Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.192
Filter
1.
Sci Rep ; 12(1): 1701, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105915

ABSTRACT

Interferon-gamma (IFN-γ) is shown to stimulate melanoma development and progression. However, the underlying mechanism has not been completely defined. Our study aimed to determine the role of neuronal nitric oxide synthase (nNOS)-mediated signaling in IFN-γ-stimulated melanoma progression and the anti-melanoma effects of novel nNOS inhibitors. Our study shows that IFN-γ markedly induced the expression levels of nNOS in melanoma cells associated with increased intracellular nitric oxide (NO) levels. Co-treatment with novel nNOS inhibitors effectively alleviated IFN-γ-activated STAT1/3. Further, reverse phase protein array (RPPA) analysis demonstrated that IFN-γ induced the expression of HIF1α, c-Myc, and programmed death-ligand 1 (PD-L1), in contrast to IFN-α. Blocking the nNOS-mediated signaling pathway using nNOS-selective inhibitors was shown to effectively diminish IFN-γ-induced PD-L1 expression in melanoma cells. Using a human melanoma xenograft mouse model, the in vivo studies revealed that IFN-γ increased tumor growth compared to control, which was inhibited by the co-administration of nNOS inhibitor MAC-3-190. Another nNOS inhibitor, HH044, was shown to effectively inhibit in vivo tumor growth and was associated with reduced PD-L1 expression levels in melanoma xenografts. Our study demonstrates the important role of nNOS-mediated NO signaling in IFN-γ-stimulated melanoma progression. Targeting nNOS using highly selective small molecular inhibitors is a unique and effective strategy to improve melanoma treatment.


Subject(s)
Carcinogenesis/chemically induced , Carcinogenesis/drug effects , Disease Progression , Enzyme Inhibitors/administration & dosage , Interferon-gamma/administration & dosage , Melanoma/drug therapy , Melanoma/metabolism , Nitric Oxide Synthase Type I/antagonists & inhibitors , Signal Transduction/drug effects , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Animals , B7-H1 Antigen/metabolism , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Interferon-alpha/pharmacology , Melanoma/pathology , Mice , Mice, Nude , Nitric Oxide Synthase Type I/metabolism , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Skin Neoplasms/pathology , Treatment Outcome , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
2.
Immunopharmacol Immunotoxicol ; 43(5): 554-561, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34314307

ABSTRACT

BACKGROUND: Indoleamine 2,3-dioxygenase (IDO) inhibition has received much attention in cancer immunotherapy due to its role in immune escape in cancer cells. Additionally, changes in the pro-inflammatory cytokine levels can affect tumor growth and metastasis as well as the effectiveness of immunotherapy. The purpose of this study was for the first time to determine the effects of indoximod as an IDO inhibitor on triple-negative breast cancer (TNBC) and to assess the link between the efficacy of indoximod and IFN-γ or TNF-α stimulation. METHODS: The cytotoxic and apoptotic effects of indoximod alone or IFN-γ or TNF-α induction to mimic an inflammatory environment were evaluated by WST-1, Annexin V, cell cycle analysis, and acridine orange (AO)/ethidium bromide (EtBr) staining. Furthermore, the expression levels of IDO1 and PD-L1 expression were analyzed by RT-PCR. RESULTS: Our results demonstrated that indoximod significantly decreased the TNBC cell viability through apoptotic cell death (p < .05). The combination of indoximod and TNF-α was more effective than indoximod and IFN-γ stimulation or indoximod alone in TNBC cells. Additionally, PD-L1 expression level was significantly up-regulated after treatment with indoximod and TNF-α or IFN-γ combinations (p < .05). CONCLUSIONS: Indoximod exhibited a therapeutic potential in TNBC cells and pro-inflammatory cytokines could affect the effectiveness of indoximod. However, further studies are required to identify the role of the IDO-associated signaling pathways, the molecular mechanisms of indoximod induced apoptotic cell death, and the relationship between IDO inhibition by IDO inhibitors and pro-inflammatory cytokine levels.


Subject(s)
Cytokines/administration & dosage , Inflammation Mediators/administration & dosage , Triple Negative Breast Neoplasms/metabolism , Tryptophan/analogs & derivatives , B7-H1 Antigen/biosynthesis , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Interferon-gamma/administration & dosage , Treatment Outcome , Triple Negative Breast Neoplasms/drug therapy , Tryptophan/administration & dosage , Tumor Necrosis Factor-alpha/administration & dosage
3.
Nat Commun ; 12(1): 3299, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083537

ABSTRACT

Bioenergetic perturbations driving neoplastic growth increase the production of reactive oxygen species (ROS), requiring a compensatory increase in ROS scavengers to limit oxidative stress. Intervention strategies that simultaneously induce energetic and oxidative stress therefore have therapeutic potential. Phenformin is a mitochondrial complex I inhibitor that induces bioenergetic stress. We now demonstrate that inflammatory mediators, including IFNγ and polyIC, potentiate the cytotoxicity of phenformin by inducing a parallel increase in oxidative stress through STAT1-dependent mechanisms. Indeed, STAT1 signaling downregulates NQO1, a key ROS scavenger, in many breast cancer models. Moreover, genetic ablation or pharmacological inhibition of NQO1 using ß-lapachone (an NQO1 bioactivatable drug) increases oxidative stress to selectively sensitize breast cancer models, including patient derived xenografts of HER2+ and triple negative disease, to the tumoricidal effects of phenformin. We provide evidence that therapies targeting ROS scavengers increase the anti-neoplastic efficacy of mitochondrial complex I inhibitors in breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Phenformin/pharmacology , STAT1 Transcription Factor/metabolism , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Drug Synergism , Electron Transport Complex I/antagonists & inhibitors , Energy Metabolism/drug effects , Female , Glutathione/antagonists & inhibitors , Glutathione/biosynthesis , Humans , Interferon-gamma/administration & dosage , Interferon-gamma/deficiency , Interferon-gamma/metabolism , MCF-7 Cells , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, SCID , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , NAD(P)H Dehydrogenase (Quinone)/metabolism , Naphthoquinones/administration & dosage , Oxidative Stress/drug effects , Phenformin/administration & dosage , Poly I-C/administration & dosage , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/agonists , Xenograft Model Antitumor Assays
4.
Cytokine ; 143: 155542, 2021 07.
Article in English | MEDLINE | ID: mdl-33926775

ABSTRACT

Interferon-γ (IFNG) is one of the key cytokines that regulates both innate and adaptive immune responses in the body. However, the role of IFNG in the regulation of vascularization, especially in the context of Vascular endothelial growth factor A (VEGFa)-induced angiogenesis is not clarified. Here, we report that IFNG shows potent anti-angiogenic potential against VEGFa-induced angiogenesis. IFNG significantly inhibited proliferation, migration, and tube formation of Human umbilical vein endothelial cells (HUVECs) both under basal and VEGFa-treated conditions. Intriguingly, Knockdown (KD) of STAT1 abolished the inhibitory effect of IFNG on VEGFa-induced angiogenic processes in HUVECs. Furthermore, IFNG exhibited potent anti-angiogenic efficacy in the mouse model of oxygen-induced retinopathy (OIR), an in vivo model for hypoxia-induced retinal neovascularization, without induction of functional side effects. Taken together, these results show that IFNG plays a crucial role in the regulation of VEGFa-dependent angiogenesis, suggesting its potential therapeutic applicability in neovascular diseases.


Subject(s)
Interferon-gamma/therapeutic use , Ischemia/complications , Retinal Neovascularization/complications , Retinal Neovascularization/drug therapy , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Down-Regulation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hypoxia/complications , Interferon-gamma/administration & dosage , Interferon-gamma/pharmacology , Intravitreal Injections , Mice , Neovascularization, Physiologic/drug effects , Retina/drug effects , Retina/pathology , Retina/physiopathology , Retinal Neovascularization/physiopathology , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects
5.
Front Immunol ; 12: 645124, 2021.
Article in English | MEDLINE | ID: mdl-33897692

ABSTRACT

Background: The major histocompatibility complex (MHC) class II characterized by monocytes CD14+ expression of human leukocyte antigen receptors (HLA-DR), is essential for the synapse between innate and adaptive immune response in infectious disease. Its reduced expression is associated with a high risk of secondary infections in septic patients and can be safely corrected by Interferon-y (IFNy) injection. Coronavirus disease (COVID-19) induces an alteration of Interferon (IFN) genes expression potentially responsible for the observed low HLA-DR expression in circulating monocytes (mHLA-DR). Methods: We report a case of one-time INFy injection (100 mcg s.c.) in a superinfected 61-year-old man with COVID-19-associated acute respiratory distress syndrome (ARDS), with monitoring of mHLA-DR expression and clinical tolerance. Observations: Low mHLA-DR pretreatment expression (26.7%) was observed. IFNy therapy leading to a rapid increase in mHLA-DR expression (83.1%). Conclusions: Severe ARDS in a COVID-19 patient has a deep reduction in mHLA-DR expression concomitantly with secondary infections. The unique IFNy injection was safe and led to a sharp increase in the expression of mHLA-DR. Based on immune and infection monitoring, more cases of severe COVID-19 patients with low mHLA-DR should be treated by IFNy to test the clinical effectiveness.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 Drug Treatment , COVID-19 , HLA-DR Antigens/immunology , Interferon-gamma/administration & dosage , Monocytes/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Acquired Immunodeficiency Syndrome/drug therapy , Acquired Immunodeficiency Syndrome/immunology , Acquired Immunodeficiency Syndrome/pathology , COVID-19/immunology , COVID-19/pathology , Humans , Male , Middle Aged , Monocytes/pathology
6.
J Neuroimmunol ; 355: 577568, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33862420

ABSTRACT

Stroke-induced immunosuppression contributes to the development of stroke-associated pneumonia (SAP). Experiments in mice demonstrated that apoptosis of IFN-γ producing cells and reduced IFN-γ secretion resulted in impaired immune responses and the development of pneumonia after middle cerebral artery occlusion (MCAo). In the present study, we investigated the efficacy of intratracheal IFN-γ treatment to prevent SAP and demonstrated that modest benefits on pulmonary cytokine response in IFN-γ treated stroke mice did not prevent spontaneously developing infections and even slightly reduced bacterial clearance of aspirated pneumococci. Our results suggest that pulmonary IFN-γ treatment is not an effective preventive measure for SAP.


Subject(s)
Interferon-gamma/administration & dosage , Pneumococcal Infections/drug therapy , Respiratory Tract Infections/drug therapy , Stroke/drug therapy , Animals , Injections, Spinal , Male , Mice , Mice, Inbred C57BL , Pneumococcal Infections/etiology , Pneumococcal Infections/immunology , Respiratory Tract Infections/etiology , Respiratory Tract Infections/immunology , Stroke/complications , Stroke/immunology , Treatment Outcome
7.
J Vet Sci ; 22(2): e16, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33774932

ABSTRACT

BACKGROUND: Preconditioning with inflammatory stimuli is used to improve the secretion of anti-inflammatory agents in stem cells from variant species such as mouse, human, and dog. However, there are only few studies on feline stem cells. OBJECTIVES: This study aimed to evaluate the immune regulatory capacity of feline adipose tissue-derived (fAT) mesenchymal stem cells (MSCs) pretreated with interferon-gamma (IFN-γ). METHODS: To assess the interaction of lymphocytes and macrophages with IFN-γ-pretreated fAT-MSCs, mouse splenocytes and RAW 264.7 cells were cultured with the conditioned media from IFN-γ-pretreated MSCs. RESULTS: Pretreatment with IFN-γ increased the gene expression levels of cyclooxygenase-2, indoleamine 2,3-dioxygenase, hepatocyte growth factor, and transforming growth factor-beta 1 in the MSCs. The conditioned media from IFN-γ-pretreated MSCs increased the expression levels of M2 macrophage markers and regulatory T-cell markers compared to those in the conditioned media from naive MSCs. Further, prostaglandin E2 (PGE2) inhibitor NS-398 attenuated the immunoregulatory potential of MSCs, suggesting that the increased PGE2 levels induced by IFN-γ stimulation is a crucial factor in the immune regulatory capacity of MSCs pretreated with IFN-γ. CONCLUSIONS: IFN-γ pretreatment improves the immune regulatory profile of fAT-MSCs mainly via the secretion of PGE2, which induces macrophage polarization and increases regulatory T-cell numbers.


Subject(s)
Gene Expression Regulation/immunology , Immunomodulation , Interferon-gamma/administration & dosage , Mesenchymal Stem Cells/physiology , Animals , Cats , Dinoprostone , Female , Mice , RAW 264.7 Cells
8.
Vet Immunol Immunopathol ; 235: 110201, 2021 May.
Article in English | MEDLINE | ID: mdl-33735822

ABSTRACT

Among bloodsucking arthropods, hard tick is a vector of transmitting the most diverse human and animal pathogens, leading to an increasing number of manifestations worldwide. The development of the anti-tick vaccine has the potential to be an environmentally friendly and cost-effective option for tick management. We have previously demonstrated the induction of both humoral and cellular response against Hyalomma asiaticum (H. asiaticum) following immunization with recombinant cathepsin L-like cysteine protease from H. asiaticum tick (rHasCPL), and could control tick infestations. Interferon-gamma (IFN-γ), is an immunomodulatory factor that plays an important role in the regulation of adaptive immunity against infection. In the present study, recombinant BALB/c mouse IFN-γ (rMus-IFN-γ) was cloned and expressed using a prokaryotic expression system, and verified by Western blotting and IFN-γ-ELISA kit analysis. Female BALB/c mice (n = 12) were used for immunization using rHasCPL (100 µg) plus IFN-γ as adjuvant (10 µg). In immunized female BALB/c mice, the levels of anti-CPL antibodies as well as cytokines were determined using ELISA analysis. Protective efficacy of immunization was evaluated by larvae H. asiaticum challenge of immunized female BALB/c mice. Using rMus-IFN-γ as an adjuvant to rHasCPL vaccine (CPL + IFN-γ) promoted specific antibody IgG (IgG1 > IgG2a) and increased production of IFN-γ and IL-4 compared to immune rHasCPL group (CPL). The protected rate of immunized mice from tick challenge was significantly higher after immunization with CPL + IFN-γ (85.11 %) than with CPL (63.28 %). Immunization using CPL + IFN-γ promoted the activation of anti-HasCPL humoral and cellular immune responses, and could provide better protection against H. asiaticum infestation. This approach may could help develop a candidate vaccine for control tick infestations.


Subject(s)
Cathepsin L/immunology , Cysteine Proteases/immunology , Cytokines/immunology , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/immunology , Ixodidae/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Cathepsin L/genetics , Female , Interferon-gamma/administration & dosage , Interferon-gamma/genetics , Ixodidae/enzymology , Mice , Mice, Inbred BALB C , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Vaccination
9.
EMBO Mol Med ; 13(4): e13191, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33544398

ABSTRACT

SARS-CoV-2, the agent that causes COVID-19, invades epithelial cells, including those of the respiratory and gastrointestinal mucosa, using angiotensin-converting enzyme-2 (ACE2) as a receptor. Subsequent inflammation can promote rapid virus clearance, but severe cases of COVID-19 are characterized by an inefficient immune response that fails to clear the infection. Using primary epithelial organoids from human colon, we explored how the central antiviral mediator IFN-γ, which is elevated in COVID-19, affects epithelial cell differentiation, ACE2 expression, and susceptibility to infection with SARS-CoV-2. In mouse and human colon, ACE2 is mainly expressed by surface enterocytes. Inducing enterocyte differentiation in organoid culture resulted in increased ACE2 production. IFN-γ treatment promoted differentiation into mature KRT20+ enterocytes expressing high levels of ACE2, increased susceptibility to SARS-CoV-2 infection, and resulted in enhanced virus production in infected cells. Similarly, infection-induced epithelial interferon signaling promoted enterocyte maturation and enhanced ACE2 expression. We here reveal a mechanism by which IFN-γ-driven inflammatory responses induce a vulnerable epithelial state with robust replication of SARS-CoV-2, which may have an impact on disease outcome and virus transmission.


Subject(s)
COVID-19/etiology , Interferon-gamma/immunology , Models, Immunological , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/pathology , Cell Differentiation/immunology , Colon/immunology , Colon/pathology , Colon/virology , Disease Susceptibility , Enterocytes/metabolism , Enterocytes/pathology , Enterocytes/virology , Gene Expression , Host Microbial Interactions/immunology , Humans , Interferon-gamma/administration & dosage , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Mice , Organoids/immunology , Organoids/pathology , Organoids/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Virus Replication/immunology
10.
Nat Commun ; 12(1): 326, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436607

ABSTRACT

Adipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


Subject(s)
Diet, High-Fat , Glutathione Transferase/deficiency , Interferon-gamma/biosynthesis , T-Lymphocytes/metabolism , Thermogenesis , Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Down-Regulation/drug effects , Energy Metabolism/drug effects , Feeding Behavior , Glutathione Transferase/metabolism , Insulin Resistance , Interferon-gamma/administration & dosage , Interferon-gamma/pharmacology , Male , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Obesity/genetics , Obesity/pathology , T-Lymphocytes/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Uncoupling Protein 1/metabolism
11.
Behav Brain Res ; 402: 113087, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33412228

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a biomarker of depression. Recent studies have found adenosine deaminase acting on RNA1 (ADAR1) is a novel target being sensitive to stress at epigenetic level. The epigenetic regulation mechanism of stress-related depression is still unclear so far. To explore the potential regulating mechanism of ADAR1 on BDNF, over and low expression of ADAR1 in PC12 and SH-SY5Y cell lines are prepared. In the meanwhile, chronic unpredictable stress (CUS) mice are treated with ADAR1 inducer (interferon-γ, IFN-γ). ADAR1 regulates BDNF expression, which is proven by that over and low expressions of ADAR1 increase and decrease BDNF mRNA and protein respectively in vitro. Additionally, ADAR1 inducer alleviates the depressive-like behavior of CUS mice by recovering the decreased BDNF protein in brain and serum. Moreover, over and low expressions of ADAR1 reduce and enhance microRNA-432 (miR-432) expression respectively in vitro. Furtherly, over and low miR-432 expressions lead to decreased and increased BDNF and ADAR1 mRNA, protein and immunoreactivity respectively in vitro. The above results demonstrate that ADAR1 is involved in antidepressant action by regulating BDNF via miR-432. Those novel findings can provide a new idea for the study of epigenetic regulation mechanism, early diagnosis, and effective treatment of stress-related depression.


Subject(s)
Adenosine Deaminase/metabolism , Behavior, Animal/physiology , Brain-Derived Neurotrophic Factor/metabolism , Depression/metabolism , Epigenesis, Genetic/physiology , MicroRNAs/metabolism , Stress, Psychological/metabolism , Adenosine Deaminase/drug effects , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Interferon-gamma/administration & dosage , Male , Mice , Mice, Inbred BALB C , PC12 Cells , Rats
12.
Life Sci ; 264: 118605, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33096119

ABSTRACT

The purpose of this study was to prepare non-PEGylated (HSPC/DSPG/Chol, LIPF1) and PEGylated (HSPC/DSPG/Chol/mPEG2000-DSPE, LIPF2) liposomal formulations containing Interferon-gamma (IFN-γ) and evaluation their effects on macrophages and their antitumor properties. The results showed that the size of liposomal formulations LIP-F1 and LIP-F2 was 120 and 135 nm, respectively. The encapsulation efficiencies of LIP-F1 and LIP-F2 were 52.79% and 49.2%, respectively. Nitric Oxide Synthase (INOS) and arginase assays showed an increase in nitric oxide (NO) level and a reduction in arginase level after the treatment of M2 phenotype macrophage cell line with IFN-γ liposomes. The biodistribution study illustrated the amplitude of iodinated-IFN-γ liposomal formulations in the tumor site, the circulation time and tumor accumulation of LIP-F2 was significantly more than LIPF1. As a result, PEGylated liposomes containing IFN-γ induced significant antitumor responses due to the increased delivery of the cargo to the immune cells and induction of antitumor immune responses.


Subject(s)
Colonic Neoplasms/drug therapy , Disease Models, Animal , Immunotherapy/methods , Interferon-gamma/administration & dosage , Nanoparticles/administration & dosage , Animals , Cell Line, Tumor , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Female , Interferon-gamma/immunology , Interferon-gamma/pharmacokinetics , Liposomes , Mice , Mice, Inbred BALB C , Nanoparticles/metabolism , Random Allocation , Tissue Distribution/drug effects , Tissue Distribution/physiology
13.
Nutrients ; 12(8)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731411

ABSTRACT

Alterations in the gut microbiota composition play a crucial role in the pathogenesis of inflammatory bowel disease (IBD) as specific commensal bacterial species are underrepresented in the microbiota of IBD patients. In this study, we examined the therapeutic potential of three commensal bacterial species, Faecalibacterium prausnitzii (F. prausnitzii), Roseburia intestinalis (R. intestinalis) and Bacteroides faecis (B. faecis) in an in vitro model of intestinal inflammation, by using differentiated Caco-2 and HT29-MTX cells, stimulated with a pro-inflammatory cocktail consisting of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), and lipopolysaccharide (LPS). Results obtained in this work demonstrated that all three bacterial species are able to recover the impairment of the epithelial barrier function induced by the inflammatory stimulus, as determined by an amelioration of the transepithelial electrical resistance (TEER) and the paracellular permeability of the cell monolayer. Moreover, inflammatory stimulus increased claudin-2 expression and decreased occludin expression were improved in the cells treated with commensal bacteria. Furthermore, the commensals were able to counteract the increased release of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) induced by the inflammatory stimulus. These findings indicated that F. prausnitzii, R. intestinalis and B. faecis improve the epithelial barrier integrity and limit inflammatory responses.


Subject(s)
Bacteroides , Clostridiales , Epithelial Cells/microbiology , Faecalibacterium prausnitzii , Gastrointestinal Microbiome/physiology , Inflammatory Bowel Diseases/microbiology , Caco-2 Cells , Chemokine CCL2/metabolism , Claudin-2 , Electric Impedance , HT29 Cells , Humans , Interferon-gamma/administration & dosage , Interleukin-1beta/administration & dosage , Interleukin-8/metabolism , Intestinal Mucosa/microbiology , Lipopolysaccharides/administration & dosage , Occludin/metabolism , Permeability , Tumor Necrosis Factor-alpha/administration & dosage
14.
Neurochem Res ; 45(7): 1510-1517, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32172400

ABSTRACT

The aim of this study was to investigate potential therapeutic effects of IFN-γ primed human umbilical cord mesenchymal stem cell (IFN-γ-hUCMSCs) transplantation on experimental autoimmune encephalomyelitis (EAE) in mice. In this study, EAE mouse model was established by MOG35-55 immunization method. Outcomes of the EAE mice in terms of body weight and clinical symptoms were analyzed. Electromyography (EMG) was performed to evaluate nerve conduction. ELISA was applied to quantify inflammatory cytokine levels in serum. Our results showed that IFN-γ could up-regulate protein expression of indoleamine 2, 3-dioxygenease 1 (IDO1), an important molecule released by MSCs to exert their immune suppressive activity (p < 0.01). In this study treatment efficacy for EAE was compared between transplantation of hUCMSCs alone and the IFN-γ-hUCMSCs which were cultured in the presence of IFN-γ for 48 h prior to be harvested for transplantation. Compared with hUCMSCs alone and control (PBS transfusion) group, transplantation of the IFN-γ-hUCMSCs could significantly alleviate the body weight loss and clinical symptoms of EAE mice (p < 0.05). Consistently EMG latency was significantly improved in treatment groups (p < 0.001), and the IFN-γ-hUCMSCs group was even better than the hUCMSCs group (p < 0.05). Moreover, the concentrations of IL-17A and TNF-α in serum of the mice treated by IFN-γ-hUCMSCs were significantly lower than hUCMSCs alone and controls, respectively (p < 0.05). In few of the roles of IL-17A and TNF-α in the pathogenesis of EAE, IFN-γ-hUCMSCs treatment associated-suppression of IL-17A and TNF-α expression may contribute in part to their therapeutic effects on EAE. In sum, our study highlights a great clinical potential of IFN-γ-hUCMSCs for multiple sclerosis (MS) treatment.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , Encephalomyelitis, Autoimmune, Experimental/therapy , Interferon-gamma/administration & dosage , Mesenchymal Stem Cell Transplantation/methods , Animals , Cells, Cultured , Cord Blood Stem Cell Transplantation/trends , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Female , Humans , Mesenchymal Stem Cell Transplantation/trends , Mice , Mice, Inbred C57BL , Treatment Outcome , Umbilical Cord/cytology , Umbilical Cord/physiology , Umbilical Cord/transplantation
15.
Brain Struct Funct ; 225(1): 427-439, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31894407

