Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.032
Filter
1.
Environ Sci Technol ; 58(32): 14396-14409, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39078944

ABSTRACT

The increasing frequency and severity of wildfires are among the most visible impacts of climate change. However, the effects of wildfires on mercury (Hg) transformations and bioaccumulation in stream ecosystems are poorly understood. We sampled soils, water, sediment, in-stream leaf litter, periphyton, and aquatic invertebrates in 36 burned (one-year post fire) and 21 reference headwater streams across the northwestern U.S. to evaluate the effects of wildfire occurrence and severity on total Hg (THg) and methylmercury (MeHg) transport and bioaccumulation. Suspended particulate THg and MeHg concentrations were 89 and 178% greater in burned watersheds compared to unburned watersheds and increased with burn severity, likely associated with increased soil erosion. Concentrations of filter-passing THg were similar in burned and unburned watersheds, but filter-passing MeHg was 51% greater in burned watersheds, and suspended particles in burned watersheds were enriched in MeHg but not THg, suggesting higher MeHg production in burned watersheds. Among invertebrates, MeHg in grazers, filter-feeders, and collectors was 33, 48, and 251% greater in burned watersheds, respectively, but did not differ in shredders or predators. Thus, increasing wildfire frequency and severity may yield increased MeHg production, mobilization, and bioaccumulation in headwaters and increased transport of particulate THg and MeHg to downstream environments.


Subject(s)
Bioaccumulation , Mercury , Methylmercury Compounds , Rivers , Water Pollutants, Chemical , Wildfires , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Methylmercury Compounds/metabolism , Rivers/chemistry , Northwestern United States , Methylation , Animals , Invertebrates/metabolism , Environmental Monitoring , Ecosystem
2.
Environ Monit Assess ; 196(7): 649, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909348

ABSTRACT

The presence of elevated levels of heavy metals in soil poses a significant environmental concern with implications for human health and other organisms. The main objective of our study was to reduce the gap information of seasonal abundance, distribution of heavy metals in soil, leaf litter, and some macroinvertebrates in a citrus orchard (Citrus sinensis) in Sohag Governorate, Egypt. The heavy metals copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were determined by atomic absorption spectrometry. Degree of contamination (DC) was determined for both soil and leaf litter contamination. However, the bioaccumulation factor (BAF) was estimated to determine metal accumulation in the macroinvertebrates including earwigs Anisolabis maritima, chilopoda Scolopendra moristans, spider Dysdera crocata, and earthworm Aporrectodea caliginosa. The study area had clay-loam with varying organic matter, salinity, and pH levels. The degree of contamination varied among seasons, with the highest levels typically observed in autumn in both soil and leaf litter. The soil ranged from low contamination (1.82) to high contamination levels (4.4), while the leaf litter showed extremely high (30.03) to ultra-high (85.92) contamination levels. The mean ecological risk index results indicated that the sampling area had moderate ecological risk levels for Cd (44.3), Zn (42.17), and Pb (80.05), and extremely high levels for Cu (342.5). Heavy metal concentrations in the selected fauna were the highest in autumn, and the bioaccumulation factor varied among species and seasons with some species classified as e-concentrators, micro-concentrators, and macro-concentrators of certain heavy metals. Scolopendra moristans exhibited the highest mean metal concentrations (Cd, Pb, and Zn), while Aporrectodea caliginosa had the lowest. Thus, the differences in heavy metal concentrations found in different soil taxa highlight the significance of taxing a holistic understanding of feeding mechanisms into account when evaluating the potential risk for animals that consume invertebrates.


Subject(s)
Environmental Monitoring , Invertebrates , Metals, Heavy , Plant Leaves , Soil Pollutants , Soil , Metals, Heavy/analysis , Metals, Heavy/metabolism , Egypt , Animals , Soil Pollutants/analysis , Soil Pollutants/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Soil/chemistry , Invertebrates/metabolism , Bioaccumulation
3.
J Hazard Mater ; 472: 134529, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723482

ABSTRACT

Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.


