Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891840

ABSTRACT

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.


Subject(s)
Acyltransferases , Intramolecular Lyases , Intramolecular Lyases/metabolism , Intramolecular Lyases/chemistry , Acyltransferases/metabolism , Acyltransferases/chemistry , Plant Proteins/metabolism , Plant Proteins/chemistry , Flavonoids/metabolism , Flavonoids/chemistry , Kinetics , Flavanones/chemistry , Flavanones/metabolism , Chalcones/chemistry , Chalcones/metabolism , Substrate Specificity , Crystallography, X-Ray , Molecular Docking Simulation , Models, Molecular , Protein Binding , Protein Conformation
2.
Plant Cell Rep ; 43(7): 179, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913159

ABSTRACT

KEY MESSAGE: DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.


Subject(s)
Flavonoids , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Flavonoids/metabolism , Flavonoids/biosynthesis , Acyltransferases/genetics , Acyltransferases/metabolism , Propanols/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism
3.
Plant J ; 119(2): 861-878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761097

ABSTRACT

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.


Subject(s)
Actin Cytoskeleton , Germination , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Oryza/metabolism , Actin Cytoskeleton/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pollen/growth & development , Pollen/genetics , Calcium Signaling , Pollen Tube/growth & development , Pollen Tube/metabolism , Pollen Tube/genetics , Hot Temperature , Gene Expression Regulation, Plant , Heat-Shock Response , Intramolecular Lyases/metabolism , Intramolecular Lyases/genetics , Inositol/metabolism , Inositol/analogs & derivatives
4.
Sci Rep ; 14(1): 10586, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719951

ABSTRACT

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Subject(s)
Carotenoids , Gene Expression Regulation, Plant , Lycium , Nicotiana , Plant Proteins , Salt Tolerance , Carotenoids/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Salt Tolerance/genetics , Lycium/genetics , Lycium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Photosynthesis/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Abscisic Acid/metabolism
6.
Mar Drugs ; 21(7)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37504949

ABSTRACT

Lutein is a high-value carotenoid with many human health benefits. Lycopene ß- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of lycopene into distinct downstream branches, one of which is the lutein biosynthesis pathway, via α-carotene. Hence, LCYB and LCYE are key enzymes in lutein biosynthesis. In this study, the coding genes of two lycopene cyclases (CsLCYB and CsLCYE) of a lutein-enriched marine green microalga, Chlorella sorokiniana FZU60, were isolated and identified. A sequence analysis and computational modeling of CsLCYB and CsLCYE were performed using bioinformatics to identify the key structural domains. Further, a phylogenetic analysis revealed that CsLCYB and CsLCYE were homogeneous to the proteins of other green microalgae. Subcellular localization tests in Nicotiana benthamiana showed that CsLCYB and CsLCYE localized in chloroplasts. A pigment complementation assay in Escherichia coli revealed that CsLCYB could efficiently ß-cyclize both ends of lycopene to produce ß-carotene. On the other hand, CsLCYE possessed a strong ε-monocyclase activity for the production of δ-carotene and a weak ε-bicyclic activity for the production of ε-carotene. In addition, CsLCYE was able to catalyze lycopene into ß-monocyclic γ-carotene and ultimately produced α-carotene with a ß-ring and an ε-ring via γ-carotene or δ-carotene. Moreover, the co-expression of CsLCYB and CsLCYE in E. coli revealed that α-carotene was a major product, which might lead to the production of a high level of lutein in C. sorokiniana FZU60. The findings provide a theoretical foundation for performing metabolic engineering to improve lutein biosynthesis and accumulation in C. sorokiniana FZU60.


