parasitology , Arthropods/classification , Arthropods/physiology , Terminalia/classification , Population Density , Biodiversity , Brazil , Insecta/classification , Insecta/physiology
10.
An Acad Bras Cienc ; 96(1): e20230369, 2024.
Article in English | MEDLINE | ID: mdl-38808813

ABSTRACT

The Northeastern Mata Atlântica Freshwater ecoregion (NMAF) is part of the 25 worlds biodiversity hotspots. It comprises the Central Atlantic Forest Ecological Corridor and Chapada Diamantina Complex (in part), including high rates of endemism in coastal freshwater ecosystems. However, estimates indicate a high population decline in Freshwater ecosystems. Trichoptera are the most affected insect order, with average extinction rates of ~9% and many unknown species (e.g., estimates are around 50% in Brazil and Ecuador). This crisis can be aggravated by gaps in the knowledge of species (Linnean shortfall) and their distribution (Wallacean shortfall), caused mainly by a lack of investment in extensive fauna inventories and human resources related to systematics. Thus, to face these shortfalls in NMAF, we describe four new species of. H. (Feropsyche) and provide new distribution records. In addition, we perform niche modeling based on the species distributions of the group to identify areas with high environmental suitability to direct biodiversity research efforts on NMAF, a highly endemic and underexplored ecoregion. We increased the number of known species of NMAF from seven to 16 species. The niche modeling pointed to two areas as priorities to guide the strategies to reduce shortfalls in the NMAF.


Subject(s)
Biodiversity , Fresh Water , Insecta , Animals , Brazil , Insecta/classification , Ecosystem
11.
Sci Total Environ ; 935: 172877, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38740196

ABSTRACT

Deep learning techniques have recently found application in biodiversity research. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera), often abbreviated as EPT, are frequently used for freshwater biomonitoring due to their large numbers and sensitivity to environmental changes. However, the morphological identification of EPT species is a challenging but fundamental task. Morphological identification of these freshwater insects is therefore not only extremely time-consuming and costly, but also often leads to misjudgments or generates datasets with low taxonomic resolution. Here, we investigated the application of deep learning to increase the efficiency and taxonomic resolution of biomonitoring programs. Our database contains 90 EPT taxa (genus or species level), with the number of images per category ranging from 21 to 300 (16,650 in total). Upon completion of training, a CNN (Convolutional Neural Network) model was created, capable of automatically classifying these taxa into their appropriate taxonomic categories with an accuracy of 98.7 %. Our model achieved a perfect classification rate of 100 % for 68 of the taxa in our dataset. We achieved noteworthy classification accuracy with morphologically closely related taxa within the training data (e.g., species of the genus Baetis, Hydropsyche, Perla). Gradient-weighted Class Activation Mapping (Grad-CAM) visualized the morphological features responsible for the classification of the treated species in the CNN models. Within Ephemeroptera, the head was the most important feature, while the thorax and abdomen were equally important for the classification of Plecoptera taxa. For the order Trichoptera, the head and thorax were almost equally important. Our database is recognized as the most extensive aquatic insect database, notably distinguished by its wealth of included categories (taxa). Our approach can help solve long-standing challenges in biodiversity research and address pressing issues in monitoring programs by saving time in sample identification.


Subject(s)
Deep Learning , Insecta , Animals , Insecta/anatomy & histology , Insecta/classification , Environmental Monitoring/methods , Biodiversity , Neural Networks, Computer , Aquatic Organisms/classification , Fresh Water , Ephemeroptera/anatomy & histology , Ephemeroptera/classification
12.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38703100

ABSTRACT

Synanthropic silverfish are the best-known and most widely distributed insects of the order Zygentoma. However, there is a great gap in the knowledge and confusion about the geographic distribution and the diagnostic characteristics that allow their identification. In this work, we provide an exhaustive and deep analysis of the most common 9 synanthropic silverfish of the world, combining previously published and newly derived morphological and molecular data. Updated descriptions of Ctenolepisma calvum (Ritter, 1910) and Ctenolepisma (Sceletolepisma) villosum (Fabricius, 1775) are included, and morphological remarks, illustrations, and photographs of the remaining synanthropic species are provided to clarify their diagnosis and differentiation among them and from other free-living species. In addition, Ctenolepisma targionii (Grassi and Rovelli, 1889) is synonymized with C. villosum. A molecular phylogeny is presented based on the COI sequences of all the synanthropic species deposited in BOLD and GenBank, with 15 new sequences provided by this study. This has allowed us to detect and correct a series of identification errors based on the lack of morphological knowledge of several species. Moreover, 2 different lineages of Ctenolepisma longicaudatumEscherich, 1905 have also been detected. To help future studies, we also provide a taxonomic interpretation guide for the most important diagnostic characters of the order Zygentoma, as well as an identification key for all the Synanthropic studied species. Finally, an approximation of the global distribution of synanthropic silverfish is discussed. Several new records indicate that the expansion of these species, generally associated with the transport of goods and people, is still far from over.


Subject(s)
Insecta , Phylogeny , Animals , Insecta/genetics , Insecta/anatomy & histology , Insecta/classification , Female , Male , Animal Distribution
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230120, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705187

ABSTRACT

Holistic insect monitoring needs scalable techniques to overcome taxon biases, determine species abundances, and gather functional traits for all species. This requires that we address taxonomic impediments and the paucity of data on abundance, biomass and functional traits. We here outline how these data deficiencies could be addressed at scale. The workflow starts with large-scale barcoding (megabarcoding) of all specimens from mass samples obtained at biomonitoring sites. The barcodes are then used to group the specimens into molecular operational taxonomic units that are subsequently tested/validated as species with a second data source (e.g. morphology). New species are described using barcodes, images and short diagnoses, and abundance data are collected for both new and described species. The specimen images used for species discovery then become the raw material for training artificial intelligence identification algorithms and collecting trait data such as body size, biomass and feeding modes. Additional trait data can be obtained from vouchers by using genomic tools developed by molecular ecologists. Applying this pipeline to a few samples per site will lead to greatly improved insect monitoring regardless of whether the species composition of a sample is determined with images, metabarcoding or megabarcoding. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
DNA Barcoding, Taxonomic , Insecta , Insecta/physiology , Insecta/classification , Insecta/genetics , Animals , DNA Barcoding, Taxonomic/methods , Biodiversity
14.
Methods Mol Biol ; 2744: 155-169, 2024.
Article in English | MEDLINE | ID: mdl-38683317

ABSTRACT

The article presents the several steps to be performed on a plant, fungal, insect, or soil sample to obtain DNA sequences for DNA barcode analysis. The chapter begins with a description of sample preparation including procedures for cleaning and proceeds to DNA extraction with methods adapted for the specific type of sample. Next, DNA quantification is described so the proper amount is used for the amplification of the selected barcode regions. Information is provided for reaction mixes and amplification conditions for several referenced barcode primer pairs tuned for the individual sample of interest. This is followed by a description of procedures to access the success of amplification, cleanup, and quantification of the product ready for either Sanger sequencing or library preparation for massive parallel sequencing (MPS). Finally, procedures are provided for Sanger sequencing, library preparation, and MPS sequencing. The chapter provides several references of barcode regions for different sample types.


Subject(s)
DNA Barcoding, Taxonomic , High-Throughput Nucleotide Sequencing , Plants , DNA Barcoding, Taxonomic/methods , High-Throughput Nucleotide Sequencing/methods , Animals , Plants/genetics , Insecta/genetics , Insecta/classification , Fungi/genetics , Fungi/classification , Sequence Analysis, DNA/methods , Gene Library , DNA/genetics
15.
Pest Manag Sci ; 80(8): 3815-3828, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38507257

ABSTRACT

PURPOSE: Insect pests are a major global factor affecting agricultural crop productivity and quality. Rapid and precise insect pest detection is crucial for improving handling and prediction techniques. There are several methods for pest detection and classification tasks; still, the inaccurate detection, computation complexity and several other challenges affect the performance of the model. DESIGN: Thus, this research presents a Deep Learning (DL) approach that has led to significant advancements and is currently being applied successfully in many domains, such as autonomous insect pest detection. Initially, the input images are gathered from the test dataset. The next step in pre-processing the input images is to improve the model capacity by removing unwanted data using the Enhanced Kuan filter method. Then, the pre-processed images are segmented using the Attention-based U-Net method. ORIGINALITY: Finally, a novel Attention Based Reptile Residual Capsule Auto Encoder (ARRCAE) technique is proposed to classify and recognize crop pests. Furthermore, the Improved Reptile Search Optimisation (IRSO) algorithm is employed to fine-tune the classification parameters optimally. As a result, the proposed study enhances performance by classifying crop pest detection systems. The suggested method makes use of a Python tool for simulation, and pest datasets are utilized for result analysis. FINDINGS: The suggested model beats other current models with an accuracy of 98%, precision of 97%, recall of 96%, and specificity of 99% for the pest dataset, per the simulation results that were obtained. © 2024 Society of Chemical Industry.


Subject(s)
Deep Learning , Insecta , Animals , Insecta/classification , Insecta/physiology , Crops, Agricultural , Image Processing, Computer-Assisted/methods , Insect Control/methods
16.
Bioessays ; 46(5): e2300241, 2024 May.
Article in English | MEDLINE | ID: mdl-38537113

ABSTRACT

Decaying wood, while an abundant and stable resource, presents considerable nutritional challenges due to its structural rigidity, chemical recalcitrance, and low nitrogen content. Despite these challenges, certain insect lineages have successfully evolved saproxylophagy (consuming and deriving sustenance from decaying wood), impacting nutrient recycling in ecosystems and carbon sequestration dynamics. This study explores the uneven phylogenetic distribution of saproxylophagy across insects and delves into the evolutionary origins of this trait in disparate insect orders. Employing a comprehensive analysis of gut microbiome data, from both saproxylophagous insects and their non-saproxylophagous relatives, including new data from unexplored wood-feeding insects, this Hypothesis paper discusses the broader phylogenetic context and potential adaptations necessary for this dietary specialization. The study proposes the "Detritivore-First Hypothesis," suggesting an evolutionary pathway to saproxylophagy through detritivory, and highlights the critical role of symbiotic gut microbiomes in the digestion of decaying wood.


Subject(s)
Biological Evolution , Gastrointestinal Microbiome , Insecta , Wood , Animals , Feeding Behavior/physiology , Insecta/classification , Insecta/microbiology , Insecta/physiology , Mastication , Phylogeny
17.
Sci China Life Sci ; 67(6): 1255-1265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38407773

ABSTRACT

Insects play important roles in the maintenance of ecosystem functioning and the provision of livelihoods for millions of people. However, compared with terrestrial vertebrates and angiosperms, such as the giant panda, crested ibis, and the metasequoia, insect conservation has not attracted enough attention, and a basic understanding of the geographical biodiversity patterns for major components of insects in China is lacking. Herein, we investigated the geographical distribution of insect biodiversity across multiple dimensions (taxonomic, genetic, and phylogenetic diversity) based on the spatial distribution and molecular DNA sequencing data of insects. Our analysis included 18 orders, 360 families, 5,275 genera, and 14,115 species of insects. The results revealed that Southwestern and Southeastern China harbored higher insect biodiversity and numerous older lineages, representing a museum, whereas regions located in Northwestern China harbored lower insect biodiversity and younger lineages, serving as an evolutionary cradle. We also observed that mean annual temperature and precipitation had significantly positive effects, whereas altitude had significantly negative effects on insect biodiversity in most cases. Moreover, cultivated vegetation harbored the highest insect taxonomic and phylogenetic diversity, and needleleaf and broadleaf mixed forests harbored the highest insect genetic diversity. These results indicated that human activities may positively contribute to insect spatial diversity on a regional scale. Our study fills a knowledge gap in insect spatial diversity in China. These findings could help guide national-level conservation plans and the post-2020 biodiversity conservation framework.


Subject(s)
Biodiversity , Insecta , Phylogeny , China , Animals , Insecta/classification , Insecta/genetics , Genetic Variation , Geography , Conservation of Natural Resources , Ecosystem
19.
Nature ; 628(8007): 359-364, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38123681

ABSTRACT

Studies have reported widespread declines in terrestrial insect abundances in recent years1-4, but trends in other biodiversity metrics are less clear-cut5-7. Here we examined long-term trends in 923 terrestrial insect assemblages monitored in 106 studies, and found concomitant declines in abundance and species richness. For studies that were resolved to species level (551 sites in 57 studies), we observed a decline in the number of initially abundant species through time, but not in the number of very rare species. At the population level, we found that species that were most abundant at the start of the time series showed the strongest average declines (corrected for regression-to-the-mean effects). Rarer species were, on average, also declining, but these were offset by increases of other species. Our results suggest that the observed decreases in total insect abundance2 can mostly be explained by widespread declines of formerly abundant species. This counters the common narrative that biodiversity loss is mostly characterized by declines of rare species8,9. Although our results suggest that fundamental changes are occurring in insect assemblages, it is important to recognize that they represent only trends from those locations for which sufficient long-term data are available. Nevertheless, given the importance of abundant species in ecosystems10, their general declines are likely to have broad repercussions for food webs and ecosystem functioning.


Subject(s)
Biodiversity , Ecosystem , Insecta , Animals , Female , Male , Insecta/classification , Insecta/physiology , Species Specificity , Time Factors , Population Density , Population Dynamics
20.
Nature ; 622(7984): 767-774, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794191

ABSTRACT

Since taking flight, insects have undergone repeated evolutionary transitions between two seemingly distinct flight modes1-3. Some insects neurally activate their muscles synchronously with each wingstroke. However, many insects have achieved wingbeat frequencies beyond the speed limit of typical neuromuscular systems by evolving flight muscles that are asynchronous with neural activation and activate in response to mechanical stretch2-8. These modes reflect the two fundamental ways of generating rhythmic movement: time-periodic forcing versus emergent oscillations from self-excitation8-10. How repeated evolutionary transitions have occurred and what governs the switching between these distinct modes remain unknown. Here we find that, despite widespread asynchronous actuation in insects across the phylogeny3,6, asynchrony probably evolved only once at the order level, with many reversions to the ancestral, synchronous mode. A synchronous moth species, evolved from an asynchronous ancestor, still preserves the stretch-activated muscle physiology. Numerical and robophysical analyses of a unified biophysical framework reveal that rather than a dichotomy, these two modes are two regimes of the same dynamics. Insects can transition between flight modes across a bridge in physiological parameter space. Finally, we integrate these two actuation modes into an insect-scale robot11-13 that enables transitions between modes and unlocks a new self-excited wingstroke strategy for engineered flight. Together, this framework accounts for repeated transitions in insect flight evolution and shows how flight modes can flip with changes in physiological parameters.


Subject(s)
Biological Evolution , Biophysical Phenomena , Flight, Animal , Insecta , Muscles , Animals , Biophysical Phenomena/physiology , Flight, Animal/physiology , Insecta/classification , Insecta/physiology , Muscles/innervation , Muscles/physiology , Phylogeny , Wings, Animal/innervation , Wings, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL