Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 623
Filter
1.
Respir Res ; 25(1): 273, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997751

ABSTRACT

BACKGROUND: Fibroblast differentiation to a myofibroblast phenotype is a feature of airway remodeling in asthma. Lung fibroblasts express the integrin receptor α4ß7 and fibronectin induces myofibroblast differentiation via this receptor. OBJECTIVES: To investigate the role of the ß7 integrin receptor subunit and α4ß7 integrin complex in airway remodeling and airway hyperresponsiveness (AHR) in a murine model of chronic allergen exposure. METHODS: C57BL/6 wild type (WT) and ß7 integrin null mice (ß7 -/-) were sensitized (days 1,10) and challenged with ovalbumin (OVA) three times a week for one or 4 weeks. Similar experiments were performed with WT mice in the presence or absence of α4ß7 blocking antibodies. Bronchoalveolar (BAL) cell counts, AHR, histological evaluation, soluble collagen content, Transforming growth factor-ß (TGFß) and Interleukin-13 (IL13) were measured. Phenotype of fibroblasts cultured from WT and ß7 -/- saline (SAL) and OVA treated mice was evaluated. RESULTS: Eosinophil numbers were similar in WT vs ß7-/- mice. Prolonged OVA exposure in ß7-/- mice was associated with reduced AHR, lung collagen content, peribronchial smooth muscle, lung tissue TGFß and IL13 expression as compared to WT. Similar findings were observed in WT mice treated with α4ß7 blocking antibodies. Fibroblast migration was enhanced in response to OVA in WT but not ß7 -/- fibroblasts. α-SMA and fibronectin expression were reduced in ß7-/- fibroblasts relative to WT. CONCLUSIONS: The ß7 integrin subunit and the α4ß7 integrin complex modulate AHR and airway remodeling in a murine model of allergen exposure. This effect is, at least in part, explained by inhibition of fibroblast activation and is independent of eosinophilic inflammation.


Subject(s)
Airway Remodeling , Integrin beta Chains , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin , Animals , Airway Remodeling/physiology , Airway Remodeling/immunology , Mice , Ovalbumin/toxicity , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Allergens/immunology , Allergens/toxicity , Cells, Cultured , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/pathology , Lung/metabolism , Lung/immunology , Lung/pathology , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/immunology , Transforming Growth Factor beta/metabolism
2.
MAbs ; 16(1): 2365891, 2024.
Article in English | MEDLINE | ID: mdl-38889315

ABSTRACT

Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVß3, αVß5, αVß6, αVß8, and α5ß1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 ß-subunit partners: ß6 = ß8 > ß3 > ß1 = ß5.


Subject(s)
Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Integrin beta Chains/immunology , Integrin beta Chains/chemistry , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Integrin alphaV/immunology , Integrin alphaV/metabolism , Integrins/immunology , Integrins/metabolism , Peptide Library , Cell Surface Display Techniques , Protein Binding , Antibody Specificity
3.
Cancer Lett ; 592: 216953, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38729557

ABSTRACT

TGFBR2, a key regulator of the TGFß signaling pathway, plays a crucial role in gastric cancer (GC) metastasis through its endosomal recycling process. Despite its importance, the mechanisms governing this process remain unclear. Here, we identify integrin ß5 (ITGB5) as a critical mediator that promotes TGFBR2 endosomal recycling. Our study reveals elevated expression of ITGB5 in GC, particularly in metastatic cases, correlating with poor patient outcomes. Knockdown of ITGB5 impairs GC cell metastasis both in vitro and in vivo. Mechanistically, ITGB5 facilitates epithelial-mesenchymal transition mediated by TGFß signaling, thereby enhancing GC metastasis. Acting as a scaffold, ITGB5 interacts with TGFBR2 and SNX17, facilitating SNX17-mediated endosomal recycling of TGFBR2 and preventing lysosomal degradation, thereby maintaining its surface distribution on tumor cells. Notably, TGFß signaling directly upregulates ITGB5 expression, establishing a positive feedback loop that exacerbates GC metastasis. Our findings shed light on the role of ITGB5 in promoting GC metastasis through SNX17-mediated endosomal recycling of TGFBR2, providing insights for the development of targeted cancer therapies.


Subject(s)
Endosomes , Epithelial-Mesenchymal Transition , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Stomach Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Endosomes/metabolism , Gene Expression Regulation, Neoplastic , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Neoplasm Metastasis , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Sorting Nexins/genetics , Sorting Nexins/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Transforming Growth Factor beta/metabolism
4.
J Gene Med ; 26(5): e3692, 2024 May.
Article in English | MEDLINE | ID: mdl-38745073

ABSTRACT

BACKGROUND: Sevoflurane (Sevo) preconditioning and postconditioning play a protective role against injury induced by hepatic ischemia/reperfusion (I/R). At the same time, the involvement of macrophage infiltration in this process and the precise mechanisms are unclear. Here, we designed this research to elucidate the protective effects of Sevo against hepatic I/R injury and the molecules involved. METHODS: The alleviating effect of Sevo on the liver injury was analyzed by liver function analysis, hematoxylin and eosin staining, Masson trichrome staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling, western blot analysis and an enzyme-linked immunosorbent assay. An in vitro cell model was developed using alpha mouse liver 12 (AML12) cells, and the cell model was treated with oxygen-glucose deprivation and reoxygenation and Sevo. Multiple bioinformatics databases were used to screen transcriptional regulators related to hepatic I/R injury and the targets of Krueppel-like factor 5 (KLF5). KLF5 expression was artificially upregulated alone or with integrin beta-2 (ITGB2) knockdown to substantiate their involvement in Sevo-mediated hepatoprotection. RESULTS: Sevo protected the liver against I/R injury by reducing cell apoptosis and inflammatory response. KLF5 was upregulated in liver tissues following I/R injury, whereas KLF5 overexpression aggravated macrophage infiltration and liver injury induced by I/R injury. KLF5 bound to the promoter of ITGB2 to enhance ITGB2 transcription. Knockdown of ITGB2 reversed the aggravation of injury caused by KLF5 overexpression in mice and AML12 cells. CONCLUSIONS: Sevo blocked KLF5-mediated transcriptional activation of ITGB2, thereby inhibiting macrophage infiltration in hepatic I/R injury.


Subject(s)
Integrin beta Chains , Kruppel-Like Transcription Factors , Liver , Macrophages , Reperfusion Injury , Sevoflurane , Animals , Mice , Apoptosis , CD18 Antigens/metabolism , CD18 Antigens/genetics , Cell Line , Disease Models, Animal , Gene Expression Regulation , Kruppel-Like Transcription Factors/drug effects , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Mice, Inbred C57BL , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Sevoflurane/pharmacology , Transcriptional Activation , Integrin beta Chains/drug effects , Integrin beta Chains/genetics , Integrin beta Chains/metabolism
5.
Pharmacol Res ; 203: 107142, 2024 May.
Article in English | MEDLINE | ID: mdl-38522759

ABSTRACT

ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo. EMT-related factors, sorafenib sensitivity-related proteins and ECM-related gene expression were assessed using immunohistochemistry, RTPCR and Western blotting. Knockdown assays were conducted to determine the relationship between the Notch and Integrin pathways. CoIP assays, nuclear and cytoplasmic fractionation and immunofluorescence colocalization were applied to explore the interaction between the Notch and Integrin pathways. Appropriate statistical analysis methods were used to assess the significance of the experimental results and to ensure the scientific validity and reliability of the experimental design. We found that ECM- and EMT-related proteins were downregulated after ZLDI-8 treatment (P<0.05). ZLDI-8 significantly downregulated Integrinß1 and Integrinß3 in HCC in vitro and in vivo (P<0.05), possibly through Foxc2-dependent regulation. Mechanistically, interfering with the expression of both Integrin-linked kinase (ILK) and the NICD may downregulate the expression of proteins targeted by sorafenib, thereby sensitizing cells to sorafenib. The retroregulation of Integrinß by ILK may occur through the interaction between the NICD and ILK and may be the result of the translocation of the complexus. Our study indicates that blocking the Notch pathway may affect Integrinß through crosstalk between the Notch1 and Integrinß/ILK signaling pathways, thus providing a potential therapeutic strategy for HCC.


Subject(s)
ADAM17 Protein , Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Receptor, Notch1 , Sorafenib , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Humans , Animals , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , ADAM17 Protein/metabolism , ADAM17 Protein/antagonists & inhibitors , Mice, Nude , Male , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Mice, Inbred BALB C , Signal Transduction/drug effects , Epithelial-Mesenchymal Transition/drug effects , Mice
6.
Eur J Immunol ; 54(6): e2350619, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38532599

ABSTRACT

This study sought to compare the behavior of Treg subsets displaying different coexpression patterns of Neuropilin-1 (Nrp1) and Helios, under the influence of gut stress unrelated to hematopoietic stem cell transplantation, pretransplantation conditioning, and posttransplant gastrointestinal acute graft versus host disease (GI-aGvHD). Host CD4+/CD25hi/Foxp3+ Treg cells, identified by flow cytometry, were isolated from various tissues of mice affected by these stressors. Expression of CD25, CTLA-4, CD39, OX40, integrin-ß7, LAG3, TGFß/LAP, granzyme-A, -B, and interleukin-10 was compared in four Treg subsets displaying Helios or Nrp1 only, both or none. Fluorescence-activated cell sorter-sorted Treg subsets, displaying markers affected in a conditioning- and GI-aGVHD-restricted manner, were further investigated by transcriptome profiling and T-cell suppression assays. We found that conditioning by irradiation greatly diminished the relative frequency of Helios+/Nrp1+ Treg, shifting the balance toward Helios-/Nrp1- Treg in the host. Upregulation of integrin-ß7 and OX40 occurred in GI-aGvHD-dependent manner in Helios+/Nrp1+ cells but not in Helios-/Nrp1- Treg. Sorted Treg subsets, confirmed to overexpress Nrp1, Helios, OX40, or integrin-ß7, displayed superior immunosuppressive activity and enrichment in activation-related messenger RNA transcripts. Our data suggest that conditioning-induced shrinkage of the Nrp1+/Helios+ Treg subset may contribute to the development of GI-GvHD by impairing gut homing and decreasing the efficiency of Treg-mediated immunosuppression.


Subject(s)
Graft vs Host Disease , Integrin beta Chains , Neuropilin-1 , T-Lymphocytes, Regulatory , Animals , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , T-Lymphocytes, Regulatory/immunology , Mice , Neuropilin-1/metabolism , Neuropilin-1/genetics , Integrin beta Chains/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transplantation Conditioning/methods , Transcription Factors/metabolism , Transcription Factors/genetics , Mice, Inbred C57BL , Gastrointestinal Diseases/immunology , Mice, Inbred BALB C , Receptors, OX40/metabolism , Acute Disease , Hematopoietic Stem Cell Transplantation , Female , OX40 Ligand
7.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38299843

ABSTRACT

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Subject(s)
Cell Membrane , Eukaryotic Initiation Factor-4E , Porcine epidemic diarrhea virus , Protein Biosynthesis , Virus Internalization , Animals , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Integrin beta Chains/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Porcine epidemic diarrhea virus/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Tetraspanins/metabolism , Vero Cells
8.
Apoptosis ; 29(5-6): 570-585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38127283

ABSTRACT

Integrin ß6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvß6. Importantly, ITGB6 determines αvß6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.


Subject(s)
Antigens, Neoplasm , Fibrosis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Fibrosis/genetics , Fibrosis/metabolism , Animals , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Integrins/metabolism , Integrins/genetics , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology
9.
Comput Biol Med ; 165: 107433, 2023 10.
Article in English | MEDLINE | ID: mdl-37660569

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor characterized by inter and intra-tumor heterogeneity and complex tumor microenvironment. To uncover the molecular targets in this milieu, we systematically identified immune and stromal interactions at the glial cell type level that leverages on RNA-sequencing data of GBM patients from The Cancer Genome Atlas. The perturbed genes between the high vs low immune and stromal scored patients were subjected to weighted gene co-expression network analysis to identify the glial cell type specific networks in immune and stromal infiltrated patients. The intramodular connectivity analysis identified the highly connected genes in each module. Combining it with univariable and multivariable prognostic analysis revealed common vital gene ITGB2, between the immune and stromal infiltrated patients enriched in microglia and newly formed oligodendrocytes. We found following unique hub genes in immune infiltrated patients; COL6A3 (microglia), ITGAM (oligodendrocyte precursor cells), TNFSF9 (microglia), and in stromal infiltrated patients, SERPINE1 (microglia) and THBS1 (newly formed oligodendrocytes, oligodendrocyte precursor cells). To validate these hub genes, we used external GBM patient single cell RNA-sequencing dataset and this identified ITGB2 to be significantly enriched in microglia, newly formed oligodendrocytes, T-cells, macrophages and adipocyte cell types in both immune and stromal datasets. The tumor infiltration analysis of ITGB2 showed that it is correlated with myeloid dendritic cells, macrophages, monocytes, neutrophils, B-cells, fibroblasts and adipocytes. Overall, the systematic screening of tumor microenvironment components at glial cell types uncovered ITGB2 as a potential target in primary GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Integrin beta Chains , Humans , Brain Neoplasms/genetics , Glioblastoma/genetics , Macrophages , Neuroglia , Tumor Microenvironment/genetics , Integrin beta Chains/metabolism
10.
Mol Cell Endocrinol ; 572: 111955, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37187284

ABSTRACT

The progression of diabetic kidney disease (DKD) is associated with increased fibronectin (FN) levels in proximal tubular epithelial cells. Bioinformatics analysis showed that integrin ß6 and cell adhesion function were significantly changed in the cortices of db/db mice. Remodelling of cell adhesion is one of the core changes during epithelial-mesenchymal transition (EMT) in DKD. Integrin is a family of transmembrane proteins that regulates cell adhesion and migration, and extracellular FN is the major ligand of integrin ß6. We found that the expression of integrin ß6 was elevated in the proximal tubules of db/db mice and FN-induced renal proximal tubule cells. The levels of EMT were also significantly increased in vivo and in vitro. In addition, FN treatment activated the Fak/Src pathway, increased the expression of p-YAP, and then upregulated the Notch1 pathway in diabetic proximal tubules. Knockdown of integrin ß6 or Notch1 reduced the EMT aggravation induced by FN. Furthermore, urinary integrin ß6 was significantly increased in DKD patients. Our findings reveal a critical role of integrin ß6 in regulating EMT in proximal tubular epithelial cells and identify a novel direction for the detection and treatment of DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/metabolism , Epithelial-Mesenchymal Transition , Signal Transduction/physiology , Integrin beta Chains/metabolism
11.
Adv Clin Exp Med ; 32(12): 1413-1422, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37212774

ABSTRACT

BACKGROUND: The regulatory effect of integrin ß6 (ITGB6) on sweat gland cells in primary palmar hyperhidrosis (PPH) remains unclear. OBJECTIVES: This study investigated the involvement of ITGB6 in the pathogenesis of PPH. MATERIAL AND METHODS: Sweat gland tissues were collected from PPH patients and healthy volunteers. The expression levels of ITGB6 in sweat gland tissues were detected with quantitative polymerase chain reaction (qPCR), western blot and immunohistochemical staining. Sweat gland cells were extracted from PPH patients, and identified with immunofluorescence staining of CEA and CK7. The expression of aquaporin 5 (AQP5) and Na-K-Cl cotransporter 1 (NKCC1) in primary sweat gland cells that overexpress ITGB6 were also detected. Through a series of bioinformatic methods, differentially expressed genes in sweat gland tissues were examined and validated via comparing PPH samples and controls. The key proteins and biological functions enriched in PPH were determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: The ITGB6 was upregulated in sweat gland tissues of PPH patients compared to that of healthy volunteers. The CEA and CK7 were positively expressed in sweat gland cells extracted from PPH patients. The overexpression of ITGB6 upregulated AQP5 and NKCC1 protein expression in the sweat gland cells of PPH patients. A total of 562 differentially expressed mRNAs were identified using high-throughput sequencing (394 upregulated, 168 downregulated), which were mainly active in the chemokine and Wnt signaling pathways. After verification with qPCR and western blot, the overexpression of ITGB6 significantly upregulated CXCL3, CXCL5, CXCL10, and CXCL11, and downregulated Wnt2 mRNA and protein expression in sweat gland cells. CONCLUSIONS: The ITGB6 is upregulated in PPH patients. It may be involved in the pathogenesis of PPH by upregulating AQP5, NKCC1, CXCL3, CXCL5, CXCL10, and CXCL11, and downregulating Wnt2 expression in sweat glands.


Subject(s)
Hyperhidrosis , Sweat Glands , Humans , Up-Regulation , Sweat Glands/metabolism , Sweat Glands/pathology , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Hyperhidrosis/genetics , Hyperhidrosis/metabolism , Hyperhidrosis/pathology
12.
Sci Transl Med ; 15(678): eabl7895, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36630483

ABSTRACT

Pancreatic and lung cancers frequently develop resistance to chemotherapy-induced cell apoptosis during the treatment, indicating that targeting nonapoptotic-related pathways, such as pyroptosis, can be an alternative cancer treatment strategy. Pyroptosis is a gasdermin-driven lytic programmed cell death triggered by inflammatory caspases when initiated by canonical or noncanonical pathways that has been recently seen as a potential therapeutic target in cancer treatment. However, overcoming chemoresistance in cancers by modulating pyroptosis has not been explored. Here, we demonstrate that ß5-integrin represses chemotherapy-induced canonical pyroptosis to confer cancer chemoresistance through ASAH2-driven sphingolipid metabolic reprogramming. Clinically, high ß5-integrin expression associates with poor patient prognosis and chemotherapeutic responses in cancers. In addition, chemoresistant cells in vitro fail to undergo chemotherapy-induced pyroptosis, which is controlled by ß5-integrin. Mechanistically, proteomic and lipidomic analyses indicate that ß5-integrin up-regulates sphingolipid metabolic enzyme ceramidase (ASAH2) expression through Src-signal transducer and activator of transcription 3 (STAT3) signaling, which then reduces the metabolite ceramide concentration and subsequent ROS production to prohibit chemotherapy-induced canonical pyroptosis. Using cancer cell lines, patient-derived tumor organoids, and orthotopic lung and pancreatic animal models, we show that administration of a Src or ceramidase inhibitor rescues the response of chemoresistant pancreatic and lung cancer cells to chemotherapy by reactivating pyroptosis in vitro and in vivo. Overall, our results suggest that pyroptosis-based therapy is a means to improve cancer treatment and warrants further investigation.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Pancreatic Neoplasms , Proto-Oncogene Proteins pp60(c-src) , Pyroptosis , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Integrins/metabolism , Lung/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Proteomics , Pyroptosis/drug effects , Proto-Oncogene Proteins pp60(c-src)/drug effects , Proto-Oncogene Proteins pp60(c-src)/metabolism , Humans , Integrin beta Chains/metabolism , STAT3 Transcription Factor/metabolism , Ceramidases/metabolism , Pancreatic Neoplasms
13.
G3 (Bethesda) ; 12(7)2022 07 06.
Article in English | MEDLINE | ID: mdl-35536217

ABSTRACT

Integrin plays a crucial role in the attachment of cells to the extracellular matrix. Integrin recruits many proteins intracellularly, including a 4-protein complex (kindlin, ILK, PINCH, and parvin). Caenorhabditis elegans muscle provides an excellent model to study integrin adhesion complexes. In Caenorhabditis elegans, UNC-112 (kindlin) binds to the cytoplasmic tail of PAT-3 (ß-integrin) and to PAT-4 (ILK). We previously reported that PAT-4 binding to UNC-112 is essential for the binding of UNC-112 to PAT-3. Although there are crystal structures for ILK and a kindlin, there is no co-crystal structure available. To understand the molecular interaction between PAT-4 and UNC-112, we took a genetic approach. First, using a yeast 2-hybrid method, we isolated mutant PAT-4 proteins that cannot bind to UNC-112 and then isolated suppressor mutant UNC-112 proteins that restore interaction with mutant PAT-4 proteins. Second, we demonstrated that these mutant PAT-4 proteins cannot localize to attachment structures in nematode muscle, but upon co-expression of an UNC-112 suppressor mutant protein, mutant PAT-4 proteins could localize to attachment structures. Third, overexpression of a PAT-4 mutant results in the disorganization of adhesion plaques at muscle cell boundaries and co-expression of the UNC-112 suppressor mutant protein alleviates this defect. Thus, we demonstrate that UNC-112 binding to PAT-4 is required for the localization and function of PAT-4 in integrin adhesion complexes in vivo. The missense mutations were mapped onto homology models of PAT-4 and UNC-112, and taking into account previously isolated mutations, we suggest a surface of PAT-4 that binds to UNC-112.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Benzeneacetamides , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Integrin beta Chains/metabolism , Integrins/genetics , Integrins/metabolism , Mutant Proteins/metabolism , Protein Binding , Pyridines
14.
J Exp Clin Cancer Res ; 41(1): 129, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35392966

ABSTRACT

BACKGROUND: Stanniocalcin 1 (STC1) plays an integral role in ovarian cancer (OC). However, the functional role of STC1 in metastasis, lipid metabolism and cisplatin (DDP) chemoresistance in OC is not fully understood. METHODS: Single-cell sequencing and IHC analysis were performed to reveal STC1 expression profiles in patient tissues. Metastasis, lipid metabolism and DDP chemoresistance were subsequently assessed. Cell-based in vitro and in vivo assays were subsequently conducted to gain insight into the underlying mechanism of STC1 in OC. RESULTS: Single-cell sequencing assays and IHC analysis verified that STC1 expression was significantly enhanced in OC tissues compared with para-carcinoma tissues, and it was further up-regulated in peritoneal metastasis tissues compared with OC tissues. In vitro and in vivo experiments demonstrated that STC1 promoted metastasis, lipid metabolism and DDP chemoresistance in OC. Simultaneously, STC1 promoted lipid metabolism by up-regulating lipid-related genes such as UCP1, TOM20 and perilipin1. Mechanistically, STC1 directly bound to integrin ß6 (ITGB6) to activate the PI3K signaling pathway. Moreover, STC1 was directly regulated by Forkhead box C2 (FOXC2) in OC. Notably, targeting STC1 and the FOXC2/ITGB6 signaling axis was related to DDP chemoresistance in vitro. CONCLUSIONS: Overall, these findings revealed that STC1 promoted metastasis, lipid metabolism and DDP chemoresistance via the FOXC2/ITGB6 signaling axis in OC. Thus, STC1 may be used as a prognostic indicator in patients with metastatic OC. Meanwhile, STC1 could be a therapeutic target in OC patients, especially those who have developed chemoresistance to DDP.


Subject(s)
Cisplatin , Glycoproteins , Ovarian Neoplasms , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Female , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Glycoproteins/metabolism , Humans , Integrin beta Chains/metabolism , Lipid Metabolism , Neoplasm Metastasis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
15.
Development ; 149(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35217866

ABSTRACT

In the developing mammalian brain, neuroepithelial cells interact with blood vessels to regulate angiogenesis, blood-brain barrier maturation and other key neurovascular functions. Genetic studies in mice have shown that neurovascular development is controlled, in part, by Itgb8, which encodes the neuroepithelial cell-expressed integrin ß8 subunit. However, these studies have involved complete loss-of-function Itgb8 mutations, and have not discerned the relative roles for the ß8 integrin extracellular matrix (ECM) binding region versus the intracellular signaling tail. Here, Cre/lox strategies have been employed to selectively delete the cytoplasmic tail of murine Itgb8 without perturbing its transmembrane and extracellular domains. We report that the ß8 integrin cytoplasmic domain is essential for inside-out modulation of adhesion, including activation of latent-TGFßs in the ECM. Quantitative sequencing of the brain endothelial cell transcriptome identifies TGFß-regulated genes with putative links to blood vessel morphogenesis, including several genes linked to Wnt/ß-catenin signaling. These results reveal that the ß8 integrin cytoplasmic domain is essential for the regulation of TGFß-dependent gene expression in endothelial cells and suggest that cross-talk between TGFßs and Wnt pathways is crucial for neurovascular development.


Subject(s)
Endothelial Cells , Integrin beta Chains , Animals , Brain/metabolism , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Integrins/genetics , Integrins/metabolism , Mammals/metabolism , Mice , Transforming Growth Factor beta/metabolism
16.
Nat Commun ; 13(1): 905, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173166

ABSTRACT

The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth factor signals via a coordinated response that involves crosstalk between epidermal growth factor receptor (EGFR) and the adhesion receptor ß5-integrin. We show that ligand-activated EGFR, Grb2, Src, and ß5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures dramatically grow in response to EGF into large flat plaques and provide a signaling platform that link EGFR and ß5-integrin through Src-mediated phosphorylation. Disrupting this EGFR/Src/ß5-integrin axis prevents both clathrin plaque growth and dampens receptor signaling. Our study reveals a reciprocal regulation between clathrin lattices and two different receptor systems to coordinate and enhance signaling. These findings have broad implications for the regulation of growth factor signaling, adhesion, and endocytosis.


Subject(s)
Clathrin-Coated Vesicles/metabolism , Clathrin/chemistry , GRB2 Adaptor Protein/metabolism , Integrin beta Chains/metabolism , Cell Adhesion/physiology , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement/physiology , Cell Proliferation/physiology , Endocytosis , ErbB Receptors/metabolism , Humans , Microscopy, Electron , Signal Transduction/physiology , src-Family Kinases/metabolism
17.
Exp Cell Res ; 411(2): 113003, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34979108

ABSTRACT

Intestinal fibrosis is one of the most severe complications of inflammatory bowel disease (IBD) and frequently requires surgery due to intestinal obstruction. Integrin αvß6, which is mainly regulated by the integrin ß6 subunit gene (ITGB6), is a special integrin subtype expressed only in epithelial cells. In our previous study, we found integrin αvß6 can promote the development of IBD, but the role of integrin αvß6 in intestinal fibrosis remains unclear. In this study, we observed a gradual increase of ITGB6 mRNA expression from normal region to stenotic region of IBD patients' intestinal specimens. Next, we established a dextran sulfate sodium (DSS)-induced intestinal fibrosis model and a heterotopic intestinal transplant model, and found intestinal fibrosis was decreased in ITGB6-deficient mice compared to wild-type (WT) mice. Furthermore, we performed RNA-sequencing and KEGG pathway analysis on intestinal tissues from ITGB6-overexpressing transgenic mice and WT mice, and found multiple pathways containing ITGB6, are related to the activation of focal adhesion kinase (FAK); finding was confirmed by Western blot. At last, we generated a heterotopic intestinal transplant model found the FAK/AKT pathway was inhibited in ITGB6-deficient mice. In conclusion, our data demonstrate that integrin αvß6 promotes the pathogenesis of intestinal fibrosis by FAK/AKT pathway, making integrin αvß6 a potential therapeutic target to prevent this condition.


Subject(s)
Antigens, Neoplasm/metabolism , Inflammatory Bowel Diseases/metabolism , Integrins/metabolism , Animals , Crohn Disease/etiology , Crohn Disease/metabolism , Crohn Disease/pathology , Disease Models, Animal , Female , Fibrosis , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/pathology , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Integrins/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
18.
Theriogenology ; 180: 130-136, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34973644

ABSTRACT

Ruminants have a superficial implantation pattern. The extended conceptus attaches to the receptive endometrium to form the cotyledonary placenta. During the attachment, a large number of events occur at the maternal-fetal interface. However, the related molecular mechanisms have not been fully understood. Integrin beta8 (ITGB8) is a subunit of integrin beta involved in embryo implantation. In this study, we determined peri-implantation expression and regulation of ITGB8 in goat uterus. The mRNA and protein levels of ITGB8 were both high in goat endometrial luminal epithelium (LE) and superficial glandular epithelium (sGE) during the adhesion period (Days 16-19 of pregnancy). Such expression profile was opposite to that of microRNA-187 (miR-187). Then, we validated that miR-187 targeted the 3' untranslated region (UTR) of ITGB8 in primary goat endometrial epithelial cells (EECs). In EECs, inhibition of miR-187 resulted in not only up-regulated ITGB8 level but also reduced cell proliferation and focal adhesion kinase (FAK) activity. Moreover, ITGB8 and miR-187 were regulated by interferon tau (IFNT). Altogether, in goat, the miR-187/ITGB8 axis may be involved in conceptus attachment and is downstream of IFNT. Our results will help us better understand the mechanisms of ruminant implantation and may provide a useful tool to improve the reproduction ratio for ruminants.