ABSTRACT

Imaging biomarkers for immune activation may be valuable for early-stage detection, therapeutic testing, and research on neurodegenerative conditions. In the present study, we determined whether diffusion magnetic resonance imaging-derived free water signal is a sensitive marker for neuroinflammatory effects of interferon-gamma (Ifn-γ). Neonatal wild-type mice were injected in the cerebral ventricles with recombinant adeno-associated viruses expressing the inflammatory cytokine Ifn-γ. Groups of mice expressing Ifn-γ and age-matched controls were imaged at 1, 5 and 8 months. Mice deficient in Ifngr1-/- and Stat1-/- were scanned at 5 months as controls for the signaling cascades activated by Ifn-γ. The results indicate that Ifn-γ affected fractional anisotropy (FA), mean diffusivity (MD), and free water (FW) in white matter structures, midline cortical areas, and medial thalamic areas. In these structures, FA and MD decreased progressively from 1 to 8 months of age, while FW increased significantly. The observed reductions in FA and MD and increased FW with elevated brain Ifn-γ was not observed in Ifngr1-/- or Stat1-/- mice. These results suggest that the observed microstructure changes involve the Ifn-gr1 and Stat1 signaling. Interestingly, increases in FW were observed in midbrain of Ifngr1-/- mice, which suggests alternative Ifn-γ signaling in midbrain. Although initial evidence is offered in relation to the sensitivity of the FW signal to neurodegenerative and/or inflammatory patterns specific to Ifn-γ, further research is needed to determine applicability and specificity across animal models of neuroinflammatory and degenerative disorders.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Encephalitis/diagnostic imaging , Encephalitis/pathology , Interferon-gamma/metabolism , White Matter/diagnostic imaging , White Matter/pathology , Animals , Anisotropy , Brain/drug effects , Brain/metabolism , Encephalitis/chemically induced , Female , Interferon-gamma/administration & dosage , Interferon-gamma/genetics , Male , Mice, Knockout , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction , Water/analysis , White Matter/drug effects , White Matter/metabolism
16.
J Aerosol Med Pulm Drug Deliv ; 33(2): 108-115, 2020 04.
Article in English | MEDLINE | ID: mdl-31855492

ABSTRACT

Background: In volunteers with idiopathic pulmonary fibrosis (IPF), inhaled Interferon-γ (IFN-γ) is safe and may improve pulmonary function. However, coughing, associated with upper airway deposition, is often reported. To address this problem, a small-particle, breath-enhanced jet nebulizer (i-NEB Mini; InspiRx, Inc., Somerset, NJ) was developed. Using gamma scintigraphy, this device was tested in healthy individuals and subjects with IPF to determine efficiency and regional deposition in lung and airways. Methods: Four healthy individuals and nine subjects with IPF were enrolled. The nebulizer was filled with 2 mL of saline with 99m Tc bound to diethylenetriaminepentaacetic acid (DTPA) powered continuously with 3.4 L/min of compressed air. Mass median aerodynamic diameter (MMAD) was measured by cascade impactor. To maximize deposition in alveoli, inspiratory flow was limited by an inspiratory resistance incorporated into the nebulizer, resulting in a deep inspiration ∼6 seconds. The treatment was run to completion (10 minutes), and each subject underwent deposition imaging. Mass balance and regions of interest determined upper airway (measured by calibrated stomach activity) and regional lung deposition as a percent of pretreatment nebulizer charge. Results: Subjects tolerated the device with no complaints. MMAD (mean [geometric standard deviation]) = 1.04 [1.92] µm. Lung deposition (mean ± standard error, % nebulizer charge) in healthy subjects was 26.2% ± 1.83 and in IPF individuals 23.4% ± 1.60 (p = 0.414). Upper airway deposition was 1.4% ± 0.83 and 2.3% ± 0.48, respectively (p = 0.351), and 20.1% was lost during expiration. Central/Peripheral ratios were consistent in both groups, showing high peripheral deposition (1.32 ± 0.050, vs. 1.28 ± 0.046, p = 0.912). Conclusion: The i-NEB Mini jet nebulizer with breath enhancement produced small particles, resulting in minimal upper airway deposition. Using slow and deep breathing, more than half of the emitted dose deposited in the peripheral lung in normal subjects and individuals with IPF. These data indicate that, for future clinical trials, controlled lung doses of small particles, designed to avoid coughing, are possible even in subjects with advanced disease.


Subject(s)
Idiopathic Pulmonary Fibrosis/drug therapy , Interferon-gamma/administration & dosage , Lung/metabolism , Nebulizers and Vaporizers , Administration, Inhalation , Case-Control Studies , Cough/etiology , Equipment Design , Humans , Interferon-gamma/adverse effects , Interferon-gamma/pharmacokinetics , Particle Size , Tissue Distribution
17.
J Biomed Mater Res A ; 108(2): 234-245, 2020 02.
Article in English | MEDLINE | ID: mdl-31587469

ABSTRACT

The therapeutic administration of cytokines has been introduced aiming to modulate the immune response system, seeking for different approaches to face pathologies such as cancer, auto immune and infectious diseases. The objective of this study was to investigate the effects of a stable oil-in-water (O/W) nanoemulsion system carrying the cytokine Interferon gamma (IFN-γ) on the activity of phagocytes and MCF-7 human breast cancer cells. Nanoemulsions were prepared through ultra-homogenization, and they consisted of distilled water, triglycerides of capric acid/caprylic, sorbitan-oleate, polysorbate 80, and 1-butanol. IFN-γ (100 ng ml-1 ) was incorporated into two O/W nanoemulsion formulations, and these formulations were characterized in terms of their preliminary and accelerated physicochemical stability, rheological properties, droplet size, polydispersity and surface charge. We identified the most optimal IFN-γ nanoemulsion (IFN-γNE2), which remained stable under extreme temperature variations for 90 days, contained an average dose of 97 ng ml-1 of IFN-γ and exhibited a biocompatible pH and a relative stable rheological profile. Cell viability and intracellular Ca2+ release assays conducted showed that IFN-γNE2 reduced the cell viability of MCF-7 cells without affecting the cell viability of phagocytes. Furthermore, IFN-γNE2 was able to induce cellular activity of phagocytes as evidenced by increased intracellular Ca2+ release in these cells. Our findings on this IFN-γ nanoemulsion suggest that it can be a promising therapeutic agent for immunostimulation and cancer treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/chemistry , Emulsions/chemistry , Immunologic Factors/administration & dosage , Interferon-gamma/administration & dosage , Adult , Antineoplastic Agents/pharmacology , Cells, Cultured , Female , Humans , Immunologic Factors/pharmacology , Interferon-gamma/pharmacology , MCF-7 Cells , Male , Neoplasms/drug therapy , Young Adult
18.
BMC Cancer ; 19(1): 1053, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31694582

ABSTRACT

BACKGROUND: Pancreatic cancer is characterized by a highly immunosuppressive tumor microenvironment and evasion of immune surveillance. Although programmed cell death 1 receptor (PD-1) blockade has achieved certain success in immunogenic cancers, the responses to the PD-1 antibody are not effective or sustained in patients with pancreatic cancer. METHODS: Firstly, PD-1 expressions on peripheral CD8+ T-lymphocytes of patients with pancreatic cancer and healthy donors were measured. In in vitro study, peripheral T-lymphocytes were isolated and treated with nivolumab and/or interferon-γ, and next, PD-1-blockade effects, proliferations, cytokine secretions and cytotoxic activities were tested after different treatments. In in vivo study, mice bearing subcutaneous pancreatic cancer cell lines were treated with induced T-lymphocytes and tumor sizes were measured. RESULTS: PD-1 protein expression is increased on peripheral CD8+ T cells in patients with pancreatic ductal adenocarcinoma compared with that in health donor. PD-1 expression on CD8+ T-lymphocytes was decreased by nivolumab in a concentration-dependent manner in vitro. IFN-γ could directly down-regulate expression of PD-1 in vitro. Furthermore, the combination therapy of nivolumab and IFN-γ resulted in greatest effect of PD-1-blockde (1.73 ± 0.78), compared with IFN-γ along (18.63 ± 0.82) and nivolumab along (13.65 ± 1.22). Moreover, the effects of nivolumab plus IFN-γ largest promoted the T-lymphocytes function of proliferations, cytokine secretions and cytotoxic activities. Most importantly, T-lymphocytes induced by nivolumab plus IFN-γ presented the best repression of tumor growth. CONCLUSIONS: IFN-γ plus a PD-1-blockading agent could enhance the immunologic function and might play a crucial role in effective adoptive transfer treatments of pancreatic cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Interferon-gamma/pharmacology , Nivolumab/pharmacology , Pancreatic Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/metabolism , Xenograft Model Antitumor Assays , Adult , Aged , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cells, Cultured , Female , Humans , Interferon-gamma/administration & dosage , Male , Mice, Nude , Middle Aged , Nivolumab/administration & dosage , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Programmed Cell Death 1 Receptor/genetics , Tumor Burden/drug effects
19.
Respir Res ; 20(1): 206, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31511015

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) pathogenesis involves multiple pathways, and combined antifibrotic therapy is needed for future IPF therapy. Inhaled interferon-γ (IFN-γ) was recently shown to be safe and without systemic effects in patients with IPF. AIM: To examine the in vitro effects of individual and combined treatment with IFN-γ and pirfenidone (PFD) on normal and IPF fibroblast activation and extracellular matrix remodeling after TGF-ß1 and PDGF-BB stimulation. METHODS: IPF and normal human lung fibroblasts (NHLF) were treated with IFN-γ, PFD or a combination of both drugs in the presence of either TGF-ß1 or PDGF-BB. The effects of TGF-ß1 and PDGF-BB treatment on cell viability, proliferation, differentiation and migration were examined. The expression of collagen 1, matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs) was analyzed using qPCR, Western blotting and gelatin zymography. Total collagen content in conditioned media was also measured using a Sircol assay. RESULTS: Compared to that of PFD, the effect of IFN-γ in downregulating normal and IPF lung fibroblast differentiation to myofibroblasts in response to TGF-ß1 was more potent. Importantly, the combination of IFN-γ and PFD had a possibly synergistic/additive effect in inhibiting the TGF-ß1- and PDGF-BB-induced proliferation, migration and differentiation of normal and IPF lung fibroblasts. Furthermore, both drugs reversed TGF-ß1-induced effects on MMP-1, - 2, - 3, - 7, and - 9, while only PFD promoted TIMP-1 and-2 expression and release. CONCLUSIONS: Our findings demonstrate that the antifibrotic effects of IFN-γ and PFD on normal and IPF lung fibroblasts are different and complementary. Combination therapy with inhaled IFN-γ and PFD in IPF is promising and should be further explored in IPF clinical trials.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Cell Differentiation/drug effects , Fibroblasts/drug effects , Idiopathic Pulmonary Fibrosis/drug therapy , Interferon-gamma/administration & dosage , Pyridones/administration & dosage , Adult , Aged , Cell Differentiation/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Drug Synergism , Female , Fibroblasts/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Young Adult
20.
Front Immunol ; 10: 1182, 2019.
Article in English | MEDLINE | ID: mdl-31191546

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening infectious disease caused by a novel phlebovirus, SFTS virus (SFTSV). Currently, there is no vaccine or antiviral available and the viral pathogenesis remains largely unknown. In this study, we demonstrated that SFTSV infection results in substantial production of serum interferon-γ (IFN-γ) in patients and then that IFN-γ in turn exhibits a robust anti-SFTSV activity in cultured cells, indicating the potential role of IFN-γ in anti-SFTSV immune responses. However, the IFN-γ anti-SFTSV efficacy was compromised once viral infection had been established. Consistently, we found that viral nonstructural protein (NSs) expression counteracts IFN-γ signaling. By protein interaction analyses combined with mass spectrometry, we identified the transcription factor of IFN-γ signaling pathway, STAT1, as the cellular target of SFTSV for IFN-γ antagonism. Mechanistically, SFTSV blocks IFN-γ-triggered STAT1 action through (1) NSs-STAT1 interaction-mediated sequestration of STAT1 into viral inclusion bodies and (2) viral infection-induced downregulation of STAT1 protein level. Finally, the efficacy of IFN-γ as an anti-SFTSV drug in vivo was evaluated in a mouse infection model: IFN-γ pretreatment but not posttreatment conferred significant protection to mice against lethal SFTSV infection, confirming IFN-γ's anti-SFTSV effect and viral antagonism against IFN-γ after the infection establishment. These findings present a picture of virus-host arm race and may promote not only the understanding of virus-host interactions and viral pathogenesis but also the development of antiviral therapeutics.


Subject(s)
Bunyaviridae Infections/immunology , Interferon-gamma/immunology , Phlebovirus/immunology , STAT1 Transcription Factor/immunology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/blood , Antiviral Agents/immunology , Bunyaviridae Infections/drug therapy , Bunyaviridae Infections/virology , Chlorocebus aethiops , HEK293 Cells , Hep G2 Cells , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Interferon-gamma/administration & dosage , Interferon-gamma/blood , Mice, Inbred ICR , Phlebovirus/drug effects , Phlebovirus/physiology , STAT1 Transcription Factor/antagonists & inhibitors , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Vero Cells , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL