Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 337
1.
BMC Genomics ; 25(1): 572, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844832

KNOXs, a type of homeobox genes that encode atypical homeobox proteins, play an essential role in the regulation of growth and development, hormonal response, and abiotic stress in plants. However, the KNOX gene family has not been explored in sweet potato. In this study, through sequence alignment, genomic structure analysis, and phylogenetic characterization, 17, 12 and 11 KNOXs in sweet potato (I. batatas, 2n = 6x = 90) and its two diploid relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30) were identified. The protein physicochemical properties, chromosome localization, phylogenetic relationships, gene structure, protein interaction network, cis-elements of promoters, tissue-specific expression and expression patterns under hormone treatment and abiotic stresses of these 40 KNOX genes were systematically studied. IbKNOX4, -5, and - 6 were highly expressed in the leaves of the high-yield varieties Longshu9 and Xushu18. IbKNOX3 and IbKNOX8 in Class I were upregulated in initial storage roots compared to fibrous roots. IbKNOXs in Class M were specifically expressed in the stem tip and hardly expressed in other tissues. Moreover, IbKNOX2 and - 6, and their homologous genes were induced by PEG/mannitol and NaCl treatments. The results showed that KNOXs were involved in regulating growth and development, hormone crosstalk and abiotic stress responses between sweet potato and its two diploid relatives. This study provides a comparison of these KNOX genes in sweet potato and its two diploid relatives and a theoretical basis for functional studies.


Diploidy , Gene Expression Regulation, Plant , Ipomoea batatas , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Ipomoea batatas/genetics , Ipomoea batatas/growth & development , Ipomoea batatas/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Genome, Plant , Gene Expression Profiling , Promoter Regions, Genetic
2.
Funct Plant Biol ; 512024 May.
Article En | MEDLINE | ID: mdl-38801747

Rapid wound healing is crucial in protecting sweet potatoes (Ipomoea batatas ) against infection, water loss and quality deterioration during storage. The current study investigated how acibenzolar-S-methyl (ASM) treatment influenced wound healing in harvested sweet potatoes by investigating the underlying mechanism. It was found that ASM treatment of wounded sweet potatoes induced a significant accumulation of lignin at the wound sites, which effectively suppressed weight loss. After 4days of healing, the lignin content of ASM-treated sweet potatoes was 41.8% higher than that of untreated ones, and the weight loss rate was 20.4% lower. Moreover, ASM treatment increased the ability of sweet potatoes to defend against wounding stress through enhancing processes such as increased production of reactive oxygen species (ROS), activation of enzymes involved in the ROS metabolism (peroxidase, superoxide dismutase and catalase) and phenylpropanoid pathway (phenylalanine ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate-CoA ligase and cinnamyl alcohol dehydrogenase), and intensive synthesis of phenolics and flavonoids. These results suggest that treating harvested sweet potatoes with ASM promotes wound healing through the activation of the ROS metabolism and phenylpropanoid pathway.


Ipomoea batatas , Lignin , Reactive Oxygen Species , Ipomoea batatas/metabolism , Reactive Oxygen Species/metabolism , Lignin/metabolism , Wound Healing/drug effects , Plant Proteins/metabolism , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism
3.
Plant Physiol Biochem ; 212: 108727, 2024 Jul.
Article En | MEDLINE | ID: mdl-38761548

Phosphatidylserine (PS) is an important lipid signaling required for plant growth regulation and salt stress adaptation. However, how PS positively regulate plant salt tolerance is still largely unknown. In this study, IbPSS1-overexpressed sweetpotato plants that exhibited overproduction of PS was employed to explore the mechanisms underlying the PS stimulation of plant salt tolerance. The results revealed that the IbPSS1-overexpressed sweetpotato accumulated less Na+ in the stem and leaf tissues compared with the wild type plants. Proteomic profile of roots showed that lignin synthesis-related proteins over-accumulated in IbPSS1-overexpressed sweetpotato. Correspondingly, the lignin content was enhanced but the influx of Na + into the stele was significantly blocked in IbPSS1-overexpressed sweetpotato. The results further revealed that ethylene synthesis and signaling related genes were upregulated in IbPSS1-overexpressed sweetpotato. Ethylene imaging experiment revealed the enhancement of ethylene mainly localized in the root stele. Inhibition of ethylene synthesis completely reversed the PS-overproduction induced lignin synthesis and Na+ influx pattern in stele tissues. Taken together, our findings demonstrate a mechanism by which PS regulates ethylene signaling and lignin synthesis in the root stele, thus helping sweetpotato plants to block the loading of Na+ into the xylem and to minimize the accumulation of Na+ in the shoots.


Ethylenes , Ipomoea batatas , Lignin , Plant Proteins , Plant Roots , Salt Tolerance , Signal Transduction , Ethylenes/metabolism , Ethylenes/biosynthesis , Lignin/metabolism , Lignin/biosynthesis , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Salt Tolerance/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified , Phosphatidylserines/metabolism , Sodium/metabolism
4.
Plant Physiol Biochem ; 211: 108647, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703497

Sweetpotato, Ipomoea batatas (L.) Lam., is an important worldwide crop used as feed, food, and fuel. However, its polyploidy, high heterozygosity and self-incompatibility makes it difficult to study its genetics and genomics. Longest vine length (LVL), yield per plant (YPP), dry matter content (DMC), starch content (SC), soluble sugar content (SSC), and carotenoid content (CC) are some of the major agronomic traits being used to evaluate sweetpotato. However limited research has actually examined how these traits are inherited. Therefore, after selecting 212 F1 from a Xin24 × Yushu10 crossing as the mapping population, this study applied specific-locus amplified fragment sequencing (SLAF-seq), at an average sequencing depth of 26.73 × (parents) and 52.25 × (progeny), to detect single nucleotide polymorphisms (SNPs). This approach generated an integrated genetic map of length 2441.56 cM and a mean distance of 0.51 cM between adjacent markers, encompassing 15 linkage groups (LGs). Based on the linkage map, 26 quantitative trait loci (QTLs), comprising six QTLs for LVL, six QTLs for YPP, ten QTLs for DMC, one QTL for SC, one QTL for SSC, and two QTLs for CC, were identified. Each of these QTLs explained 6.3-10% of the phenotypic variation. It is expected that the findings will be of benefit for marker-assisted breeding and gene cloning of sweetpotato.


Chromosome Mapping , Ipomoea batatas , Quantitative Trait Loci , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Linkage , Phenotype
5.
Plant Mol Biol ; 114(3): 54, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714535

Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and ß-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.


Arabidopsis , Gene Expression Regulation, Plant , Ipomoea batatas , Plant Proteins , Promoter Regions, Genetic , Transcription Factors , beta-Amylase , Arabidopsis/genetics , Arabidopsis/metabolism , beta-Amylase/genetics , beta-Amylase/metabolism , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/genetics
6.
Plant J ; 118(6): 1991-2002, 2024 Jun.
Article En | MEDLINE | ID: mdl-38549549

As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.


Gene Expression Regulation, Plant , Indoleacetic Acids , Ipomoea batatas , Plant Proteins , Plant Roots , Plants, Genetically Modified , Ipomoea batatas/genetics , Ipomoea batatas/growth & development , Ipomoea batatas/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Indoleacetic Acids/metabolism , CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/metabolism
7.
Int J Biol Macromol ; 266(Pt 1): 131045, 2024 May.
Article En | MEDLINE | ID: mdl-38547942

Sweetpotato blades are rich in the functional secondary metabolite chlorogenic acid (CGA), which deepen potential for effective utilization of the blade in industry. In this study, we evaluated the type and content of CGA in the blades of 16 sweetpotato genotypes and analyzed the correlation between CGA content and antioxidant capacity. Then we isolated and characterized IbGLK1, a GARP-type transcription factor, by comparative transcriptome analysis. A subcellular localization assay indicated that IbGLK1 is located in the nucleus. Overexpression and silencing of IbGLK1 in sweetpotato blade resulted in a 0.90-fold increase and 1.84-fold decrease, respectively, in CGA content compared to the control. Yeast one-hybrid and dual-luciferase assays showed that IbGLK1 binds and activates the promoters of IbHCT, IbHQT, IbC4H, and IbUGCT, resulting in the promotion of CGA biosynthesis. In conclusion, our study provides insights into a high-quality gene for the regulation of CGA metabolism and germplasm resources for breeding sweetpotato.


Chlorogenic Acid , Gene Expression Regulation, Plant , Ipomoea batatas , Plant Proteins , Transcription Factors , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Chlorogenic Acid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome , Gene Expression Profiling , Promoter Regions, Genetic
8.
BMC Plant Biol ; 24(1): 193, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38493089

Sweetpotato (Ipomoea batatas (L.) Lam.) holds a crucial position as one of the staple foods globally, however, its yields are frequently impacted by environmental stresses. In the realm of plant evolution and the response to abiotic stress, the RNA helicase family assumes a significant role. Despite this importance, a comprehensive understanding of the RNA helicase gene family in sweetpotato has been lacking. Therefore, we conducted a comprehensive genome-wide analysis of the sweetpotato RNA helicase family, encompassing aspects such as chromosome distribution, promoter elements, and motif compositions. This study aims to shed light on the intricate mechanisms underlying the stress responses and evolutionary adaptations in sweetpotato, thereby facilitating the development of strategies for enhancing its resilience and productivity. 300 RNA helicase genes were identified in sweetpotato and categorized into three subfamilies, namely IbDEAD, IbDEAH and IbDExDH. The collinearity relationship between the sweetpotato RNA helicase gene and 8 related homologous genes from other species was explored, providing a reliable foundation for further study of the sweetpotato RNA helicase gene family's evolution. Furthermore, through RNA-Seq analysis and qRT-PCR verification, it was observed that the expression of eight RNA helicase genes exhibited significant responsiveness to four abiotic stresses (cold, drought, heat, and salt) across various tissues of ten different sweetpotato varieties. Sweetpotato transgenic lines overexpressing the RNA helicase gene IbDExDH96 were generated using A.rhizogenes-mediated technology. This approach allowed for the preliminary investigation of the role of sweetpotato RNA helicase genes in the response to cold stress. Notably, the promoters of RNA helicase genes contained numerous cis-acting elements associated with temperature, hormone, and light response, highlighting their crucial role in sweetpotato abiotic stress response.


Ipomoea batatas , Stress, Physiological , Stress, Physiological/genetics , Cold-Shock Response/genetics , Ipomoea batatas/metabolism , RNA-Seq , Sodium Chloride/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Gene Expression Regulation, Plant , Phylogeny
9.
Genes (Basel) ; 15(2)2024 02 13.
Article En | MEDLINE | ID: mdl-38397226

The LBD family is a plant-specific transcription factor family that plays an important role in a variety of biological processes. However, the function of IbLBD genes in sweet potato remains unclear. In this study, we identified a total of 53 IbLBD genes in sweet potato. Genetic structure showed that most of the IbLBD genes contained only two exons. Following the phylogenetic investigation, the IbLBD gene family was separated into Class I (45 members) and Class II (8) members. Both classes of proteins contained relatively conservative Motif1 and Motif2 domains. The chromosomal locations, gene duplications, promoters, PPI network, and GO annotation of the sweet potato LBD genes were also investigated. Furthermore, gene expression profiling and real-time quantitative PCR analysis showed that the expression of 12 IbLBD genes altered in six separate tissues and under various abiotic stresses. The IbLBD genes belonging to Class I were mostly expressed in the primary root, the pencil root, and the leaves of sweet potatoes, while the genes belonging to Class II were primarily expressed in the various sweet potato roots. The IbLBD genes belonging to Class I were mostly expressed in the primary root, the pencil root, and the leaves of sweet potatoes, while the genes belonging to Class II were primarily expressed in the fibrous root, pencil root, and tuber root.


Ipomoea batatas , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Phylogeny , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling
10.
J Sci Food Agric ; 104(9): 5207-5218, 2024 Jul.
Article En | MEDLINE | ID: mdl-38314862

BACKGROUND: Seasonal late-season water deficits negatively affect the yield and quality of sweet potatoes in northern China. However, the amount of late-season irrigation to achieve high yield and consistent quality storage root remains undetermined. We assessed the yield and some qualitative traits of sweet potatoes such as size, shape, skin/flesh colour and nutritional content, as influenced by five irrigation levels (T0: unirrigated control; T1: 33% ETc; T2: 75% ETc; T3: 100% ETc; and T4: 125% ETc). RESULTS: Late-season irrigation significantly increased yield and marketable yield. Yields for T2 and T3 were significantly higher than other treatments, whereas T2 had the highest Grade A rating in a 2-year test. The vertical length of storage roots gradually increased with an increase in irrigation level, whereas the maximum width remained unchanged. The proportion of long elliptic and elliptic storage roots also increased, whereas the proportion of ovate, obovate and round storage roots gradually decreased. The skin and flesh colours became more vivid as the level of irrigation increased, with the skin colour becoming redder and the flesh colour becoming more orange-yellow. The levels of carotenoids, vitamin C and soluble sugar were significantly higher in irrigated crops, with the highest vitamin C and soluble sugar levels in T2 and the highest carotenoid levels in T3 treatment. CONCLUSION: Taken together, these results demonstrate the potential of moderate irrigation in the late-season to improve both yield production and quality potential. The results are of great importance for improving the market value of sweet potatoes and increasing grower profits. © 2024 Society of Chemical Industry.


Agricultural Irrigation , Ipomoea batatas , Seasons , Ipomoea batatas/growth & development , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Agricultural Irrigation/methods , China , Plant Tubers/chemistry , Plant Tubers/growth & development , Plant Tubers/metabolism , Water/analysis , Water/metabolism , Carotenoids/analysis , Carotenoids/metabolism , Ascorbic Acid/analysis , Ascorbic Acid/metabolism , Nutritive Value , Plant Roots/growth & development , Plant Roots/chemistry , Plant Roots/metabolism , Crop Production/methods , Color
11.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article En | MEDLINE | ID: mdl-38396773

Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.


Anthocyanins , Ipomoea batatas , Anthocyanins/metabolism , Sodium Chloride/pharmacology , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Reactive Oxygen Species/metabolism , Droughts , Drought Resistance , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Sodium Chloride, Dietary/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
12.
J Sci Food Agric ; 104(9): 5064-5076, 2024 Jul.
Article En | MEDLINE | ID: mdl-38284773

BACKGROUND: Pickering emulsions stabilized by multicomponent particles have attracted increasing attention. Research on characterizing the digestion and health benefit effects of these emulsions in the human gastrointestinal tract are quite limited. This work aims to reveal the digestive characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions (PSPP-Es) during in vitro digestion and colonic fermentation. RESULTS: The media-milling process improved the in vitro digestibility and fermentability of PSPP-Es by reaching afree fatty acids release rate of 43.11 ± 4.61% after gastrointestinal digestion and total phenolic content release of 101.00 ± 1.44 µg gallic acid equivalents/mL after fermentation. In addition, PSPP-Es exhibited good antioxidative activity (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays), α-glucosidase inhibitory activity (half-maximal inhibitory concentration: 6.70%, v/v), and prebiotic effects, reaching a total short-chain fatty acids production of 9.90 ± 0.12 mol L-1, boosting the growth of Akkermansia, Bifidobacterium, and Blautia and inhibiting the growth of Escherichia-Shigella. CONCLUSIONS: These findings indicate that the media-milling process enhances the potential health benefits of purple sweet potato particle-stabilized Pickering emulsions, which is beneficial for their application as a bioactive component delivery system in food and pharmaceutical products. © 2024 Society of Chemical Industry.


Digestion , Emulsions , Fermentation , Ipomoea batatas , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Emulsions/chemistry , Emulsions/metabolism , Humans , Colon/metabolism , Colon/microbiology , Bacteria/metabolism , Bacteria/growth & development , Gastrointestinal Microbiome , Prebiotics/analysis , Particle Size , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Fatty Acids/metabolism , Fatty Acids/chemistry , Food Handling/methods , Models, Biological
13.
BMC Genomics ; 25(1): 58, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38218763

BACKGROUND: Cytochrome P450 monooxygenases (CYP450s) play a crucial role in various biochemical reactions involved in the synthesis of antioxidants, pigments, structural polymers, and defense-related compounds in plants. As sweet potato (Ipomoea batatas L.) holds significant economic importance, a comprehensive analysis of CYP450 genes in this plant species can offer valuable insights into the evolutionary relationships and functional characteristics of these genes. RESULTS: In this study, we successfully identified and categorized 95 CYP450 genes from the sweet potato genome into 5 families and 31 subfamilies. The predicted subcellular localization results indicate that CYP450s are distributed in the cell membrane system. The promoter region of the IbCYP450 genes contains various cis-acting elements related to plant hormones and stress responses. In addition, ten conserved motifs (Motif1-Motif10) have been identified in the IbCYP450 family proteins, with 5 genes lacking introns and only one exon. We observed extensive duplication events within the CYP450 gene family, which may account for its expansion. The gene duplication analysis results showed the presence of 15 pairs of genes with tandem repeats. Interaction network analysis reveals that IbCYP450 families can interact with multiple target genes and there are protein-protein interactions within the family. Transcription factor interaction analysis suggests that IbCYP450 families interact with multiple transcription factors. Furthermore, gene expression analysis revealed tissue-specific expression patterns of CYP450 genes in sweet potatoes, as well as their response to abiotic stress and plant hormones. Notably, quantitative real-time polymerase chain reaction (qRT‒PCR) analysis indicated the involvement of CYP450 genes in the defense response against nonbiological stresses in sweet potatoes. CONCLUSIONS: These findings provide a foundation for further investigations aiming to elucidate the biological functions of CYP450 genes in sweet potatoes.


Ipomoea batatas , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Plant Growth Regulators/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Phylogeny
14.
J Agric Food Chem ; 72(4): 2165-2177, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38233194

Purple sweet potato polysaccharide (PSPP-1) is a novel glucan; this study aimed to examine the anti-inflammatory effect of PSPP-1 and elucidate its potential mechanisms. Lipopolysaccharide (LPS)-induced RAW264.7 was used as the model of inflammation, cell viability, and levels of nitric oxide (NO), reactive oxygen species (ROS), and calcium ion (Ca2+) were analyzed. ELISA and qPCR were used to assess the productions and mRNA expression of cytokines, and Western blotting was used to assess protein expressions in the TLR-mediated pathway, macrophage polarization, and inflammasome activation. The results demonstrated PSPP-1 inhibited cell proliferation and markedly decreased NO, ROS, and Ca2+ levels. Moreover, PSPP-1 suppressed the secretions and mRNA expressions of pro-inflammatory cytokines and increased those of anti-inflammatory cytokines. Furthermore, PSPP-1 could exert anti-inflammatory effects through different pathways mediated by both TLR2 and TLR4, which modulated the expressions of essential proteins in the myeloid differentiation factor 88 (MyD88)-dependent and toll/IL-1 receptor domain-containing adaptor-inducing interferon-ß (TRIF)-dependent signaling pathways. PSPP-1 even regulated the polarization of M1/M2 macrophages and inhibited the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome activation. These findings indicate that PSPP-1 can suppress LPS-induced inflammation via multiple pathways and may be a potential agent for therapeutic inflammation-related pathophysiological processes and disorders.


Inflammasomes , Ipomoea batatas , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Lipopolysaccharides/adverse effects , Reactive Oxygen Species/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/genetics , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , RNA, Messenger
15.
J Integr Plant Biol ; 66(2): 176-195, 2024 Feb.
Article En | MEDLINE | ID: mdl-38294064

Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.


Cyclopentanes , Ipomoea batatas , Oxylipins , Sodium Chloride , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Drought Resistance , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
16.
Plant Physiol ; 194(2): 787-804, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-37815230

Root development influences plant responses to environmental conditions, and well-developed rooting enhances plant survival under abiotic stress. However, the molecular and genetic mechanisms underlying root development and abiotic stress tolerance in plants remain unclear. In this study, we identified the MYB transcription factor-encoding gene IbMYB73 by cDNA-amplified fragment length polymorphism and RNA-seq analyses. IbMYB73 expression was greatly suppressed under abiotic stress in the roots of the salt-tolerant sweet potato (Ipomoea batatas) line ND98, and its promoter activity in roots was significantly reduced by abscisic acid (ABA), NaCl, and mannitol treatments. Overexpression of IbMYB73 significantly inhibited adventitious root growth and abiotic stress tolerance, whereas IbMYB73-RNAi plants displayed the opposite pattern. IbMYB73 influenced the transcription of genes involved in the ABA pathway. Furthermore, IbMYB73 formed homodimers and activated the transcription of ABA-responsive protein IbGER5 by binding to an MYB binding sites I motif in its promoter. IbGER5 overexpression significantly inhibited adventitious root growth and abiotic stress tolerance concomitantly with a reduction in ABA content, while IbGER5-RNAi plants showed the opposite effect. Collectively, our results demonstrated that the IbMYB73-IbGER5 module regulates ABA-dependent adventitious root growth and abiotic stress tolerance in sweet potato, which provides candidate genes for the development of elite crop varieties with well-developed root-mediated abiotic stress tolerance.


Abscisic Acid , Ipomoea batatas , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Plants, Genetically Modified/metabolism , Amplified Fragment Length Polymorphism Analysis , Stress, Physiological/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article En | MEDLINE | ID: mdl-38068872

Malate dehydrogenase (MDH; EC 1.1.1.37) plays a vital role in plant growth and development as well as abiotic stress responses, and it is widely present in plants. However, the MDH family genes have not been explored in sweet potato. In this study, nine, ten, and ten MDH genes in sweet potato (Ipomoea batatas) and its two diploid wild relatives, Ipomoea trifida and Ipomoea triloba, respectively, were identified. These MDH genes were unevenly distributed on seven different chromosomes among the three species. The gene duplications and nucleotide substitution analysis (Ka/Ks) revealed that the MDH genes went through segmental duplications during their evolution under purifying selection. A phylogenetic and conserved structure divided these MDH genes into five subgroups. An expression analysis indicated that the MDH genes were omni-presently expressed in distinct tissues and responded to various abiotic stresses. A transcription factor prediction analysis proved that Dof, MADS-box, and MYB were the main transcription factors of sweet potato MDH genes. These findings provide molecular features of the MDH family in sweet potato and its two diploid wild relatives, which further supports functional characterizations.


Ipomoea batatas , Ipomoea , Ipomoea batatas/metabolism , Phylogeny , Diploidy , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Ipomoea/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
18.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38068939

Sugar Will Eventually be Exported Transporter (SWEET) genes play an important regulatory role in plants' growth and development, stress response, and sugar metabolism, but there are few reports on the role of SWEET proteins in sweet potato. In this study, nine IbSWEET genes were obtained via PCR amplification from the cDNA of sweet potato. Phylogenetic analysis showed that nine IbSWEETs separately belong to four clades (Clade I~IV) and contain two MtN3/saliva domains or PQ-loop superfamily and six~seven transmembrane domains. Protein interaction prediction showed that seven SWEETs interact with other proteins, and SWEETs interact with each other (SWEET1 and SWEET12; SWEET2 and SWEET17) to form heterodimers. qRT-PCR analysis showed that IbSWEETs were tissue-specific, and IbSWEET1b was highly expressed during root growth and development. In addition to high expression in leaves, IbSWEET15 was also highly expressed during root expansion, and IbSWEET7, 10a, 10b, and 12 showed higher expression in the leaves. The expression of SWEETs showed a significant positive/negative correlation with the content of soluble sugar and starch in storage roots. Under abiotic stress treatment, IbSWEET7 showed a strong response to PEG treatment, while IbSWEET10a, 10b, and 12 responded significantly to 4 °C treatment and, also, at 1 h after ABA, to NaCl treatment. A yeast mutant complementation assay showed that IbSWEET7 had fructose, mannose, and glucose transport activity; IbSWEET15 had glucose transport activity and weaker sucrose transport activity; and all nine IbSWEETs could transport 2-deoxyglucose. These results provide a basis for further elucidating the functions of SWEET genes and promoting molecular breeding in sweet potato.


Ipomoea batatas , Ipomoea batatas/metabolism , Phylogeny , Cloning, Molecular , Sugars/metabolism , Glucose/metabolism , Gene Expression Regulation, Plant
19.
BMC Plant Biol ; 23(1): 622, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38057702

BACKGROUND: Auxins are known to have roles in the tuberization process in sweet potato (Ipomoea batatas [L.] Lam.) and these effects are mediated by various auxin signalling gene families. In this study, an analysis of the sweet potato genome was performed to identify the ARF, Aux/IAA, GH3, and SAUR auxin signalling gene family members in this crop. RESULTS: A total of 29 ARF, 39 Aux/IAA, 13 GH3, and 200 SAUR sequences were obtained, and their biochemical properties and gene expression profiles were analysed. The sequences were relatively conserved based on exon-intron structure, motif analysis, and phylogenetic tree construction. In silico expression analyses of the genes in fibrous and storage roots indicated that many sequences were not differentially expressed in tuberizing and non-tuberizing roots. However, some ARF, Aux/IAA, and SAUR genes were up-regulated in tuberizing storage roots compared to non-tuberizing fibrous roots while many GH3 genes were down-regulated. Additionally, these genes were expressed in a variety of plant parts, with some genes being highly expressed in shoots, leaves, and stems while others had higher expression in the roots. Some of these genes are up-regulated during the plant's response to various hormone treatments and abiotic stresses. Quantitative RT-PCR confirmation of gene expression was also conducted, and the results were concordant with the in silico analyses. A protein-protein interaction network was predicted for the differentially expressed genes, suggesting that these genes likely form part of a complex regulatory network that controls tuberization. These results confirm those of existing studies that show that auxin signalling genes have numerous roles in sweet potato growth and development. CONCLUSION: This study provides useful information on the auxin signalling gene families in Ipomoea batatas and suggests putative candidates for further studies on the role of auxin signalling in tuberization and plant development.


Ipomoea batatas , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Phylogeny , Indoleacetic Acids/metabolism , Genome, Plant , Plant Development/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Trop Anim Health Prod ; 55(6): 428, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38044408

Antioxidants are considered functional additives against oxidative stress since they avoid nutritional decline in the meat. The main objective of the present study is to evaluate the effect of sweet potato flour (SPF) as a natural antioxidant on carcass yield and physicochemical characteristics of Creole chickens of Mexico (CChM) and Cobb 500 broilers. In total, 210 chickens (105 CChM and 105 Cobb 500 chickens) were randomly assigned to three treatments: 0, 500, and 1000 mg of SPF kg-1 of feed. The Cobb 500 chickens showed higher carcass yield (hot and cold), breast, and breast fillet, whereas the CChM had higher thigh yield (P ≤ 0.05). The yield on the previously mentioned variables was not affected by the inclusion levels of SPF. The initial pH differed because of the effect of the chicken's genotype and the addition of SPF, which was higher on Cobb 500 chicken and on those that were not supplemented with SPF. The birds' skin that consumed SPF presented higher yellowness after 24 h (P ≤ 0.05). CChM manifested a higher dry matter and protein content and a lower content of ash and fat (P ≤ 0.05). In conclusion, Cobb 500 chickens present a higher carcass yield and its components, in addition to a less acid pH; however, CChM offer a higher nutritional contribution, whereas the 500 and 1000 mg addition of SPF increases the skin yellowness, which makes it an alterorganic as a pigment on broiler chicken production.


Antioxidants , Ipomoea batatas , Animals , Antioxidants/metabolism , Chickens/metabolism , Diet/veterinary , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Flour , Mexico , Animal Feed/analysis , Meat/analysis
...