Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.278
Filter
1.
World J Gastroenterol ; 30(24): 3044-3047, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983964

ABSTRACT

We comment here on the article by Stefanolo et al entitled "Effect of Aspergillus niger prolyl endopeptidase in patients with celiac disease on a long-term gluten-free diet", published in the World Journal of Gastroenterology. Celiac disease is a well-recognized systemic autoimmune disorder. In genetically susceptible people, the most evident damage is located in the small intestine, and is caused and worsened by the ingestion of gluten. For that reason, celiac patients adopt a gluten-free diet (GFD), but it has some limitations, and it does not prevent re-exposure to gluten. Research aims to develop adjuvant therapies, and one of the most studied alternatives is supplementation with Aspergillus niger prolyl endopeptidase protease (AN-PEP), which is able to degrade gluten in the stomach, reducing its concentration in the small intestine. The study found a high adherence to the GFD, but did not address AN-PEP as a gluten immunogenic peptide reducer, as it was only tested in patients following a GFD and not in gluten-exposing conditions. This study opens up new research perspectives in this area and shows that further study is needed to clarify the points that are still in doubt.


Subject(s)
Aspergillus niger , Celiac Disease , Diet, Gluten-Free , Glutens , Prolyl Oligopeptidases , Serine Endopeptidases , Celiac Disease/immunology , Celiac Disease/microbiology , Celiac Disease/enzymology , Humans , Aspergillus niger/enzymology , Serine Endopeptidases/metabolism , Glutens/immunology , Glutens/metabolism , Glutens/adverse effects , Intestine, Small/microbiology , Intestine, Small/enzymology , Treatment Outcome
2.
Article in English | MEDLINE | ID: mdl-38889874

ABSTRACT

Tizoxanide (TZX) is an active metabolite of nitazoxanide (NTZ) originally developed as an antiparasitic agent, and is predominantly metabolized into TZX glucuronide. In the present study, TZX glucuronidation by the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice, and recombinant human UDP-glucuronosyltransferase (UGT) were examined. The kinetics of TZX glucuronidation by the liver and intestinal microsomes followed the Michaelis-Menten or biphasic model, with species-specific variations in the intrinsic clearance (CLint). Rats and mice exhibited the highest CLint values for liver microsomes, while mice and rats were the highest for intestinal microsomes. Among human UGTs, UGT1A1 and UGT1A8 demonstrated significant glucuronidation activity. Estradiol and emodin inhibited TZX glucuronidation activities in the human liver and intestinal microsomes in a dose-dependent manner, with emodin showing stronger inhibition in the intestinal microsomes. These results suggest that the roles of UGT enzymes in TZX glucuronidation in the liver and small intestine differ extensively across species and that UGT1A1 and/or UGT1A8 mainly contribute to the metabolism and elimination of TZX in humans. This study presents the relevant and novel-appreciative report on TZX metabolism catalyzed by UGT enzymes, which may aid in the assessment of the antiparasitic, antibacterial, and antiviral activities of NTZ for the treatment of various infections.


Subject(s)
Glucuronides , Glucuronosyltransferase , Intestine, Small , Liver , Nitro Compounds , Species Specificity , Thiazoles , Animals , Glucuronosyltransferase/metabolism , Humans , Dogs , Thiazoles/metabolism , Intestine, Small/metabolism , Intestine, Small/enzymology , Intestine, Small/drug effects , Mice , Rats , Nitro Compounds/metabolism , Liver/metabolism , Liver/enzymology , Liver/drug effects , Male , Glucuronides/metabolism , Macaca fascicularis , Microsomes, Liver/metabolism , Antiparasitic Agents/metabolism , Female , Microsomes/metabolism , Microsomes/enzymology , Rats, Sprague-Dawley , Isoenzymes/metabolism
3.
J Sci Food Agric ; 104(11): 6769-6777, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38563403