Subject(s)
Aquatic Organisms , Ecosystem , Estuaries , Flame Retardants , Water Pollutants, Chemical , Flame Retardants/metabolism , Flame Retardants/analysis , Animals , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Aquatic Organisms/metabolism , Oceans and Seas , Fishes/metabolism , Bioaccumulation , Species Specificity , Environmental Monitoring , China , Invertebrates/metabolism
4.
Chemosphere ; 358: 142195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692368

ABSTRACT

Due to the anthropogenic increase of atmospheric CO2 emissions, humanity is facing the negative effects of rapid global climate change. Both active emission reduction and carbon dioxide removal (CDR) technologies are needed to meet the Paris Agreement and limit global warming to 1.5 °C by 2050. One promising CDR approach is coastal enhanced weathering (CEW), which involves the placement of sand composed of (ultra)mafic minerals like olivine in coastal zones. Although the large-scale placement of olivine sand could beneficially impact the planet through the consumption of atmospheric CO2 and reduction in ocean acidification, it may also have physical and geochemical impacts on benthic communities. The dissolution of olivine can release dissolved constituents such as trace metals that may affect marine organisms. Here we tested acute and chronic responses of marine invertebrates to olivine sand exposure, as well as examined metal accumulation in invertebrate tissue resulting from olivine dissolution. Two different ecotoxicological experiments were performed on a range of benthic marine invertebrates (amphipod, polychaete, bivalve). The first experiment included acute and chronic survival and growth tests (10 and 20 days, respectively) of olivine exposure while the second had longer (28 day) exposures to measure chronic survival and bioaccumulation of trace metals (e.g. Ni, Cr, Co) released during olivine sand dissolution. Across all fauna we observed no negative effects on acute survival or chronic growth resulting solely from olivine exposure. However, over 28 days of exposure, the bent-nosed clam Macoma nasuta experienced reduced burrowing and accumulated 4.2 ± 0.7 µg g ww-1 of Ni while the polychaete Alitta virens accumulated 3.5 ± 0.9 µg g ww-1 of Ni. No significant accumulation of any other metals was observed. Future work should include longer-term laboratory studies as well as CEW field studies to validate these findings under real-world scenarios.


Subject(s)
Aquatic Organisms , Iron Compounds , Magnesium Compounds , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/metabolism , Aquatic Organisms/metabolism , Aquatic Organisms/drug effects , Magnesium Compounds/chemistry , Iron Compounds/chemistry , Bioaccumulation , Metals/metabolism , Silicates , Invertebrates/drug effects , Invertebrates/metabolism , Silicon Dioxide/chemistry , Polychaeta/metabolism , Polychaeta/drug effects , Polychaeta/physiology , Bivalvia/metabolism , Bivalvia/drug effects
5.
Environ Pollut ; 355: 124230, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810679

ABSTRACT

Industrial and urban activities are major contributors to metal contamination in coastal systems, often impacting the physiology, distribution and diversity of marine invertebrates. This study assessed metal contaminations in sediments, seawater, algae and invertebrates across four armoured systems (harbours) and two natural sites along the south coast of South Africa. Bioaccumulation factors such as Biosediment (BSAF), Biowater (BWAF), Bioaccumulation (BAF) and bioremediation of metals by invertebrate bioindicators were also determined. Spatial variation in metal concentrations were observed, however, bioaccumulation of metals was site and species-specific. Invertebrates bioaccumulated higher metal concentrations in armoured than natural sites, with filter feeders exhibiting higher concentrations than grazers. Among filter feeders, Octomeris angulosa and Crassostrea gigas bioaccumulated elevated aluminium (Al), arsenic (As), chromium (Cr), zinc (Zn) and copper (Cu), while, Perna perna accumulated elevated nickel (Ni), cadmium (Cd) and lead (Pb). Among grazers, Siphonaria serrata and Scutellastra longicosta bioaccumulated elevated Al, Cr, Cd, cobalt (Co), Cu, Ni and Zn. Bioaccumulation factors indicated that (As, Ni, Zn) were bioaccumulated by algae, and invertebrates from sediment (BSAF>1) and from seawater (BWAF>1). Additionally, invertebrates bioaccumulated metals from their prey item, algae as indicated by (BAF>1). Arsenic Cd and Pb in invertebrates were above the maximum limit set for human consumption by various regulatory bodies. Our findings underscore the significant role of coastal invertebrates in bioaccumulating and bioremediating metals, suggesting a natural mechanism for water quality enhancement, especially in urbanised coastal areas.