Subject(s)
Chlorella , Intramolecular Lyases , Microalgae , Humans , Lycopene/metabolism , Lutein/metabolism , Chlorella/genetics , Chlorella/metabolism , Microalgae/genetics , Microalgae/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Phylogeny , Carotenoids/metabolism , beta Carotene/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism
7.
J Biol Chem ; 299(6): 104804, 2023 06.
Article in English | MEDLINE | ID: mdl-37172720

ABSTRACT

Chalcone isomerase-like (CHIL) protein is a noncatalytic protein that enhances flavonoid content in green plants by serving as a metabolite binder and a rectifier of chalcone synthase (CHS). Rectification of CHS catalysis occurs through direct protein-protein interactions between CHIL and CHS, which alter CHS kinetics and product profiles, favoring naringenin chalcone (NC) production. These discoveries raise questions about how CHIL proteins interact structurally with metabolites and how CHIL-ligand interactions affect interactions with CHS. Using differential scanning fluorimetry on a CHIL protein from Vitis vinifera (VvCHIL), we report that positive thermostability effects are induced by the binding of NC, and negative thermostability effects are induced by the binding of naringenin. NC further causes positive changes to CHIL-CHS binding, whereas naringenin causes negative changes to VvCHIL-CHS binding. These results suggest that CHILs may act as sensors for ligand-mediated pathway feedback by influencing CHS function. The protein X-ray crystal structure of VvCHIL compared with the protein X-ray crystal structure of a CHIL from Physcomitrella patens reveals key amino acid differences at a ligand-binding site of VvCHIL that can be substituted to nullify the destabilizing effect caused by naringenin. Together, these results support a role for CHIL proteins as metabolite sensors that modulate the committed step of the flavonoid pathway.


Subject(s)
Intramolecular Lyases , Plant Proteins , Vitis , Binding Sites , Bryopsida/enzymology , Crystallography, X-Ray , Enzyme Stability , Flavonoids/metabolism , Fluorometry , Intramolecular Lyases/chemistry , Intramolecular Lyases/metabolism , Ligands , Plant Proteins/chemistry , Plant Proteins/metabolism , Vitis/enzymology
9.
J Biol Chem ; 299(3): 102981, 2023 03.
Article in English | MEDLINE | ID: mdl-36739946

ABSTRACT

Chalcone isomerases (CHIs) have well-established roles in the biosynthesis of plant flavonoid metabolites. Saccharomyces cerevisiae possesses two predicted CHI-like proteins, Aim18p (encoded by YHR198C) and Aim46p (YHR199C), but it lacks other enzymes of the flavonoid pathway, suggesting that Aim18p and Aim46p employ the CHI fold for distinct purposes. Here, we demonstrate using proteinase K protection assays, sodium carbonate extractions, and crystallography that Aim18p and Aim46p reside on the mitochondrial inner membrane and adopt CHI folds, but they lack select active site residues and possess an extra fungal-specific loop. Consistent with these differences, Aim18p and Aim46p lack CHI activity and also the fatty acid-binding capabilities of other CHI-like proteins, but instead bind heme. We further show that diverse fungal homologs also bind heme and that Aim18p and Aim46p possess structural homology to a bacterial hemoprotein. Collectively, our work reveals a distinct function and cellular localization for two CHI-like proteins, introduces a new variation of a hemoprotein fold, and suggests that ancestral CHI-like proteins were hemoproteins.


Subject(s)
Intramolecular Lyases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Flavonoids/metabolism , Intramolecular Lyases/chemistry , Intramolecular Lyases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
10.
Biomolecules ; 12(7)2022 07 08.
Article in English | MEDLINE | ID: mdl-35883518