ABSTRACT

BACKGROUND: The general assumption that prebiotics reach the colon without any alterations has been challenged. Some in vitro and in vivo studies have demonstrated that 'non-digestible' oligosaccharides are digested to different degrees depending on their structural composition. In the present study, we compared different methods aiming to assess the digestibility of oligosaccharides synthesized by ß-galactosidase (ß-gal) of Lactobacillus delbruecki subsp. bulgaricus CRL450 (CRL450-ß-gal) from lactose, lactulose and lactitol. RESULTS: In the simulated gastrointestinal fluid method, no changes were observed. However, the oligosaccharides synthesized by CRL450-ß-gal were partially hydrolyzed in vitro, depending on their structure and composition, with rat small intestinal extract (RSIE) and small intestinal brush-border membrane vesicles (BBMV) from pig. Digestion of some oligosaccharides increased when mixtures were fed to C57BL/6 mice used as in vivo model; however, lactulose-oligosaccharides were the most resistant to the physiological conditions of mice. In general ß (1→6) linked products showed higher resistance compared to ß (1→3) oligosaccharides. CONCLUSION: In vitro digestion methods, without disaccharidases, may underestimate the importance of carbohydrates hydrolysis in the small intestine. Although BVMM and RSIE digestion assays are appropriate in vitro methods for these studies, in vivo studies remain the most reliable for understanding what actually happens in the digestion of oligosaccharides. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Digestion , Mice, Inbred C57BL , Oligosaccharides , Prebiotics , beta-Galactosidase , Prebiotics/analysis , Animals , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Oligosaccharides/metabolism , Oligosaccharides/chemistry , Mice , Rats , Swine , Male , Lactulose/metabolism , Lactulose/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Intestine, Small/metabolism , Intestine, Small/enzymology , Lactobacillus/metabolism , Lactobacillus/enzymology , Hydrolysis , Lactose/metabolism , Lactose/chemistry
4.
EMBO Mol Med ; 14(6): e14121, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35491615

ABSTRACT

The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.


Subject(s)
Caspase 8 , Endothelial Cells , Intestinal Mucosa , Animals , Caspase 8/metabolism , Endothelial Cells/enzymology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Enteritis/enzymology , Enteritis/pathology , Homeostasis , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestine, Small/enzymology , Intestine, Small/pathology , Mice
5.
Nutrients ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35057569

ABSTRACT

The reactions of intestinal functional parameters to type 2 diabetes at a young age remain unclear. The study aimed to assess changes in the activity of intestinal enzymes, glucose absorption, transporter content (SGLT1, GLUT2) and intestinal structure in young Wistar rats with type 2 diabetes (T2D) and impaired glucose tolerance (IGT). To induce these conditions in the T2D (n = 4) and IGT (n = 6) rats, we used a high-fat diet and a low dose of streptozotocin. Rats fed a high-fat diet (HFD) (n = 6) or a standard diet (SCD) (n = 6) were used as controls. The results showed that in T2D rats, the ability of the small intestine to absorb glucose was higher in comparison to HFD rats (p < 0.05). This was accompanied by a tendency towards an increase in the number of enterocytes on the villi of the small intestine in the absence of changes in the content of SGLT1 and GLUT2 in the brush border membrane of the enterocytes. T2D rats also showed lower maltase and alkaline phosphatase (AP) activity in the jejunal mucosa compared to the IGT rats (p < 0.05) and lower AP activity in the colon contents compared to the HFD (p < 0.05) and IGT (p < 0.05) rats. Thus, this study provides insights into the adaptation of the functional and structural parameters of the small intestine in the development of type 2 diabetes and impaired glucose tolerance in young representatives.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Glucose Intolerance/complications , Glucose/pharmacokinetics , Intestine, Small/enzymology , Intestine, Small/metabolism , Alkaline Phosphatase/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Enterocytes/chemistry , Glucan 1,4-alpha-Glucosidase/metabolism , Glucose Transporter Type 2/analysis , Intestinal Absorption , Male , Rats , Rats, Wistar , Sodium-Glucose Transporter 1/analysis , alpha-Glucosidases/metabolism
6.
J Mol Cell Cardiol ; 164: 13-16, 2022 03.
Article in English | MEDLINE | ID: mdl-34774871

ABSTRACT

Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.


Subject(s)
Aging/metabolism , Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/epidemiology , Gene Expression Regulation, Enzymologic , Receptors, Virus/biosynthesis , SARS-CoV-2/physiology , Sex Characteristics , Aging/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Disease Susceptibility , Female , Heart/virology , Humans , Intestine, Small/enzymology , Intestine, Small/virology , Kidney/enzymology , Kidney/virology , Lung/enzymology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocardium/enzymology , Organ Specificity , Receptors, Virus/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Young Adult
7.
Arch Toxicol ; 96(2): 499-510, 2022 02.
Article in English | MEDLINE | ID: mdl-34654938

ABSTRACT

The small intestine plays a critical role in the absorption and metabolism of orally administered drugs. Therefore, a model capable of evaluating drug absorption and metabolism in the small intestine would be useful for drug discovery. Patients with genotype UGT1A1*6 (exon 1, 211G > A) treated with the antineoplastic drug SN-38 have been reported to exhibit decreased glucuronide conjugation and increased incidence of intestinal toxicity and its severe side effects, including severe diarrhea. To ensure the safety of drugs, we must develop a drug metabolism and toxicity evaluation model which considers UGT1A1*6. In this study, we generated CYP3A4·POR·UGT1A1 KI- and CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells for pharmaceutical research using a PITCh system. The CYP3A4·POR·UGT1A1 KI-Caco-2 cells were shown to express functional CYP3A4 and UGT1A1. The CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells were sensitive to SN-38-induced intestinal toxicity. We thus succeeded in generating CYP3A4·POR·UGT1A1 KI- and CYP3A4·POR·UGT1A1*6 KI-Caco-2 cells, which can be used in pharmaceutical research. We also developed an intestinal epithelial cell model of patients with UGT1A1*6 and showed that it was useful as a tool for drug discovery.