Subject(s)
Aquatic Organisms , Environmental Monitoring , Geologic Sediments , Invertebrates , Water Pollutants, Chemical , Animals , South Africa , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Invertebrates/metabolism , Environmental Monitoring/methods , Risk Assessment , Aquatic Organisms/metabolism , Bioaccumulation , Metals/metabolism , Seawater/chemistry , Metals, Heavy/metabolism , Metals, Heavy/analysis
6.
Environ Res ; 252(Pt 2): 118906, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38609069

ABSTRACT

Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.


Subject(s)
Bioaccumulation , Environmental Monitoring , Invertebrates , Mercury , Rivers , Mercury/analysis , Mercury/metabolism , Brazil , Animals , Rivers/chemistry , Invertebrates/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Grassland , Food Chain , Ecosystem , Soil/chemistry
7.
Toxins (Basel) ; 16(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668611

ABSTRACT

Nemerteans, or ribbon worms, possess tetrodotoxin and its analogues (TTXs), neurotoxins of bacterial origin, which they presumably use for capturing prey and self-defense. Most TTXs-containing nemertean species have low levels of these toxins and, therefore, have usually been neglected in studies of TTXs functions and accumulation. In the present study, Kulikovia alborostrata and K. manchenkoi, two closely related species, were analyzed for TTXs distribution in the body using the HPLC-MS/MS and fluorescence microscopy methods. The abundance of TTXs-positive cells was determined in the proboscis, integument, and digestive system epithelium. As a result, six TTXs-positive cell types were identified in each species; however, only four were common. Moreover, the proportions of the toxins in different body parts were estimated. According to the HPLC-MS/MS analysis, the TTXs concentrations in K. alborostrata varied from 0.91 ng/g in the proboscis to 5.52 ng/g in the precerebral region; in K. manchenkoi, the concentrations ranged from 7.47 ng/g in the proboscis to 72.32 ng/g in the posterior body region. The differences observed between the two nemerteans in the distribution of the TTXs were consistent with the differences in the localization of TTXs-positive cells. In addition, TTXs-positive glandular cell types were found in the intestine and characterized for the first time. TTXs in the new cell types were assumed to play a unique physiological role for nemerteans.


Subject(s)
Tetrodotoxin , Animals , Tetrodotoxin/toxicity , Tetrodotoxin/metabolism , Tetrodotoxin/analysis , Japan , Tandem Mass Spectrometry , Invertebrates/chemistry , Invertebrates/metabolism , Bays , Chromatography, High Pressure Liquid , Environmental Monitoring
8.
Mol Cell Endocrinol ; 588: 112215, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38548145

ABSTRACT

Monoamines (MA) such as serotonin, catecholamines (dopamine, norepinephrine, epinephrine), and trace amines (octopamine, tyramine), are neurotransmitters and neuroendocrine modulators in vertebrates, that contribute to adaptation to the environment. Although MA are conserved in evolution, information is still fragmentary in invertebrates, given the diversity of phyla and species. However, MA are crucial in homeostatic processes in these organisms, where the absence of canonical endocrine glands in many groups implies that the modulation of physiological functions is essentially neuroendocrine. In this review, we summarize available information on MA systems in invertebrates, with focus on bivalve molluscs, that are widespread in different aquatic environments, where they are subjected to a variety of environmental stimuli. Available data are reviewed on the presence of the different MA in bivalve tissues, their metabolism, target cells, signaling pathways, and the physiological functions modulated in larval and adult stages. Research gaps and perspectives are highlighted, in order to enrich the framework of knowledge on MA neuroendocrine functions, and on their role in adaptation to ongoing and future environmental changes.


Subject(s)
Biogenic Monoamines , Bivalvia , Neurosecretory Systems , Animals , Neurosecretory Systems/metabolism , Bivalvia/metabolism , Biogenic Monoamines/metabolism , Signal Transduction , Invertebrates/metabolism
9.
Sci Rep ; 14(1): 5097, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429316