ABSTRACT

Flavonoids as a class of important secondary metabolites are widely present in land plants, and chalcone isomerase (CHI) is the key rate-limiting enzyme that participates in catalyzing the stereospecific isomerization of chalcones to yield their corresponding flavanones. However, the phylogenetic dynamics and functional divergence of CHI family genes during the evolutionary path of green plants remains poorly understood. Here, a total of 122 CHI genes were identified by performing a genome-wide survey of 15 representative green plants from the most ancestral basal plant chlorophyte algae to higher angiosperm plants. Phylogenetic, orthologous groups (OG) classification, and genome structure analysis showed that the CHI family genes have evolved into four distinct types (types I-IV) containing eight OGs after gene duplication, and further studies indicated type III CHIs consist of three subfamilies (FAP1, FAP2, and FAP3). The phylogeny showed FAP3 CHIs as an ancestral out-group positioned on the outer layers of the main branch, followed by type IV CHIs, which are placed in an evolutionary intermediate between FAP3 CHIs and bona fide CHIs (including type I and type II). The results imply a potential intrinsic evolutionary connection between CHIs existing in the green plants. The amino acid substitutions occurring in several residues have potentially affected the functional divergence between CHI proteins. This is supported by the analysis of transcriptional divergence and cis-acting element analysis. Evolutionary dynamics analyses revealed that the differences in the total number of CHI family genes in each plant are primarily attributed to the lineage-specific expansion by natural selective forces. The current studies provide a deeper understanding of the phylogenetic relationships and functional diversification of CHI family genes in green plants, which will guide further investigation on molecular characteristics and biological functions of CHIs.


Subject(s)
Embryophyta , Intramolecular Lyases , Evolution, Molecular , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Phylogeny , Plant Proteins/metabolism , Plants/metabolism
11.
Nat Commun ; 13(1): 572, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102143

ABSTRACT

Substrate inhibition of enzymes can be a major obstacle to the production of valuable chemicals in engineered microorganisms. Here, we show substrate inhibition of lycopene cyclase as the main limitation in carotenoid biosynthesis in Yarrowia lipolytica. To overcome this bottleneck, we exploit two independent approaches. Structure-guided protein engineering yields a variant, Y27R, characterized by complete loss of substrate inhibition without reduction of enzymatic activity. Alternatively, establishing a geranylgeranyl pyrophosphate synthase-mediated flux flow restrictor also prevents the onset of substrate inhibition by diverting metabolic flux away from the inhibitory metabolite while maintaining sufficient flux towards product formation. Both approaches result in high levels of near-exclusive ß-carotene production. Ultimately, we construct strains capable of producing 39.5 g/L ß-carotene at a productivity of 0.165 g/L/h in bioreactor fermentations (a 1441-fold improvement over the initial strain). Our findings provide effective approaches for removing substrate inhibition in engineering pathways for efficient synthesis of natural products.


Subject(s)
Lycopene/metabolism , Yarrowia/metabolism , Acetyl Coenzyme A/metabolism , Bioreactors , Carbon/metabolism , Cytosol/metabolism , Farnesyltranstransferase/metabolism , Fermentation , Glucose/deficiency , Intramolecular Lyases/metabolism , Lipid Metabolism , Lipids/biosynthesis , Lycopene/chemistry , Metabolic Flux Analysis , Protein Engineering , Substrate Specificity , Terpenes/metabolism
12.
BMC Plant Biol ; 22(1): 34, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35038993

ABSTRACT

BACKGROUND: Banana fruits are rich in various high-value metabolites and play a key role in the human diet. Of these components, carotenoids have attracted considerable attention due to their physiological role and human health care functions. However, the accumulation patterns of carotenoids and genome-wide analysis of gene expression during banana fruit development have not been comprehensively evaluated. RESULTS: In the present study, an integrative analysis of metabolites and transcriptome profiles in banana fruit with three different development stages was performed. A total of 11 carotenoid compounds were identified, and most of these compounds showed markedly higher abundances in mature green and/or mature fruit than in young fruit. Results were linked to the high expression of carotenoid synthesis and regulatory genes in the middle and late stages of fruit development. Co-expression network analysis revealed that 79 differentially expressed transcription factor genes may be responsible for the regulation of LCYB (lycopene ß-cyclase), a key enzyme catalyzing the biosynthesis of α- and ß-carotene. CONCLUSIONS: Collectively, the study provided new insights into the understanding of dynamic changes in carotenoid content and gene expression level during banana fruit development.


Subject(s)
Carotenoids/metabolism , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks , Musa/genetics , Plant Proteins/metabolism , Transcriptome , Carotenoids/isolation & purification , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Gene Ontology , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Musa/growth & development , Musa/metabolism , Plant Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , beta Carotene/metabolism
13.
Plant Cell Rep ; 41(2): 415-430, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34851457

ABSTRACT

KEY MESSAGE: 5-Hydroxyisoflavonoids, no 5-deoxyisoflavonoids, in Lupinus species, are due to lack of CHRs and Type II CHIs, and the key enzymes of isoflavonoid biosynthetic pathway in white lupin were identified. White lupin (Lupinus albus) is used as food ingredients owing to rich protein, low starch, and rich bioactive compounds such as isoflavonoids. The isoflavonoids biosynthetic pathway in white lupin still remains unclear. In this study, only 5-hydroxyisoflavonoids, but no 5-deoxyisoflavonoids, were detected in white lupin and other Lupinus species. No 5-deoxyisoflavonoids in Lupinus species are due to lack of CHRs and Type II CHIs. We further found that the CHI gene cluster containing both Type I and Type II CHIs possibly arose after the divergence of Lupinus with other legume clade. LaCHI1 and LaCHI2 identified from white lupin metabolized naringenin chalcone to naringenin in yeast and tobacco (Nicotiana benthamiana), and were bona fide Type I CHIs. We further identified two isoflavone synthases (LaIFS1 and LaIFS2), catalyzing flavanone naringenin into isoflavone genistein and also catalyzing liquiritigenin into daidzein in yeast and tobacco. In addition, LaG6DT1 and LaG6DT2 prenylated genistein at the C-6 position into wighteone. Two glucosyltransferases LaUGT1 and LaUGT2 metabolized genistein and wighteone into its 7-O-glucosides. Taken together, our study not only revealed that exclusive 5-hydroxyisoflavonoids do exist in Lupinus species, but also identified key enzymes in the isoflavonoid biosynthetic pathway in white lupin.


Subject(s)
Enzymes/genetics , Enzymes/metabolism , Flavonoids/metabolism , Lupinus/metabolism , Plant Proteins/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Chromatography, High Pressure Liquid , Flavanones/genetics , Flavanones/metabolism , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/genetics , Gene Expression Regulation, Plant , Genistein/analysis , Genistein/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Isoflavones/analysis , Isoflavones/metabolism , Lupinus/genetics , Oxygenases/genetics , Oxygenases/metabolism , Phylogeny , Plant Proteins/metabolism
14.
Plant Biotechnol J ; 20(3): 564-576, 2022 03.
Article in English | MEDLINE | ID: mdl-34695292

ABSTRACT

Grains of tetraploid wheat (Triticum turgidum L.) mainly accumulate the non-provitamin A carotenoid lutein-with low natural variation in provitamin A ß-carotene in wheat accessions necessitating alternative strategies for provitamin A biofortification. Lycopene ɛ-cyclase (LCYe) and ß-carotene hydroxylase (HYD) function in diverting carbons from ß-carotene to lutein biosynthesis and catalyzing the turnover of ß-carotene to xanthophylls, respectively. However, the contribution of LCYe and HYD gene homoeologs to carotenoid metabolism and how they can be manipulated to increase ß-carotene in tetraploid wheat endosperm (flour) is currently unclear. We isolated loss-of-function Targeting Induced Local Lesions in Genomes (TILLING) mutants of LCYe and HYD2 homoeologs and generated higher order mutant combinations of lcye-A, lcye-B, hyd-A2, and hyd-B2. Hyd-A2 hyd-B2, lcye-A hyd-A2 hyd-B2, lcye-B hyd-A2 hyd-B2, and lcye-A lcye-B hyd-A2 hyd-B2 achieved significantly increased ß-carotene in endosperm, with lcye-A hyd-A2 hyd-B2 exhibiting comparable photosynthetic performance and light response to control plants. Comparative analysis of carotenoid profiles suggests that eliminating HYD2 homoeologs is sufficient to prevent ß-carotene conversion to xanthophylls in the endosperm without compromising xanthophyll production in leaves, and that ß-carotene and its derived xanthophylls are likely subject to differential catalysis mechanisms in vegetative tissues and grains. Carotenoid and gene expression analyses also suggest that the very low LCYe-B expression in endosperm is adequate for lutein production in the absence of LCYe-A. These results demonstrate the success of provitamin A biofortification using TILLING mutants while also providing a roadmap for guiding a gene editing-based approach in hexaploid wheat.