Subject(s)
Cytochrome P-450 CYP3A/genetics , Glucuronosyltransferase/genetics , Intestinal Mucosa/enzymology , Intestine, Small/enzymology , Antineoplastic Agents/toxicity , Caco-2 Cells/enzymology , Drug Discovery/methods , Genotype , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestine, Small/cytology , Intestine, Small/drug effects , Irinotecan/toxicity
8.
Front Immunol ; 12: 753371, 2021.
Article in English | MEDLINE | ID: mdl-34721427

ABSTRACT

Many pathogens enter the host via the gut, causing disease in animals and humans. A robust intestinal immune response is necessary to protect the host from these gut pathogens. Despite being best suited for eliciting intestinal immunity, oral vaccination remains a challenge due to the gastrointestinal environment, a poor uptake of vaccine antigens by the intestinal epithelium and the tolerogenic environment pervading the gut. To improve uptake, efforts have focused on targeting antigens towards the gut mucosa. An interesting target is aminopeptidase N (APN), a conserved membrane protein present on small intestinal epithelial cells shown to mediate epithelial transcytosis. Here, we aimed to further optimize this oral vaccination strategy in a large animal model. Porcine APN-specific monoclonal antibodies were generated and the most promising candidate in terms of epithelial transcytosis was selected to generate antibody fusion constructs, comprising a murine IgG1 or porcine IgA backbone and a low immunogenic antigen: the F18-fimbriated E. coli tip adhesin FedF. Upon oral delivery of these recombinant antibodies in piglets, both mucosal and systemic immune responses were elicited. The presence of the FedF antigen however appeared to reduce these immune responses. Further analysis showed that F18 fimbriae were able to disrupt the antigen presenting capacity of intestinal antigen presenting cells, implying potential tolerogenic effects of FedF. Altogether, these findings show that targeted delivery of molecules to epithelial aminopeptidase N results in their transcytosis and delivery to the gut immune systems. The results provide a solid foundation for the development of oral subunit vaccines to protect against gut pathogens.


Subject(s)
Adhesins, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antigens, Bacterial/immunology , CD13 Antigens/immunology , Escherichia coli Proteins/immunology , Immunoconjugates/immunology , Immunoglobulin A/biosynthesis , Intestinal Mucosa/immunology , Intestine, Small/immunology , Swine/immunology , Transcytosis , Vaccines, Synthetic/immunology , Adhesins, Bacterial/administration & dosage , Administration, Oral , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/administration & dosage , Antibody Affinity , Antigen-Presenting Cells/immunology , Antigens, Bacterial/administration & dosage , CD13 Antigens/physiology , Enterotoxigenic Escherichia coli/immunology , Epithelial Cells/metabolism , Escherichia coli Proteins/administration & dosage , Female , Fimbriae, Bacterial/immunology , Immunoconjugates/administration & dosage , Immunoglobulin A/administration & dosage , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Intestine, Small/enzymology , Mice , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , Transcytosis/physiology , Vaccination/veterinary
9.
Drug Metab Dispos ; 49(12): 1038-1046, 2021 12.
Article in English | MEDLINE | ID: mdl-34548392

ABSTRACT

Most drugs are administered to children orally. An information gap remains on the protein abundance of small intestinal drug-metabolizing enzymes (DMEs) and drug transporters (DTs) across the pediatric age range, which hinders precision dosing in children. To explore age-related differences in DMEs and DTs, surgical leftover intestinal tissues from pediatric and adult jejunum and ileum were collected and analyzed by targeted quantitative proteomics for apical sodium-bile acid transporter, breast cancer resistance protein (BCRP), monocarboxylate transporter 1 (MCT1), multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein (MRP) 2, MRP3, organic anion-transporting polypeptide 2B1, organic cation transporter 1, peptide transporter 1 (PEPT1), CYP2C19, CYP3A4, CYP3A5, UDP glucuronosyltransferase (UGT) 1A1, UGT1A10, and UGT2B7. Samples from 58 children (48 ileums, 10 jejunums, age range: 8 weeks to 17 years) and 16 adults (8 ileums, 8 jejunums) were analyzed. When comparing age groups, BCRP, MDR1, PEPT1, and UGT1A1 abundance was significantly higher in adult ileum as compared with the pediatric ileum. Jejunal BCRP, MRP2, UGT1A1, and CYP3A4 abundance was higher in the adults compared with children 0-2 years of age. Examining the data on a continuous age scale showed that PEPT1 and UGT1A1 abundance was significantly higher, whereas MCT1 and UGT2B7 abundance was lower in adult ileum as compared with the pediatric ileum. Our data contribute to the deeper understanding of the ontogeny of small intestinal drug-metabolizing enzymes and drug transporters and shows DME-, DT-, and intestinal location-specific, age-related changes. SIGNIFICANCE STATEMENT: This is the first study that describes the ontogeny of small intestinal DTs and DMEs in human using liquid chromatography with tandem mass spectrometry-based targeted quantitative proteomics. The current analysis provides a detailed picture about the maturation of DT and DME abundances in the human jejunum and ileum. The presented results supply age-related DT and DME abundance data for building more accurate PBPK models that serve to support safer and more efficient drug dosing regimens for the pediatric population.


Subject(s)
Inactivation, Metabolic/physiology , Intestine, Small , Membrane Transport Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Adult , Age Factors , Biological Transport, Active , Child , Chromatography, Liquid/methods , Cytochrome P-450 CYP3A/metabolism , Enzyme Assays/methods , Gene Ontology , Glucuronosyltransferase/metabolism , Humans , Intestine, Small/drug effects , Intestine, Small/enzymology , Intestine, Small/metabolism , Metabolic Clearance Rate , Multidrug Resistance-Associated Protein 2/metabolism , Neoplasm Proteins/metabolism , Peptide Transporter 1/metabolism , Tandem Mass Spectrometry/methods
10.
Toxicol Appl Pharmacol ; 429: 115703, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34461081

ABSTRACT

Cytochrome P450 3A (CYP3A) as an important enzyme metabolizes many drugs and a variety of endogenous substances. Bile acids (BA) regulate physiological function by activating BA receptors. In this study, CYP3A1/2 gene knockout (KO) and wild-type (WT) rats were used to investigate the regulatory effects of CYP3A on BA homeostasis and liver function. Compared with WT rats, BA concentrations in serum, liver and small intestine of CYP3A1/2 KO rats increased significantly, which was due to the decrease of catabolism and the increase of synthesis. In particular, the composition of serum BA (overall hydrophobicity) presented an age- and CYP3A-dependent manner. With the aging of WT rats, the serum BA became more hydrophobic, while this trend was delayed in CYP3A1/2 KO rats. Moreover, the level of serum total cholesterol, the precursor of BA synthesis, decreased by about 20% in CYP3A1/2 KO rats, which is due to the low synthesis but high biotransformation rate. The increase of BA pool further led to the change of transcription level of BA receptor in liver (pregnane X receptor) and small intestine (Takeda G-protein receptor 5), and affected the function and morphology of CYP3A1/2 KO rat liver. In conclusion, CYP3A is a key regulator of BA homeostasis in rats, especially in regulating BA pool size, composition and balance of anabolism, and prevents susceptibility to hepatotoxicity under BA overload.


Subject(s)
Bile Acids and Salts/blood , Cytochrome P-450 CYP3A/deficiency , Intestine, Small/enzymology , Liver/enzymology , Animals , Cholesterol/blood , Cytochrome P-450 CYP3A/genetics , Female , Genotype , Homeostasis , Hydrophobic and Hydrophilic Interactions , Phenotype , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism , Rats, Sprague-Dawley , Rats, Transgenic , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
11.
Int J Biol Macromol ; 186: 237-243, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34242650

ABSTRACT

The glucose-regulated protein GRP94 is a molecular chaperone that is located in the endoplasmic reticulum (ER). Here, we demonstrate in pull down experiments an interaction between GRP94 and sucrase-isomaltase (SI), the most prominent disaccharidase of the small intestine. GRP94 binds to SI exclusively via its mannose-rich form compatible with an interaction occurring in the ER. We have also examined the interaction GRP94 to a panel of SI mutants that are associated with congenital sucrase-isomaltase deficiency (CSID). These mutants exhibited more efficient binding to GRP94 than wild type SI underlining a specific role of this chaperone in the quality control in the ER. In view of the hypoxic milieu of the intestine, we probed the interaction of GRP94 to SI and its mutants in cell culture under hypoxic conditions and observed a substantial increase in the binding of GRP94 to the SI mutants. The interaction of GRP94 to the major carbohydrate digesting enzyme and regulating its folding as well as retaining SI mutants in the ER points to a potential role of GRP94 in maintenance of intestinal homeostasis by chaperoning and stabilizing SI.