ABSTRACT

Increasing temperature influences the habitats of various organisms, including microscopic invertebrates. To gain insight into temperature-dependent changes in tardigrades, we isolated storage cells exposed to various temperatures and conducted biochemical and ultrastructural analysis in active and tun-state Paramacrobiotus experimentalis Kaczmarek, Mioduchowska, Poprawa, & Roszkowska, 2020. The abundance of heat shock proteins (HSPs) and ultrastructure of the storage cells were examined at different temperatures (20 °C, 30 °C, 35 °C, 37 °C, 40 °C, and 42 °C) in storage cells isolated from active specimens of Pam. experimentalis. In the active animals, upon increase in external temperature, we observed an increase in the levels of HSPs (HSP27, HSP60, and HSP70). Furthermore, the number of ultrastructural changes in storage cells increased with increasing temperature. Cellular organelles, such as mitochondria and the rough endoplasmic reticulum, gradually degenerated. At 42 °C, cell death occurred by necrosis. Apart from the higher electron density of the karyoplasm and the accumulation of electron-dense material in some mitochondria (at 42 °C), almost no changes were observed in the ultrastructure of tun storage cells exposed to different temperatures. We concluded that desiccated (tun-state) are resistant to high temperatures, but not active tardigrades (survival rates of tuns after 24 h of rehydration: 93.3% at 20 °C, 60.0% at 35 °C, 33.3% at 37 °C, 33.3% at 40 °C, and 20.0% at 42 °C).


Subject(s)
Tardigrada , Animals , Temperature , Tardigrada/metabolism , Heat-Shock Proteins/metabolism , Invertebrates/metabolism , HSP70 Heat-Shock Proteins , Hot Temperature
10.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542296

ABSTRACT

The highly conserved Notch signaling pathway affects embryonic development, neurogenesis, homeostasis, tissue repair, immunity, and numerous other essential processes. Although previous studies have demonstrated the location and function of the core components of Notch signaling in various animal phyla, a more comprehensive summary of the Notch core components in lower organisms is still required. In this review, we objectively summarize the molecular features of the Notch signaling pathway constituents, their current expression profiles, and their functions in invertebrates, with emphasis on their effects on neurogenesis and regeneration. We also analyze the evolution and other facets of Notch signaling and hope that the contents of this review will be useful to interested researchers.


Subject(s)
Invertebrates , Receptors, Notch , Animals , Receptors, Notch/genetics , Receptors, Notch/metabolism , Invertebrates/metabolism , Signal Transduction
11.
Sci Total Environ ; 924: 171677, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38479521

ABSTRACT

Invertebrates are primary contributors to fluxes of nutrients, energy, and contaminants in terrestrial food webs, but the trophodynamic of contaminants in invertebrate food chains is not fully understood. In this study, occurrence and biomagnification of persistent organic pollutants (POPs) were assessed in detritivorous, phytophagous, and predatory invertebrate food chains. Detritivorous species (earthworm and dung beetle) have higher concentrations of POPs than other species. Different composition patterns and biomagnification factors (BMFs) of POPs were observed for invertebrate species. Negative correlations were found between BMFs and log KOW of POPs for detritivorous and most phytophagous species. In contrast, parabolic relationships between BMFs and log KOW were observed in snails and predatory species, possibly attributed to the efficient digestion and absorption of diet and POPs for them. Bioenergetic characteristics are indicative of the biomagnification potential of POPs in terrestrial wildlife, as suggested by the significant and positive correlation between basal metabolic rates (BMRs) and BMFs of BDE 153 for invertebrates, amphibians, reptiles, birds, and mammals. The estimations of dietary exposure suggest that the terrestrial predators, especially feeding on the underground invertebrates, could be exposed to high level POPs from invertebrates.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Animals , Food Chain , Persistent Organic Pollutants , Bioaccumulation , Environmental Monitoring , Invertebrates/metabolism , Mammals/metabolism , Water Pollutants, Chemical/analysis
12.
Ecotoxicology ; 33(2): 131-141, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38381206

ABSTRACT

Terrestrial soils in forested landscapes represent some of the largest mercury (Hg) reserves globally. Wildfire can alter the storage and distribution of terrestrial-bound Hg via reemission to the atmosphere or mobilization in watersheds where it may become available for methylation and uptake into food webs. Using data associated with the 2007 Moonlight and Antelope Fires in California, we examined the long-term direct effects of wildfire burn severity on the distribution and magnitude of Hg concentrations in riparian food webs. Additionally, we quantified the cross-ecosystem transfer of Hg from aquatic invertebrate to riparian bird communities; and assessed the influence of biogeochemical, landscape variables, and ecological factors on Hg concentrations in aquatic and terrestrial food webs. Benthic macroinvertebrate methylmercury (MeHg) and riparian bird blood total mercury (THg) concentrations varied by 710- and 760-fold, respectively, and Hg concentrations were highest in predators. We found inconsistent relationships between Hg concentrations across and within taxa and guilds in response to stream chemical parameters and burn severity. Macroinvertebrate scraper MeHg concentrations were influenced by dissolved organic carbon (DOC); however, that relationship was moderated by burn severity (as burn severity increased the effect of DOC declined). Omnivorous bird Hg concentrations declined with increasing burn severity. Overall, taxa more linked to in situ energetic pathways may be more responsive to the biogeochemical processes that influence MeHg cycling. Remarkably, 8 years post-fire, we still observed evidence of burn severity influencing Hg concentrations within riparian food webs, illustrating its overarching role in altering the storage and redistribution of Hg and influencing biogeochemical processes.


Subject(s)
Burns , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Wildfires , Animals , Ecosystem , Rivers , Water Pollutants, Chemical/analysis , Invertebrates/metabolism , Mercury/analysis , Methylmercury Compounds/metabolism , Food Chain , Birds/metabolism , Environmental Monitoring
13.
Insect Biochem Mol Biol ; 164: 104058, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072083

ABSTRACT

Chitin, a natural polymer of N-acetylglucosamine chains, is a principal component of the apical extracellular matrix in arthropods. Chitin microfibrils serve as structural components of natural biocomposites present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes, fungi and arthropods. In this review, we summarize the frontier advances of insect chitin synthesis. More specifically, we focus on the chitin synthase (CHS), which catalyzes the key biosynthesis step. CHS is also known as an attractive insecticidal target in that this enzyme is absent in mammals, birds or plants. As no insect chitin synthase structure have been reported so far, we review recent studies on glycosyltransferase domain structures derived from fungi and oomycetes, which are conserved in CHS from all species containing chitin. Auxiliary proteins, which coordinate with CHS in chitin biosynthesis and assembly, are also discussed.


Subject(s)
Arthropods , Chitin Synthase , Animals , Chitin Synthase/metabolism , Insecta/genetics , Insecta/metabolism , Arthropods/metabolism , Invertebrates/metabolism , Fungi , Chitin/metabolism , Mammals/metabolism
14.
Neuroendocrinology ; 114(1): 64-89, 2024.
Article in English | MEDLINE | ID: mdl-37703838

ABSTRACT

INTRODUCTION: The proposed evolutionary origins and corresponding nomenclature of bilaterian gonadotropin-releasing hormone (GnRH)-related neuropeptides have changed tremendously with the aid of receptor deorphanization. However, the reclassification of the GnRH and corazonin (CRZ) signaling systems in Lophotrochozoa remains unclear. METHODS: We characterized GnRH and CRZ receptors in the mollusk Pacific abalone, Haliotis discus hannai (Hdh), by phylogenetic and gene expression analyses, bioluminescence-based reporter, Western blotting, substitution of peptide amino acids, in vivo neuropeptide injection, and RNA interference assays. RESULTS: Two Hdh CRZ-like receptors (Hdh-CRZR-A and Hdh-CRZR-B) and three Hdh GnRH-like receptors (Hdh-GnRHR1-A, Hdh-GnRHR1-B, and Hdh-GnRHR2) were identified. In phylogenetic analysis, Hdh-CRZR-A and -B grouped within the CRZ-type receptors, whereas Hdh-GnRHR1-A/-B and Hdh-GnRHR2 clustered within the GnRH/adipokinetic hormone (AKH)/CRZ-related peptide-type receptors. Hdh-CRZR-A/-B and Hdh-GnRHR1-A were activated by Hdh-CRZ (pQNYHFSNGWHA-NH2) and Hdh-GnRH (pQISFSPNWGT-NH2), respectively. Hdh-CRZR-A/-B dually coupled with the Gαq and Gαs signaling pathways, whereas Hdh-GnRHR1-A was linked only with Gαq signaling. Analysis of substituted peptides, [I2S3]Hdh-CRZ and [N2Y3H4]Hdh-GnRH, and in silico docking models revealed that the N-terminal amino acids of the peptides are critical for the selectivity of Hdh-CRZR and Hdh-GnRHR. Two precursor transcripts for Hdh-CRZ and Hdh-GnRH peptides and their receptors were mainly expressed in the neural ganglia, and their levels increased in starved abalones. Injection of Hdh-CRZ peptide into abalones decreased food consumption, whereas Hdh-CRZR knockdown increased food consumption. Moreover, Hdh-CRZ induced germinal vesicle breakdown in mature oocytes. CONCLUSION: Characterization of Hdh-CRZRs and Hdh-GnRHRs and their cognate peptides provides new insight into the evolutionary route of GnRH-related signaling systems in bilaterians.


Subject(s)
Gonadotropin-Releasing Hormone , Neuropeptides , Animals , Gonadotropin-Releasing Hormone/metabolism , Phylogeny , Invertebrates/genetics , Invertebrates/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Signal Transduction
15.
PeerJ ; 11: e16574, 2023.
Article in English | MEDLINE | ID: mdl-38077426

ABSTRACT

Across diverse taxa, sublethal exposure to abiotic stressors early in life can lead to benefits such as increased stress tolerance upon repeat exposure. This phenomenon, known as hormetic priming, is largely unexplored in early life stages of marine invertebrates, which are increasingly threatened by anthropogenic climate change. To investigate this phenomenon, larvae of the sea anemone and model marine invertebrate Nematostella vectensis were exposed to control (18 °C) or elevated (24 °C, 30 °C, 35 °C, or 39 °C) temperatures for 1 h at 3 days post-fertilization (DPF), followed by return to control temperatures (18 °C). The animals were then assessed for growth, development, metabolic rates, and heat tolerance at 4, 7, and 11 DPF. Priming at intermediately elevated temperatures (24 °C, 30 °C, or 35 °C) augmented growth and development compared to controls or priming at 39 °C. Indeed, priming at 39 °C hampered developmental progression, with around 40% of larvae still in the planula stage at 11 DPF, in contrast to 0% for all other groups. Total protein content, a proxy for biomass, and respiration rates were not significantly affected by priming, suggesting metabolic resilience. Heat tolerance was quantified with acute heat stress exposures, and was significantly higher for animals primed at intermediate temperatures (24 °C, 30 °C, or 35 °C) compared to controls or those primed at 39 °C at all time points. To investigate a possible molecular mechanism for the observed changes in heat tolerance, the expression of heat shock protein 70 (HSP70) was quantified at 11 DPF. Expression of HSP70 significantly increased with increasing priming temperature, with the presence of a doublet band for larvae primed at 39 °C, suggesting persistent negative effects of priming on protein homeostasis. Interestingly, primed larvae in a second cohort cultured to 6 weeks post-fertilization continued to display hormetic growth responses, whereas benefits for heat tolerance were lost; in contrast, negative effects of short-term exposure to extreme heat stress (39 °C) persisted. These results demonstrate that some dose-dependent effects of priming waned over time while others persisted, resulting in heterogeneity in organismal performance across ontogeny following priming. Overall, these findings suggest that heat priming may augment the climate resilience of marine invertebrate early life stages via the modulation of key developmental and physiological phenotypes, while also affirming the need to limit further anthropogenic ocean warming.


Subject(s)
Resilience, Psychological , Sea Anemones , Humans , Animals , Sea Anemones/metabolism , Temperature , Invertebrates/metabolism , Climate Change , HSP70 Heat-Shock Proteins/genetics , Larva/metabolism
16.
Mar Drugs ; 21(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37999394

ABSTRACT

C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.


Subject(s)
Complement C1q , Invertebrates , Animals , Humans , Molecular Structure , Amino Acid Sequence , Invertebrates/metabolism , Carbohydrates , Mammals/metabolism
17.
Mar Drugs ; 21(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37999405

ABSTRACT

Sepsis is a life-threatening complication of an infectious process that results from the excessive and uncontrolled activation of the host's pro-inflammatory immune response to a pathogen. Lipopolysaccharide (LPS), also known as endotoxin, which is a major component of Gram-negative bacteria's outer membrane, plays a key role in the development of Gram-negative sepsis and septic shock in humans. To date, no specific and effective drug against sepsis has been developed. This review summarizes data on LPS-binding proteins from marine invertebrates (ILBPs) that inhibit LPS toxic effects and are of interest as potential drugs for sepsis treatment. The structure, physicochemical properties, antimicrobial, and LPS-binding/neutralizing activity of these proteins and their synthetic analogs are considered in detail. Problems that arise during clinical trials of potential anti-endotoxic drugs are discussed.


Subject(s)
Gram-Negative Bacterial Infections , Sepsis , Humans , Animals , Lipopolysaccharides/pharmacology , Peptides/pharmacology , Endotoxins , Gram-Negative Bacterial Infections/drug therapy , Sepsis/drug therapy , Invertebrates/metabolism
18.
Cell ; 186(21): 4676-4693.e29, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37729907

ABSTRACT

The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.


Subject(s)
Biological Evolution , Invertebrates , Neurons , Animals , Ctenophora/genetics , Gene Expression , Neurons/physiology , Phylogeny , Single-Cell Analysis , Invertebrates/cytology , Invertebrates/genetics , Invertebrates/metabolism , Paracrine Communication
19.
J Hazard Mater ; 459: 132263, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37573826

ABSTRACT

In order to comprehend the transfer of inorganic mercury (IHg) and methylmercury (MeHg) within food chains in terrestrial pine forests, we collected samples of Great Tit nestlings, common invertebrates, plants, and soil in a subtropical pine forest and used Bayesian isotope mixing model analysis, Hg daily intake, and stable Hg isotopes to elucidate the flow of MeHg and IHg in these food chains. Results indicate that caterpillars and cockroaches are the predominant prey items for nestlings, accounting for a combined contribution of 81.5%. Furthermore, caterpillars, cockroaches, and spiders were found to contribute the most (∼80%) of both IHg and MeHg that dietary accumulated in nestlings. The provisoned invertebrates tend to supply more IHg and diluting the proportion of MeHg as total Hg (MeHg%). Notably, nestling feathers displayed the highest Δ199Hg values but a relatively lower MeHg%, suggesting an imbalanced incorporation of Hg from maternal transfer and dietary accumulation during the nestling stage. This study highlights the efficacy of nestlings as indicators for identifying Hg sources and transfers in avian species and food chains. However, caution must be exercised when using Hg isotope compositions in growing feathers, and the contribution of maternally transferred Hg should not be ignored.


Subject(s)
Mercury , Methylmercury Compounds , Songbirds , Water Pollutants, Chemical , Animals , Mercury/analysis , Mercury Isotopes/analysis , Food Chain , Bayes Theorem , Methylmercury Compounds/analysis , Invertebrates/metabolism , Forests , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
20.
Molecules ; 28(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570639

ABSTRACT

This review article delves into the realm of furanosteroids and related isoprenoid lipids derived from diverse terrestrial and marine sources, exploring their wide array of biological activities and potential pharmacological applications. Fungi, fungal endophytes, plants, and various marine organisms, including sponges, corals, molluscs, and other invertebrates, have proven to be abundant reservoirs of these compounds. The biological activities exhibited by furanosteroids and related lipids encompass anticancer, cytotoxic effects against various cancer cell lines, antiviral, and antifungal effects. Notably, the discovery of exceptional compounds such as nakiterpiosin, malabaricol, dysideasterols, and cortistatins has revealed their potent anti-tuberculosis, antibacterial, and anti-hepatitis C attributes. These compounds also exhibit activity in inhibiting protein kinase C, phospholipase A2, and eliciting cytotoxicity against cancer cells. This comprehensive study emphasizes the significance of furanosteroids and related lipids as valuable natural products with promising therapeutic potential. The remarkable biodiversity found in both terrestrial and marine ecosystems offers an extensive resource for unearthing novel biologically active compounds, paving the way for future drug development and advancements in biomedical research. This review presents a compilation of data obtained from various studies conducted by different authors who employed the PASS software 9.1 to evaluate the biological activity of natural furanosteroids and compounds closely related to them. The utilization of the PASS software in this context offers valuable advantages, such as screening large chemical libraries, identifying compounds for subsequent experimental investigations, and gaining insights into potential biological activities based on their structural features. Nevertheless, it is crucial to emphasize that experimental validation remains indispensable for confirming the predicted activities.


Subject(s)
Biological Products , Ecosystem , Animals , Invertebrates/metabolism , Aquatic Organisms/chemistry , Fungi/chemistry , Biological Products/chemistry , Lipids
SELECTION OF CITATIONS
SEARCH DETAIL