Subject(s)
Intramolecular Lyases , Mixed Function Oxygenases , Triticum , beta Carotene , Anodontia , Carotenoids/metabolism , Endosperm/genetics , Endosperm/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Lutein/metabolism , Lycopene/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Provitamins/metabolism , Tetraploidy , Triticum/genetics , Triticum/metabolism , Xanthophylls/metabolism , beta Carotene/genetics , beta Carotene/metabolism
15.
Biomolecules ; 13(1)2022 12 26.
Article in English | MEDLINE | ID: mdl-36671426

ABSTRACT

Camellia nitidissima is a woody plant with high ornamental value, and its golden-yellow flowers are rich in a variety of bioactive substances, especially flavonoids, that are beneficial to human health. Chalcone isomerases (CHIs) are key enzymes in the flavonoid biosynthesis pathway; however, there is a scarcity of information regarding the CHI family genes of C. nitidissima. In this study, seven CHI genes of C. nitidissima were identified and divided into three subfamilies by phylogenetic analysis. The results of multiple sequence alignment revealed that, unlike CnCHI1/5/6/7, CnCHI2/3/4 are bona fide CHIs that contain all the active site and critical catalytic residues. Analysis of the expression patterns of CnCHIs and the total flavonoid content of the flowers at different developmental stages revealed that CnCHI4 might play an essential role in the flavonoid biosynthesis pathway of C. nitidissima. CnCHI4 overexpression significantly increased flavonoid production in Nicotiana tabacum and C. nitidissima. The results of the dual-luciferase reporter assay and yeast one-hybrid system revealed that CnMYB7 was the key transcription factor that governed the transcription of CnCHI4. The study provides a comprehensive understanding of the CHI family genes of C. nitidissima and performed a preliminary analysis of their functions and regulatory mechanisms.


Subject(s)
Camellia , Flavonoids , Intramolecular Lyases , Humans , Camellia/genetics , Camellia/chemistry , Camellia/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Phylogeny
16.
Plant J ; 108(2): 314-329, 2021 10.
Article in English | MEDLINE | ID: mdl-34318549

ABSTRACT

Flavonoids are specialized metabolites widely distributed across the plant kingdom. They are involved in the growth and survival of plants, conferring the ability to filter ultra-violet rays, conduct symbiotic partnerships, and respond to stress. While many branches of flavonoid biosynthesis have been resolved, recent discoveries suggest missing auxiliary components. These overlooked elements can guide metabolic flux, enhance production, mediate stereoselectivity, transport intermediates, and exert regulatory functions. This review describes several families of auxiliary proteins from across the plant kingdom, including examples from specialized metabolism. In flavonoid biosynthesis, we discuss the example of chalcone isomerase-like (CHIL) proteins and their non-catalytic role. CHILs mediate the cyclization of tetraketides, forming the chalcone scaffold by interacting with chalcone synthase (CHS). Loss of CHIL activity leads to derailment of the CHS-catalyzed reaction and a loss of pigmentation in fruits and flowers. Similarly, members of the pathogenesis-related 10 (PR10) protein family have been found to differentially bind flavonoid intermediates, guiding the composition of anthocyanins. This role comes within a larger body of PR10 involvement in specialized metabolism, from outright catalysis (e.g., (S)-norcoclaurine synthesis) to controlling stereochemistry (e.g., enhancing cis-trans cyclization in catnip). Both CHILs and PR10s hail from larger families of ligand-binding proteins with a spectrum of activity, complicating the characterization of their enigmatic roles. Strategies for the discovery of auxiliary proteins are discussed, as well as mechanistic models for their function. Targeting such unanticipated components will be crucial in manipulating plants or engineering microbial systems for natural product synthesis.


Subject(s)
Acyltransferases/metabolism , Flavonoids/biosynthesis , Intramolecular Lyases/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Acyltransferases/chemistry , Acyltransferases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Cannabinoids/biosynthesis , Evolution, Molecular , Flavonoids/metabolism , Humulus/metabolism , Intramolecular Lyases/chemistry , Intramolecular Lyases/genetics , Ipomoea nil/genetics , Ipomoea nil/metabolism , Mutation , Plant Proteins/genetics , Protein Folding
17.
PLoS One ; 16(7): e0254709, 2021.
Article in English | MEDLINE | ID: mdl-34314413

ABSTRACT

Banana is one of the most important fruit crops consumed globally owing to its high nutritional value. Previously, we demonstrated that the ripe pulp of the banana cultivar (cv.) Nendran (AAB) contained a high amount of pro-vitamin A carotenoids. However, the molecular factors involved in the ripening process in Nendran fruit are unexplored. Hence, we commenced a transcriptome study by using the Illumina HiSeq 2500 at two stages i.e. unripe and ripe fruit-pulp of Nendran. Overall, 3474 up and 4727 down-regulated genes were obtained. A large number of identified transcripts were related to genes involved in ripening, cell wall degradation and aroma formation. Gene ontology analysis highlighted differentially expressed genes that play a key role in various pathways. These pathways were mainly linked to cellular, molecular and biological processes. The present transcriptome study also reveals a crucial role of up-regulated carotenoid biosynthesis pathway genes namely, lycopene beta cyclase and geranylgeranyl pyrophosphate synthase at the ripening stage. Genes related to the ripening and other processes like aroma and flavor were highly expressed in the ripe pulp. Expression of numerous transcription factor family genes was also identified. This study lays a path towards understanding the ripening, carotenoid accumulation and other related processes in banana.


Subject(s)
Comparative Genomic Hybridization/methods , Musa/genetics , Transcriptome , Carotenoids/chemistry , Carotenoids/metabolism , Down-Regulation , Fruit/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation
18.
ACS Synth Biol ; 10(6): 1531-1544, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34100588

ABSTRACT

The monoterpene alcohols acyclic nerol and bicyclic borneol are widely applied in the food, cosmetic, and pharmaceutical industries. The emerging synthetic biology enables microbial production to be a promising alternative for supplying monoterpene alcohols in an efficient and sustainable approach. In this study, we combined metabolic and plant monoterpene synthase engineering to improve the de novo production of nerol and borneol in prene-overproducing Escherichia coli. We engineered the growth-orthogonal neryl diphosphate (NPP) as the universal precursor of monoterpene alcohol biosynthesis and coexpressed nerol synthase (GmNES) from Glycine max to generate nerol or coexpressed the truncated bornyl diphosphate synthase (LdtBPPS) from Lippia dulcis for borneol production. Further, through site-directed mutation of LdtBPPS based on the structural simulation, we screened multiple variants that markedly elevated the production of acyclic nerol or bicyclic borneol, of which the LdtBPPSS488T mutant outperformed the wild-type LdtBPPS on borneol synthesis and the LdtBPPSF612A variant was superior to GmNES on nerol production. Subsequently, we overexpressed the endogenous Nudix hydrolase NudJ to facilitate the dephosphorylation of precursors and boosted the production of nerol and borneol from glucose. Finally, after the optimization of the fermentation process, the engineered strain ENO2 produced 966.55 mg/L nerol, and strain ENB57 generated 87.20 mg/L borneol in a shake flask, achieving the highest reported titers of nerol and borneol in microbes to date. This work shows a combinatorial engineering strategy for microbial production of natural terpene alcohols.


Subject(s)
Acyclic Monoterpenes/metabolism , Alcohols/metabolism , Camphanes/metabolism , Escherichia coli/metabolism , Intramolecular Lyases/genetics , Metabolic Engineering/methods , Protein Engineering/methods , Escherichia coli/genetics , Fermentation , Glucose/metabolism , Intramolecular Lyases/metabolism , Lippia/enzymology , Mutagenesis, Site-Directed/methods , Pyrophosphatases/metabolism , Glycine max/enzymology , Synthetic Biology/methods , Nudix Hydrolases
19.
Sci Rep ; 11(1): 12642, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135397

ABSTRACT

Malnutrition affects growth and development in humans and causes socio-economic losses. Normal maize is deficient in essential amino acids, lysine and tryptophan; and vitamin-A. Crop biofortification is a sustainable and economical approach to alleviate micronutrient malnutrition. We combined favorable alleles of crtRB1 and lcyE genes into opaque2 (o2)-based four inbreds viz. QLM11, QLM12, QLM13, and QLM14 using marker-assisted backcross breeding. These are parents of quality protein maize versions of two elite hybrids viz. Buland and PMH1, grown in India. Gene-based SSRs for o2 and InDel markers for crtRB1 and lcyE were successfully employed for foreground selection in BC1F1, BC2F1, and BC2F2 generations. The recurrent parent genome recovery ranged from 88.9 to 96.0% among introgressed progenies. Kernels of pyramided lines possessed a high concentration of proA (7.14-9.63 ppm), compared to 1.05 to 1.41 ppm in the recurrent parents, while lysine and tryptophan ranged from 0.28-0.44% and 0.07-0.09%, respectively. The reconstituted hybrids (RBuland and RPMH1) showed significant enhancement of endosperm proA (6.97-9.82 ppm), tryptophan (0.07-0.09%), and lysine (0.29-0.43%), while grain yield was at par with their original versions. The dissemination of reconstituted hybrids holds significant promise to alleviate vitamin-A deficiency and protein-energy malnutrition in developing countries.


Subject(s)
Biofortification/methods , Zea mays/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Endosperm/metabolism , Genes, Plant , Genetic Markers , Humans , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Lysine/metabolism , Plant Breeding/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tryptophan/metabolism , Vitamin A/metabolism , Vitamin A Deficiency/prevention & control , beta Carotene/metabolism
20.
Angew Chem Int Ed Engl ; 60(31): 16874-16879, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34129275

ABSTRACT

Chalcone isomerase (CHI) is a key enzyme in the biosynthesis of flavonoids in plants. The first bacterial CHI (CHIera ) was identified from Eubacterium ramulus, but its distribution, evolutionary source, substrate scope, and stereoselectivity are still unclear. Here, we describe the identification of 66 novel bacterial CHIs from Genbank using a novel Sequence-Structure-Function-Evolution (SSFE) strategy. These novel bacterial CHIs show diversity in substrate specificity towards various hydroxylated and methoxylated chalcones. The mutagenesis of CHIera according to the substrate binding models of these novel bacterial CHIs resulted in several variants with greatly improved activity towards these chalcones. Furthermore, the preparative scale conversion catalyzed by bacterial CHIs has been performed for five chalcones and revealed (S)-selectivity with up to 96 % ee, which provides an alternative biocatalytic route for the synthesis of (S)-flavanones in high yields.


Subject(s)
Eubacterium/enzymology , Flavanones/biosynthesis , Intramolecular Lyases/metabolism , Flavanones/chemistry , Intramolecular Lyases/chemistry , Molecular Structure , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL