Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24.016
1.
Mol Metab ; 84: 101955, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704026

OBJECTIVE: The contribution of the mitochondrial electron transfer system to insulin secretion involves more than just energy provision. We identified a small RNA fragment (mt-tRF-LeuTAA) derived from the cleavage of a mitochondrially-encoded tRNA that is conserved between mice and humans. The role of mitochondrially-encoded tRNA-derived fragments remains unknown. This study aimed to characterize the impact of mt-tRF-LeuTAA, on mitochondrial metabolism and pancreatic islet functions. METHODS: We used antisense oligonucleotides to reduce mt-tRF-LeuTAA levels in primary rat and human islet cells, as well as in insulin-secreting cell lines. We performed a joint transcriptome and proteome analysis upon mt-tRF-LeuTAA inhibition. Additionally, we employed pull-down assays followed by mass spectrometry to identify direct interactors of the fragment. Finally, we characterized the impact of mt-tRF-LeuTAA silencing on the coupling between mitochondrial metabolism and insulin secretion using high-resolution respirometry and insulin secretion assays. RESULTS: Our study unveils a modulation of mt-tRF-LeuTAA levels in pancreatic islets in different Type 2 diabetes models and in response to changes in nutritional status. The level of the fragment is finely tuned by the mechanistic target of rapamycin complex 1. Located within mitochondria, mt-tRF-LeuTAA interacts with core subunits and assembly factors of respiratory complexes of the electron transfer system. Silencing of mt-tRF-LeuTAA in islet cells limits the inner mitochondrial membrane potential and impairs mitochondrial oxidative phosphorylation, predominantly by affecting the Succinate (via Complex II)-linked electron transfer pathway. Lowering mt-tRF-LeuTAA impairs insulin secretion of rat and human pancreatic ß-cells. CONCLUSIONS: Our findings indicate that mt-tRF-LeuTAA interacts with electron transfer system complexes and is a pivotal regulator of mitochondrial oxidative phosphorylation and its coupling to insulin secretion.


Insulin Secretion , Insulin-Secreting Cells , Mitochondria , Animals , Rats , Humans , Mitochondria/metabolism , Insulin-Secreting Cells/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , Male , Insulin/metabolism , Islets of Langerhans/metabolism , Diabetes Mellitus, Type 2/metabolism , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Mice , Rats, Wistar , Electron Transport
2.
Nat Commun ; 15(1): 3682, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693121

In diabetes, macrophages and inflammation are increased in the islets, along with ß-cell dysfunction. Here, we demonstrate that galectin-3 (Gal3), mainly produced and secreted by macrophages, is elevated in islets from both high-fat diet (HFD)-fed and diabetic db/db mice. Gal3 acutely reduces glucose-stimulated insulin secretion (GSIS) in ß-cell lines and primary islets in mice and humans. Importantly, Gal3 binds to calcium voltage-gated channel auxiliary subunit gamma 1 (CACNG1) and inhibits calcium influx via the cytomembrane and subsequent GSIS. ß-Cell CACNG1 deficiency phenocopies Gal3 treatment. Inhibition of Gal3 through either genetic or pharmacologic loss of function improves GSIS and glucose homeostasis in both HFD-fed and db/db mice. All animal findings are applicable to male mice. Here we show a role of Gal3 in pancreatic ß-cell dysfunction, and Gal3 could be a therapeutic target for the treatment of type 2 diabetes.


Diet, High-Fat , Galectin 3 , Insulin Secretion , Insulin-Secreting Cells , Animals , Humans , Male , Mice , Calcium/metabolism , Calcium Channels/metabolism , Calcium Channels/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diet, High-Fat/adverse effects , Galectin 3/metabolism , Galectin 3/genetics , Glucose/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout
3.
Nutrients ; 16(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38794702

Insulin secretion from pancreatic ß cells is a key pillar of glucose homeostasis, which is impaired under obesity and aging. Growth hormone secretagogue receptor (GHSR) is the receptor of nutrient-sensing hormone ghrelin. Previously, we showed that ß-cell GHSR regulated glucose-stimulated insulin secretion (GSIS) in young mice. In the current study, we further investigated the effects of GHSR on insulin secretion in male mice under diet-induced obesity (DIO) and streptozotocin (STZ)-induced ß-cell injury in aging. ß-cell-specific-Ghsr-deficient (Ghsr-ßKO) mice exhibited no glycemic phenotype under DIO but showed significantly improved ex vivo GSIS in aging. We also detected reduced insulin sensitivity and impaired insulin secretion during aging both in vivo and ex vivo. Accordingly, there were age-related alterations in expression of glucose transporter, insulin signaling pathway, and inflammatory genes. To further determine whether GHSR deficiency affected ß-cell susceptibility to acute injury, young, middle-aged, and old Ghsr-ßKO mice were subjected to STZ. We found that middle-aged and old Ghsr-ßKO mice were protected from STZ-induced hyperglycemia and impaired insulin secretion, correlated with increased expression of insulin signaling regulators but decreased pro-inflammatory cytokines in pancreatic islets. Collectively, our findings indicate that ß-cell GHSR has a major impact on insulin secretion in aging but not obesity, and GHSR deficiency protects against STZ-induced ß-cell injury in aging.


Aging , Insulin-Secreting Cells , Insulin , Mice, Knockout , Obesity , Receptors, Ghrelin , Streptozocin , Animals , Male , Insulin-Secreting Cells/metabolism , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/genetics , Obesity/metabolism , Mice , Insulin/metabolism , Insulin Secretion , Signal Transduction , Mice, Inbred C57BL , Insulin Resistance , Blood Glucose/metabolism , Hyperglycemia , Diabetes Mellitus, Experimental
4.
J Diabetes Res ; 2024: 5574968, 2024.
Article En | MEDLINE | ID: mdl-38800586

Islet transplantation (ITx) is an established and safe alternative to pancreas transplantation for type 1 diabetes mellitus (T1DM) patients. However, most ITx recipients lose insulin independence by 3 years after ITx due to early graft loss, such that multiple donors are required to achieve insulin independence. In the present study, we investigated whether skeletal myoblast cells could be beneficial for promoting angiogenesis and maintaining the differentiated phenotypes of islets. In vitro experiments showed that the myoblast cells secreted angiogenesis-related cytokines (vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and stromal-derived factor-1α (SDF-1α)), contributed to maintenance of differentiated islet phenotypes, and enhanced islet cell insulin secretion capacity. To verify these findings in vivo, we transplanted islets alone or with myoblast cells under the kidney capsule of streptozotocin-induced diabetic mice. Compared with islets alone, the group bearing islets with myoblast cells had a significantly lower average blood glucose level. Histological examination revealed that transplants with islets plus myoblast cells were associated with a significantly larger insulin-positive area and significantly higher number of CD31-positive microvessels compared to islets alone. Furthermore, islets cotransplanted with myoblast cells showed JAK-STAT signaling activation. Our results suggest two possible mechanisms underlying enhancement of islet graft function with myoblast cells cotransplantation: "indirect effects" mediated by angiogenesis and "direct effects" of myoblast cells on islets via the JAK-STAT cascade. Overall, these findings suggest that skeletal myoblast cells enhance the function of transplanted islets, implying clinical potential for a novel ITx procedure involving myoblast cells for patients with diabetes.


Diabetes Mellitus, Experimental , Insulin , Islets of Langerhans Transplantation , Myoblasts, Skeletal , Neovascularization, Physiologic , Animals , Islets of Langerhans Transplantation/methods , Diabetes Mellitus, Experimental/metabolism , Myoblasts, Skeletal/transplantation , Myoblasts, Skeletal/metabolism , Mice , Male , Insulin/metabolism , Hepatocyte Growth Factor/metabolism , Mice, Inbred C57BL , Vascular Endothelial Growth Factor A/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans/blood supply , Chemokine CXCL12/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/surgery , Signal Transduction , Insulin Secretion , Cell Differentiation
6.
PLoS Comput Biol ; 20(5): e1012130, 2024 May.
Article En | MEDLINE | ID: mdl-38739680

Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.


Islets of Langerhans , Islets of Langerhans/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Animals , Computational Biology/methods , Mice , Insulin/metabolism , Humans , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/cytology , Insulin Secretion/physiology , Models, Biological , Calcium/metabolism , Calcium Signaling/physiology
7.
Diabetes ; 73(6): 856-863, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38768366

An agreed-upon consensus model of glucose-stimulated insulin secretion from healthy ß-cells is essential for understanding diabetes pathophysiology. Since the discovery of the KATP channel in 1984, an oxidative phosphorylation (OxPhos)-driven rise in ATP has been assumed to close KATP channels to initiate insulin secretion. This model lacks any evidence, genetic or otherwise, that mitochondria possess the bioenergetics to raise the ATP/ADP ratio to the triggering threshold, and conflicts with genetic evidence demonstrating that OxPhos is dispensable for insulin secretion. It also conflates the stoichiometric yield of OxPhos with thermodynamics, and overestimates OxPhos by failing to account for established features of ß-cell metabolism, such as leak, anaplerosis, cataplerosis, and NADPH production that subtract from the efficiency of mitochondrial ATP production. We have proposed an alternative model, based on the spatial and bioenergetic specializations of ß-cell metabolism, in which glycolysis initiates insulin secretion. The evidence for this model includes that 1) glycolysis has high control strength over insulin secretion; 2) glycolysis is active at the correct time to explain KATP channel closure; 3) plasma membrane-associated glycolytic enzymes control KATP channels; 4) pyruvate kinase has favorable bioenergetics, relative to OxPhos, for raising ATP/ADP; and 5) OxPhos stalls before membrane depolarization and increases after. Although several key experiments remain to evaluate this model, the 1984 model is based purely on circumstantial evidence and must be rescued by causal, mechanistic experiments if it is to endure.


Glucose , Insulin Secretion , Insulin-Secreting Cells , Insulin , KATP Channels , Oxidative Phosphorylation , Insulin-Secreting Cells/metabolism , Humans , Glucose/metabolism , KATP Channels/metabolism , KATP Channels/genetics , Insulin Secretion/physiology , Animals , Insulin/metabolism , Glycolysis/physiology , Models, Biological , Adenosine Triphosphate/metabolism
8.
Diabetes ; 73(6): 849-855, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38768365

The canonical model of glucose-induced increase in insulin secretion involves the metabolism of glucose via glycolysis and the citrate cycle, resulting in increased ATP synthesis by the respiratory chain and the closure of ATP-sensitive K+ (KATP) channels. The resulting plasma membrane depolarization, followed by Ca2+ influx through L-type Ca2+ channels, then induces insulin granule fusion. Merrins and colleagues have recently proposed an alternative model whereby KATP channels are controlled by pyruvate kinase, using glycolytic and mitochondrial phosphoenolpyruvate (PEP) to generate microdomains of high ATP/ADP immediately adjacent to KATP channels. This model presents several challenges. First, how mitochondrially generated PEP, but not ATP produced abundantly by the mitochondrial F1F0-ATP synthase, can gain access to the proposed microdomains is unclear. Second, ATP/ADP fluctuations imaged immediately beneath the plasma membrane closely resemble those in the bulk cytosol. Third, ADP privation of the respiratory chain at high glucose, suggested to drive alternating, phased-locked generation by mitochondria of ATP or PEP, has yet to be directly demonstrated. Finally, the approaches used to explore these questions may be complicated by off-target effects. We suggest instead that Ca2+ changes, well known to affect both ATP generation and consumption, likely drive cytosolic ATP/ADP oscillations that in turn regulate KATP channels and membrane potential. Thus, it remains to be demonstrated that a new model is required to replace the existing, mitochondrial bioenergetics-based model.


Glucose , Insulin-Secreting Cells , KATP Channels , Insulin-Secreting Cells/metabolism , KATP Channels/metabolism , Glucose/metabolism , Humans , Animals , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Insulin/metabolism , Adenosine Diphosphate/metabolism , Models, Biological , Insulin Secretion/physiology
9.
Sci Rep ; 14(1): 11640, 2024 05 21.
Article En | MEDLINE | ID: mdl-38773268

Porcine islet xenotransplantation is a promising therapy for severe diabetes mellitus. Maintenance of the quality and quantity of porcine islets is important for the success of this treatment. Here, we aimed to elucidate the influence of relatively short-term (14 days) culture on adult porcine islets isolated from three micro-minipigs (P111, P112 and P121). Morphological characteristics of islets changed little after 14 days of culture. The viability of cultured islets was also maintained at a high level (> 80%). Furthermore, cultured islets exhibited similar glucose-stimulated insulin secretion and insulin content at Day 14 were preserved comparing with Day 1, while the expressions of Ins, Gcg and Sst were attenuated at Day 14. Xenotransplantation using diabetic nude mice showed no normalization of blood glucose but increased levels of plasma porcine C-peptide after the transplantation of 14 day cultured porcine islets. Histological assessment revealed that relatively short-term cultured porcine islets were successfully engrafted 56 days following transplantation. These data show that relatively short-term culture did not impair the quality of adult porcine islets in regard to function, morphology, and viability. Prevention of impairment of gene correlated with endocrine hormone is warranted for further improvement.


Insulin , Islets of Langerhans Transplantation , Islets of Langerhans , Transplantation, Heterologous , Animals , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Swine , Islets of Langerhans Transplantation/methods , Insulin/metabolism , Mice , Mice, Nude , Insulin Secretion , Diabetes Mellitus, Experimental/therapy , Blood Glucose/metabolism , Swine, Miniature , Cell Survival , C-Peptide/metabolism , C-Peptide/blood
10.
Nat Commun ; 15(1): 4527, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811550

The IL-22RA1 receptor is highly expressed in the pancreas, and exogenous IL-22 has been shown to reduce endoplasmic reticulum and oxidative stress in human pancreatic islets and promote secretion of high-quality insulin from beta-cells. However, the endogenous role of IL-22RA1 signaling on these cells remains unclear. Here, we show that antibody neutralisation of IL-22RA1 in cultured human islets leads to impaired insulin quality and increased cellular stress. Through the generation of mice lacking IL-22ra1 specifically on pancreatic alpha- or beta-cells, we demonstrate that ablation of murine beta-cell IL-22ra1 leads to similar decreases in insulin secretion, quality and islet regeneration, whilst increasing islet cellular stress, inflammation and MHC II expression. These changes in insulin secretion led to impaired glucose tolerance, a finding more pronounced in female animals compared to males. Our findings attribute a regulatory role for endogenous pancreatic beta-cell IL-22ra1 in insulin secretion, islet regeneration, inflammation/cellular stress and appropriate systemic metabolic regulation.


Glucose , Homeostasis , Insulin-Secreting Cells , Insulin , Mice, Knockout , Receptors, Interleukin , Animals , Insulin-Secreting Cells/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/genetics , Female , Humans , Male , Insulin/metabolism , Mice , Glucose/metabolism , Insulin Secretion , Mice, Inbred C57BL , Interleukin-22 , Glucose Intolerance/metabolism , Interleukins/metabolism , Interleukins/genetics , Aging/metabolism
11.
Elife ; 122024 May 03.
Article En | MEDLINE | ID: mdl-38700926

The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of ß-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and ß-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell ß-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.


Diabetes Mellitus, Type 2 , Glucagon , Glucose , Insulin Secretion , Mice, Inbred C57BL , Animals , Male , Mice , Animals, Newborn , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Glucagon/metabolism , Glucose/metabolism , Homeostasis , Insulin/metabolism , Insulin Secretion/drug effects , Insulin Secretion/genetics , Islets of Langerhans/metabolism , Mutation , Potassium Channels/metabolism , Potassium Channels/genetics
12.
Nat Commun ; 15(1): 4410, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782979

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Brain , Drosophila Proteins , Drosophila melanogaster , Insulin Secretion , Insulin , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Brain-Gut Axis/physiology , Lipase/metabolism , Lipase/genetics , Dietary Fats/metabolism , Glucose/metabolism , Fat Body/metabolism , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Male
13.
Rev Med Suisse ; 20(876): 1069-1073, 2024 May 29.
Article Fr | MEDLINE | ID: mdl-38812338

C-peptide measurement allows an estimation of the residual endogenous insulin secretion in diabetic patients. Nowadays plasmatic testing is convenient and unexpensive, but we lack standardized tests. Therefore, there are no official recommendation regarding its use. As an indication, in some circumstances, C-peptide measurement could be used to specify the type of diabetes, help guide the treatment strategy and potentially assess the risk for complications. Its use is still limited and not recommended on a routine base for all patients living with diabetes, but in the future, tests standardization and establishment of reference ranges could give more insight on the clinical relevance of C-peptide measurement.


Le dosage du peptide-C est une mesure permettant d'évaluer la sécrétion endogène résiduelle d'insuline chez les patients diabétiques. Le dosage plasmatique est facilement réalisable actuellement, pour un coût modeste, mais l'absence de standardisation des tests ne permet pas d'émettre des recommandations officielles par rapport à son utilisation. À titre indicatif, dans certaines situations, le dosage du peptide-C peut être utilisé pour préciser le type de diabète, guider les traitements médicamenteux et potentiellement évaluer les risques de complications. Son utilisation est pour le moment limitée et n'est pas recommandée en routine pour tous les patients atteints de diabète, mais à l'avenir, la formalisation du dosage et l'établissement de valeurs de référence pourraient permettre de définir son utilisation clinique.


C-Peptide , Insulin Secretion , Insulin , Humans , C-Peptide/blood , C-Peptide/metabolism , Insulin/metabolism , Insulin Secretion/physiology , Diabetes Mellitus/blood , Diabetes Mellitus/metabolism , Diabetes Mellitus/diagnosis
14.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731926

The escalating prevalence of diabetes mellitus underscores the need for a comprehensive understanding of pancreatic beta cell function. Interest in glucose effectiveness has prompted the exploration of novel regulatory factors. The myeloid/lymphoid or mixed-lineage leukaemia gene (MLL) is widely recognised for its role in leukemogenesis and nuclear regulatory mechanisms through its histone methyltransferase activity in active chromatin. However, its function within pancreatic endocrine tissues remains elusive. Herein, we unveil a novel role of MLL in glucose metabolism and insulin secretion. MLL knockdown in ßHC-9 pancreatic beta cells diminished insulin secretion in response to glucose loading, paralleled by the downregulation of the glucose-sensitive genes SLC2a1 and SLC2a2. Similar observations were made in MLL heterozygous knockout mice (MLL+/-), which exhibited impaired glucose tolerance and reduced insulin secretion without morphological anomalies in pancreatic endocrine cells. The reduction in insulin secretion was independent of changes in beta cell mass or insulin granule morphology, suggesting the regulatory role of MLL in glucose-sensitive gene expression. The current results suggest that MLL interacts with circadian-related complexes to modulate the expression of glucose transporter genes, thereby regulating glucose sensing and insulin secretion. Our findings shed light on insulin secretion control, providing potential avenues for therapeutics against diabetes.


Glucose Transporter Type 2 , Glucose , Histone-Lysine N-Methyltransferase , Insulin Secretion , Insulin-Secreting Cells , Myeloid-Lymphoid Leukemia Protein , Animals , Insulin-Secreting Cells/metabolism , Glucose/metabolism , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 2/genetics , Gene Expression Regulation , Mice, Knockout , Insulin/metabolism , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Cell Line , Male
15.
Clin Transl Sci ; 17(5): e13809, 2024 May.
Article En | MEDLINE | ID: mdl-38700326

DPP4 inhibitors are widely prescribed as treatments for type 2 diabetes. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses. Sitagliptin (100 mg) was administered to 47 healthy volunteers. Several endpoints were measured to assess clinically relevant responses - including the effect of sitagliptin on glucose and insulin levels during an oral glucose tolerance test (OGTT). This pilot study confirmed that sitagliptin (100 mg) decreased the area under the curve for glucose during an OGTT (p = 0.0003). Furthermore, sitagliptin promoted insulin secretion during the early portion of the OGTT as reflected by an increase in the ratio of plasma insulin at 30 min divided by plasma insulin at 60 min (T30:T60) from mean ± SEM 0.87 ± 0.05 to 1.62 ± 0.36 mU/L (p = 0.04). The magnitude of sitagliptin's effect on insulin secretion (as judged by the increase in the T30:T60 ratio for insulin) was correlated with the magnitude of sitagliptin-induced increase in the area under the curve for intact plasma GLP1 levels during the first hour of the OGTT. This study confirmed previously reported sex differences in glucose and insulin levels during an OGTT. Specifically, females exhibited higher levels of glucose and insulin at the 90-180 min time points. However, we did not detect significant sex-associated differences in the magnitude of sitagliptin-induced changes in T30:T60 ratios for either glucose or insulin. In conclusion, T30:T60 ratios for insulin and glucose during an OGTT provide useful indices to assess pharmacodynamic responses to DPP4 inhibitors.


Blood Glucose , Glucose Tolerance Test , Insulin Secretion , Insulin , Sitagliptin Phosphate , Humans , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/administration & dosage , Male , Female , Adult , Insulin/blood , Insulin/metabolism , Insulin Secretion/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Blood Glucose/analysis , Young Adult , Dipeptidyl-Peptidase IV Inhibitors/administration & dosage , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Pilot Projects , Healthy Volunteers , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/blood , Middle Aged , Sex Factors
16.
Life Sci ; 345: 122608, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574885

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Insulin-Secreting Cells , Islets of Langerhans , Protein Phosphatase 1 , Animals , Humans , Rats , Calcium Channels/metabolism , Cell Line , Glucose/metabolism , Insulin/metabolism , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
17.
Cell Calcium ; 120: 102883, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643716

The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca2+-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca2+]i dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca2+]i microdomains around single or clustered Ca2+ channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca2+ fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca2+ spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca2+ spikes or incidentally overlap with subplasmalemmal Ca2+ spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca2+ microdomains around voltage-gated Ca2+ channels.


Calcium , Exocytosis , Insulin-Secreting Cells , Insulin , Microscopy, Fluorescence , Insulin-Secreting Cells/metabolism , Calcium/metabolism , Animals , Rats , Insulin/metabolism , Exocytosis/drug effects , Calcium Signaling , Insulin Secretion/drug effects , Glucose/metabolism , Secretory Vesicles/metabolism
18.
PLoS One ; 19(4): e0300965, 2024.
Article En | MEDLINE | ID: mdl-38557554

AIM: Our study aims to identify novel non-coding RNA-mRNA regulatory networks associated with ß-cell dysfunction and compensatory responses in obesity-related diabetes. METHODS: Glucose metabolism, islet architecture and secretion, and insulin sensitivity were characterized in C57BL/6J mice fed on a 60% high-fat diet (HFD) or control for 24 weeks. Islets were isolated for whole transcriptome sequencing to identify differentially expressed (DE) mRNAs, miRNAs, IncRNAs, and circRNAs. Regulatory networks involving miRNA-mRNA, lncRNA-mRNA, and lncRNA-miRNA-mRNA were constructed and functions were assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. RESULTS: Despite compensatory hyperinsulinemia and a significant increase in ß-cell mass with a slow rate of proliferation, HFD mice exhibited impaired glucose tolerance. In isolated islets, insulin secretion in response to glucose and palmitic acid deteriorated after 24 weeks of HFD. Whole transcriptomic sequencing identified a total of 1324 DE mRNAs, 14 DE miRNAs, 179 DE lncRNAs, and 680 DE circRNAs. Our transcriptomic dataset unveiled several core regulatory axes involved in the impaired insulin secretion in HFD mice, such as miR-6948-5p/Cacna1c, miR-6964-3p/Cacna1b, miR-3572-5p/Hk2, miR-3572-5p/Cckar and miR-677-5p/Camk2d. Additionally, proliferative and apoptotic targets, including miR-216a-3p/FKBP5, miR-670-3p/Foxo3, miR-677-5p/RIPK1, miR-802-3p/Smad2 and ENSMUST00000176781/Caspase9 possibly contribute to the increased ß-cell mass in HFD islets. Furthermore, competing endogenous RNAs (ceRNA) regulatory network involving 7 DE miRNAs, 15 DE lncRNAs and 38 DE mRNAs might also participate in the development of HFD-induced diabetes. CONCLUSIONS: The comprehensive whole transcriptomic sequencing revealed novel non-coding RNA-mRNA regulatory networks associated with impaired insulin secretion and increased ß-cell mass in obesity-related diabetes.


Diabetes Mellitus , MicroRNAs , RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Diet, High-Fat/adverse effects , RNA, Circular/metabolism , Insulin Secretion , Exome Sequencing , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Obesity/genetics , Gene Regulatory Networks , Calcium Channels, N-Type/metabolism
19.
Nat Commun ; 15(1): 3318, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38632302

Pancreatic islets of Langerhans play a pivotal role in regulating blood glucose homeostasis, but critical information regarding their mass, distribution and composition is lacking within a whole organ context. Here, we apply a 3D imaging pipeline to generate a complete account of the insulin-producing islets throughout the human pancreas at a microscopic resolution and within a maintained spatial 3D context. These data show that human islets are far more heterogenous than previously accounted for with regards to their size distribution and cellular make up. By deep tissue 3D imaging, this in-depth study demonstrates that 50% of the human insulin-expressing islets are virtually devoid of glucagon-producing α-cells, an observation with significant implications for both experimental and clinical research.


Glucagon-Secreting Cells , Islets of Langerhans , Humans , Pancreas/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism , Glucagon-Secreting Cells/metabolism , Blood Glucose/metabolism , Insulin Secretion
...