Subject(s)
Goats , Integrin beta Chains , Interferon Type I , Uterus , Animals , Embryo Implantation , Endometrium , Female , Integrin beta Chains/genetics , Integrin beta Chains/metabolism , Pregnancy
19.
Hepatology ; 75(3): 518-530, 2022 03.
Article in English | MEDLINE | ID: mdl-34633679

ABSTRACT

BACKGROUND AND AIMS: The "gut homing" hypothesis suggests the pathogenesis of primary sclerosing cholangitis (PSC) is driven by aberrant hepatic expression of gut adhesion molecules and subsequent recruitment of gut-derived T cells to the liver. However, inconsistencies lie within this theory including an absence of investigations and comparisons with other chronic liver diseases (CLD). Here, we examine "the gut homing theory" in patients with PSC with associated inflammatory bowel disease (PSC-IBD) and across multiple inflammatory liver diseases. APPROACH AND RESULTS: Expression of MAdCAM-1, CCL25, and E-Cadherin were assessed histologically and using RT-PCR on explanted liver tissue from patients with CLD undergoing OLT and in normal liver. Liver mononuclear cells were isolated from explanted tissue samples and the expression of gut homing integrins and cytokines on hepatic infiltrating gut-derived T cells was assessed using flow cytometry. Hepatic expression of MAdCAM-1, CCL25 and E-Cadherin was up-regulated in all CLDs compared with normal liver. There were no differences between disease groups. Frequencies of α4ß7, αEß7, CCR9, and GPR15 expressing hepatic T cells was increased in PSC-IBD, but also in CLD controls, compared with normal liver. ß7 expressing hepatic T cells displayed an increased inflammatory phenotype compared with ß7 negative cells, although this inflammatory cytokine profile was present in both the inflamed and normal liver. CONCLUSIONS: These findings refute the widely accepted "gut homing" hypothesis as the primary driver of PSC and indicate that aberrant hepatic recruitment of gut-derived T cells is not unique to PSC, but is a panetiological feature of CLD.


Subject(s)
Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cadherins/metabolism , Cell Adhesion Molecules/metabolism , Chemokines, CC/metabolism , Cholangitis, Sclerosing , Gastrointestinal Tract , Liver Diseases , Liver , Mucoproteins/metabolism , Cell Adhesion Molecules/isolation & purification , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/metabolism , Cholangitis, Sclerosing/pathology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/pathology , Gene Expression Profiling , Humans , Immunohistochemistry , Integrin beta Chains/metabolism , Liver/metabolism , Liver/pathology , Liver Diseases/classification , Liver Diseases/metabolism , Liver Diseases/pathology , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism
20.
Biochem Biophys Res Commun ; 586: 143-149, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34844120

ABSTRACT

UNC-52/perlecan is a basement membrane (BM) proteoglycan playing an essential role in the muscle cell attachment of C. elegans. The UNC-52 protein contains two RGD (Arg-Gly-Asp) motifs in domains III and IV, a well-characterized tripeptide known for binding to mammalian ß integrin. To investigate the role of the RGD motif in UNC-52/perlecan, we created two mutations in the 2021RGD2023 motif: one mutation changed the RGD to an RGE, and the other deleted the RGD motif. The RGE2023 caused defective actin filaments and aberrant localization of PAT-3 ß integrin and TLN-1/talin. Additionally, the in-frame deletion of RGD2023 resulted in a paralyzed and arrested at two-fold embryonic stages (Pat) phenotype, which is the identical phenotype of the pat-3 ß integrin null allele. These results indicate that RGD2023 is a potential ligand for cell binding and is essential for development and survival. Furthermore, our analysis reveals that the RGD of an invertebrate BM molecule is a potential cell-binding motif, suggesting that the function of the RGD motif is conserved among species.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Integrin beta Chains/genetics , Membrane Proteins/genetics , Oligopeptides/metabolism , Proteoglycans/genetics , Talin/genetics , Amino Acid Motifs , Amino Acid Substitution , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Conserved Sequence , Embryo, Nonmammalian , Gene Expression Regulation , Integrin beta Chains/metabolism , Membrane Proteins/metabolism , Mutation , Phenotype , Protein Binding , Proteoglycans/metabolism , Signal Transduction , Talin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...