Subject(s)
Bacterial Proteins/metabolism , Carbohydrate Metabolism, Inborn Errors/enzymology , Endoplasmic Reticulum/enzymology , Intestine, Small/enzymology , Membrane Glycoproteins/metabolism , Sucrase-Isomaltase Complex/deficiency , alpha-Glucosidases/metabolism , Animals , Bacterial Proteins/genetics , COS Cells , Camelus , Carbohydrate Metabolism, Inborn Errors/genetics , Cell Hypoxia , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Enzyme Stability , Humans , Membrane Glycoproteins/genetics , Mutation , Protein Binding , Protein Folding , Sucrase-Isomaltase Complex/genetics , Sucrase-Isomaltase Complex/metabolism , alpha-Glucosidases/genetics
12.
Drug Metab Dispos ; 49(9): 718-728, 2021 09.
Article in English | MEDLINE | ID: mdl-34135089

ABSTRACT

For drug development, species differences in drug-metabolism reactions present obstacles for predicting pharmacokinetics in humans. We characterized the species differences in hydrolases among humans and mice, rats, dogs, and cynomolgus monkeys. In this study, to expand the series of such studies, we attempted to characterize marmoset hydrolases. We measured hydrolase activities for 24 compounds using marmoset liver and intestinal microsomes, as well as recombinant marmoset carboxylesterase (CES) 1, CES2, and arylacetamide deacetylase (AADAC). The contributions of CES1, CES2, and AADAC to hydrolysis in marmoset liver microsomes were estimated by correcting the activities by using the ratios of hydrolase protein levels in the liver microsomes and those in recombinant systems. For six out of eight human CES1 substrates, the activities in marmoset liver microsomes were lower than those in human liver microsomes. For two human CES2 substrates and three out of seven human AADAC substrates, the activities in marmoset liver microsomes were higher than those in human liver microsomes. Notably, among the three rifamycins, only rifabutin was hydrolyzed by marmoset tissue microsomes and recombinant AADAC. The activities for all substrates in marmoset intestinal microsomes tended to be lower than those in liver microsomes, which suggests that the first-pass effects of the CES and AADAC substrates are due to hepatic hydrolysis. In most cases, the sums of the values of the contributions of CES1, CES2, and AADAC were below 100%, which indicated the involvement of other hydrolases in marmosets. In conclusion, we clarified the substrate preferences of hydrolases in marmosets. SIGNIFICANCE STATEMENT: This study confirmed that there are large differences in hydrolase activities between humans and marmosets by characterizing marmoset hydrolase activities for compounds that are substrates of human CES1, CES2, or arylacetamide deacetylase. The data obtained in this study may be useful for considering whether marmosets are appropriate for examining the pharmacokinetics and efficacies of new chemical entities in preclinical studies.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Hydrolases , Intestine, Small/enzymology , Liver/enzymology , Microsomes/enzymology , Rifamycins/pharmacokinetics , Animals , Callithrix , Carboxylesterase/metabolism , Drug Development/methods , Enzyme Activation/physiology , Enzyme Assays/methods , Humans , Hydrolases/classification , Hydrolases/metabolism , Recombinant Proteins/metabolism , Species Specificity , Substrate Specificity
13.
Front Immunol ; 12: 625627, 2021.
Article in English | MEDLINE | ID: mdl-33790896

ABSTRACT

Melatonin reportedly alleviates sepsis-induced multi-organ injury by inducing autophagy and activating class III deacetylase Sirtuin family members (SIRT1-7). However, whether melatonin attenuates small-intestine injury along with the precise underlying mechanism remain to be elucidated. To investigate this, we employed cecal ligation and puncture (CLP)- or endotoxemia-induced sepsis mouse models and confirmed that melatonin treatment significantly prolonged the survival time of mice and ameliorated multiple-organ injury (lung/liver/kidney/small intestine) following sepsis. Melatonin partially protected the intestinal barrier function and restored SIRT1 and SIRT3 activity/protein expression in the small intestine. Mechanistically, melatonin treatment enhanced NF-κB deacetylation and subsequently reduced the inflammatory response and decreased the TNF-α, IL-6, and IL-10 serum levels; these effects were abolished by SIRT1 inhibition with the selective blocker, Ex527. Correspondingly, melatonin treatment triggered SOD2 deacetylation and increased SOD2 activity and subsequently reduced oxidative stress; this amelioration of oxidative stress by melatonin was blocked by the SIRT3-selective inhibitor, 3-TYP, and was independent of SIRT1. We confirmed this mechanistic effect in a CLP-induced sepsis model of intestinal SIRT3 conditional-knockout mice, and found that melatonin preserved mitochondrial function and induced autophagy of small-intestine epithelial cells; these effects were dependent on SIRT3 activation. This study has shown, to the best of our knowledge, for the first time that melatonin alleviates sepsis-induced small-intestine injury, at least partially, by upregulating SIRT3-mediated oxidative-stress inhibition, mitochondrial-function protection, and autophagy induction.


Subject(s)
Antioxidants/pharmacology , Autophagy/drug effects , Intestinal Mucosa/drug effects , Intestine, Small/drug effects , Melatonin/pharmacology , Mitochondria/drug effects , Oxidative Stress/drug effects , Sepsis/drug therapy , Sirtuin 3/metabolism , Animals , Disease Models, Animal , Inflammation Mediators/metabolism , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Intestine, Small/enzymology , Intestine, Small/pathology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/enzymology , Mitochondria/pathology , Sepsis/enzymology , Sepsis/microbiology , Sepsis/pathology , Sirtuin 1/metabolism , Sirtuin 3/genetics
14.
PLoS One ; 16(3): e0248730, 2021.
Article in English | MEDLINE | ID: mdl-33725024

ABSTRACT

COVID-19 (coronavirus disease 2019) patients exhibiting gastrointestinal symptoms are reported to have worse prognosis. Ace2 (angiotensin-converting enzyme 2), the gene encoding the host protein to which SARS-CoV-2 spike proteins bind, is expressed in the gut and therefore may be a target for preventing or reducing severity of COVID-19. Here we test the hypothesis that Ace2 expression in the gastrointestinal and respiratory tracts is modulated by the microbiome. We used quantitative PCR to profile Ace2 expression in germ-free mice, conventional raised specific pathogen-free mice, and gnotobiotic mice colonized with different microbiota. Intestinal Ace2 expression levels were significantly higher in germ-free mice compared to conventional mice. A similar trend was observed in the respiratory tract. Intriguingly, microbiota depletion via antibiotics partially recapitulated the germ-free phenotype, suggesting potential for microbiome-mediated regulation of Ace2 expression. Variability in intestinal Ace2 expression was observed in gnotobiotic mice colonized with different microbiota, partially attributable to differences in microbiome-encoded proteases and peptidases. Together, these data suggest that the microbiome may be one modifiable factor determining COVID-19 infection risk and disease severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Colon/enzymology , Gastrointestinal Microbiome , Intestine, Small/enzymology , Lung/enzymology , Adenomatous Polyposis Coli Protein/deficiency , Adenomatous Polyposis Coli Protein/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Female , Gene Expression , Interleukin-10/deficiency , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
15.
Domest Anim Endocrinol ; 74: 106555, 2021 01.
Article in English | MEDLINE | ID: mdl-32947201

ABSTRACT

The objective of this experiment was to evaluate the effects of nutrient restriction and melatonin supplementation during mid-to-late gestation on maternal and fetal small intestinal carbohydrase activities in sheep. Ewes were randomly assigned to one of 4 dietary treatments arranged in a 2 × 2 factorial design. Ewes were fed to provide 100% (adequate; ADQ) or 60% (restricted; RES) of nutrient recommendations, and diets were supplemented with either no melatonin (control; CON) or 5 mg melatonin/d (melatonin; MEL). This resulted in 4 treatment groups: CON-ADQ (n = 7), CON-RES (n = 8), MEL-ADQ (n = 8), MEL-RES (n = 8). Treatments began on day 50 of gestation, and ewes were euthanized on day 130 for tissue collection. The maternal and fetal small intestine were collected and assayed for small intestinal carbohydrase activities. Data were analyzed using the GLM procedure of SAS with fetal sex, melatonin, nutrition, and the melatonin by nutrition interaction included in the model statement. There were no melatonin by nutrition interactions for maternal or fetal small intestinal protein concentration or carbohydrase activities (P ≥ 0.11). Dietary melatonin supplementation decreased (P = 0.03) maternal small intestinal protein concentration by 22.7% and increased (P = 0.03) maternal small intestinal glucoamylase, isomaltase, and maltase activity per gram protein by 45.5%, 41.3%, and 40.6%, respectively. Nutrient restriction from mid-to-late gestation did not influence (P ≥ 0.46) maternal small intestinal protein concentration, or maltase, isomaltase, and lactase activity. Maternal glucoamylase activity per gram intestine increased (P = 0.05) with nutrient restriction by 49.1%. Melatonin supplementation and maternal nutrient restriction did not influence (P ≥ 0.15) fetal small intestinal protein concentration, or glucoamylase, isomaltase, and lactase activity. Maternal nutrient restriction from mid-to-late gestation decreased (P = 0.05) fetal maltase activity per gram intestine by 20.5% but did not influence fetal maltase activity per gram protein. These data indicate that some maternal and fetal carbohydrases are influenced by nutrient restriction and melatonin supplementation in sheep. More information is needed to understand how nutritional and hormonal factors regulate digestive enzyme activity in ruminants to design improved maternal nutrition programs to optimize fetal growth and development while maintaining maternal productivity.


Subject(s)
Animal Feed , Diet , Glycoside Hydrolases/metabolism , Intestine, Small/enzymology , Melatonin/pharmacology , Pregnancy, Animal , Animals , Caloric Restriction , Female , Fetal Development , Fetus/drug effects , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Glycoside Hydrolases/genetics , Intestine, Small/embryology , Melatonin/administration & dosage , Pregnancy , Sheep
16.
Br J Nutr ; 126(3): 375-382, 2021 08 14.
Article in English | MEDLINE | ID: mdl-33106192

ABSTRACT

Hyperprolific sows rear more piglets than they have teats, and to accommodate this, milk replacers are often offered as a supplement. Milk replacers are based on bovine milk, yet components of vegetable origin are often added. This may reduce growth, but could also accelerate maturational changes. Therefore, we investigated the effect of feeding piglets a milk replacer with gradually increasing levels of wheat flour on growth, gut enzyme activity and immune function compared with a diet based entirely on bovine milk. The hypothesis tested was that adding a starch component (wheat flour) induces maturation of the mucosa as measured by higher digestive activity and improved integrity and immunity of the small intestines (SI). To test this hypothesis, piglets were removed from the sow at day 3 and fed either a pure milk replacer diet (MILK) or from day 11 a milk replacer diet with increasing levels of wheat (WHEAT). The WHEAT piglets had an increased enzyme activity of maltase and sucrase in the proximal part of the SI compared with the MILK group. There were no differences in gut morphology, histopathology and gene expression between the groups. In conclusion, the pigs given a milk replacer with added wheat displayed immunological and gut mucosal enzyme maturational changes, indicatory of adaptation towards a vegetable-based diet. This was not associated with any clinical complications, and future studies are needed to show whether this could improve responses in the subsequent weaning process.


Subject(s)
Diet , Milk Substitutes/administration & dosage , Swine , Triticum , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Flour , Intestine, Small/enzymology , Intestine, Small/immunology , Milk , Sucrase/metabolism , Swine/growth & development , Swine/immunology , Weaning , alpha-Glucosidases/metabolism
17.
J Sci Food Agric ; 101(5): 1910-1919, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-32895949

ABSTRACT

BACKGROUND: Cereal co-products rich in dietary fibres are increasingly used in animal feed. The high fibre content decreases the digestibility and reduces the nutrient and energy availability, resulting in lower nutritive value. Therefore, this study investigated the ability of two carbohydrase complexes to solubilize cell-wall polysaccharides, in particular arabinoxylan (AX), from different cereal fractions of wheat, maize, and rice using an in vitro digestion model of the pig gastric and small intestinal digestive system. The first complex (NSPase 1) was rich in cell-wall-degrading enzymes, whereas the second complex (NSPase 2) was additionally enriched with xylanases and arabinofuranosidases. The extent of solubilization of insoluble cell-wall polysaccharides after in vitro digestion was evaluated with gas-liquid chromatography and an enzymatic fingerprint of the AX oligosaccharides was obtained with high-performance anion-exchange chromatography with pulsed amperometric detection. RESULTS: The addition of carbohydrase increased the digestibility of dry matter and solubilized AX in particular, with the greatest effect in wheat fractions and less effect in maize and rice fractions. The solubilization of AX (expressed as xylose release) ranged from 6% to 41%, and there was an increased effect when enriching with xylanases and arabinofuranosidases in wheat aleurone and bran of 19% and 14% respectively. The enzymatic fingerprint of AX oligosaccharides revealed several non-final hydrolysis products of the enzymes applied, indicating that the hydrolysis of AX was not completed during in vitro digestion. CONCLUSION: These results indicate that the addition of a carbohydrase complex can introduce structural alterations under in vitro digestion conditions, and that enrichment with additional xylanases and arabinofuranosidases can boost this effect in wheat, maize, and rice. © 2020 Society of Chemical Industry.


Subject(s)
Endo-1,4-beta Xylanases/chemistry , Glycoside Hydrolases/chemistry , Intestine, Small/metabolism , Oryza/chemistry , Triticum/chemistry , Zea mays/chemistry , Animal Feed/analysis , Animals , Dietary Fiber/analysis , Digestion , In Vitro Techniques , Intestine, Small/enzymology , Oryza/metabolism , Swine , Triticum/metabolism , Zea mays/metabolism
18.
Mol Cell Proteomics ; 19(12): 2104-2115, 2020 12.
Article in English | MEDLINE | ID: mdl-33023980

ABSTRACT

Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.


Subject(s)
Intestine, Small/enzymology , Lipase/metabolism , Proteomics , Animals , Hydrolases/metabolism , Male , Mice, Inbred C57BL
19.
Mol Pharm ; 17(11): 4114-4124, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32955894

ABSTRACT

The availability of assays that predict the contribution of cytochrome P450 (CYP) metabolism allows for the design of new chemical entities (NCEs) with minimal oxidative metabolism. These NCEs are often substrates of non-CYP drug-metabolizing enzymes (DMEs), such as UDP-glucuronosyltransferases (UGTs), sulfotransferases (SULTs), carboxylesterases (CESs), and aldehyde oxidase (AO). Nearly 30% of clinically approved drugs are metabolized by non-CYP enzymes. However, knowledge about the differential hepatic versus extrahepatic abundance of non-CYP DMEs is limited. In this study, we detected and quantified the protein abundance of eighteen non-CYP DMEs (AO, CES1 and 2, ten UGTs, and five SULTs) across five different human tissues. AO was most abundantly expressed in the liver and to a lesser extent in the kidney; however, it was not detected in the intestine, heart, or lung. CESs were ubiquitously expressed with CES1 being predominant in the liver, while CES2 was enriched in the small intestine. Consistent with the literature, UGT1A4, UGT2B4, and UGT2B15 demonstrated liver-specific expression, whereas UGT1A10 expression was specific to the intestine. UGT1A1 and UGT1A3 were expressed in both the liver and intestine; UGT1A9 was expressed in the liver and kidney; and UGT2B17 levels were significantly higher in the intestine than in the liver. All five SULTs were detected in the liver and intestine, and SULT1A1 and 1A3 were detected in the lung. Kidney abundance was the most variable among the studied tissues, and overall, high interindividual variability (>15-fold) was observed for UGT2B17, CES2 (intestine), SULT1A1 (liver), UGT1A9, UGT2B7, and CES1 (kidney). These differential tissue abundance data can be integrated into physiologically based pharmacokinetic (PBPK) models for the prediction of non-CYP drug metabolism and toxicity in hepatic and extrahepatic tissues.


Subject(s)
Aldehyde Oxidase/metabolism , Carboxylic Ester Hydrolases/metabolism , Glucuronosyltransferase/metabolism , Intestine, Small/enzymology , Kidney/enzymology , Liver/enzymology , Lung/enzymology , Myocardium/enzymology , Sulfotransferases/metabolism , Adolescent , Adult , Aged , Child , Child, Preschool , Cytochrome P-450 Enzyme System/metabolism , Female , Humans , Male , Middle Aged , Tissue Donors , Young Adult
20.
Front Immunol ; 11: 1897, 2020.
Article in English | MEDLINE | ID: mdl-32849649

ABSTRACT

Retinal dehydrogenase (RALDH) enzymatic activities catalyze the conversion of vitamin A to its metabolite Retinoic acid (RA) in intestinal dendritic cells (DCs) and promote immunological tolerance. However, precise understanding of the exogenous factors that act as initial trigger of RALDH activity in these cells is still evolving. By using germ-free (GF) mice raised on an antigen free (AF) elemental diet, we find that certain components in diet are critically required to establish optimal RALDH expression and activity, most prominently in small intestinal CD103+CD11b+ DCs (siLP-DCs) right from the beginning of their lives. Surprisingly, systematic screens using modified diets devoid of individual dietary components indicate that proteins, starch and minerals are dispensable for this activity. On the other hand, in depth comparison between subtle differences in dietary composition among different dietary regimes reveal that adequate glucose concentration in diet is a critical determinant for establishing RALDH activity specifically in siLP-DCs. Consequently, pre-treatment of siLP-DCs, and not mesenteric lymph node derived MLNDCs with glucose, results in significant enhancement in the in vitro generation of induced Regulatory T (iTreg) cells. Our findings reveal previously underappreciated role of dietary glucose concentration in establishing regulatory properties in intestinal DCs, thereby extending a potential therapeutic module against intestinal inflammation.


Subject(s)
Antigens, CD/metabolism , CD11b Antigen/metabolism , Dendritic Cells/drug effects , Dietary Sugars/administration & dosage , Glucose/administration & dosage , Integrin alpha Chains/metabolism , Intestine, Small/drug effects , Retinal Dehydrogenase/metabolism , Animal Feed , Animals , Antigens, CD/immunology , CD11b Antigen/immunology , Cells, Cultured , Coculture Techniques , Dendritic Cells/enzymology , Dendritic Cells/immunology , Integrin alpha Chains/immunology , Intestine, Small/enzymology , Intestine, Small/immunology , Mice, Inbred C57BL , Retinal Dehydrogenase/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL