Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Sci Rep ; 11(1): 15597, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341425

ABSTRACT

Salinity is challenging threats to the agricultural system and leading cause of crop loss. Salicylic acid (SA) is an important endogenous signal molecule, which by regulating growth and physiological processes improves the plant ability to tolerate salt stress. Considering the prime importance of Gladiolus grandiflorus (L.) in the world's cut-flower market, the research work was undertaken to elucidate salinity tolerance in G. grandiflorus by exogenous application of SA irrigated with saline water. Results revealed that increasing salinity (EC: 2, 4 and 6 dS m-1) considerably altered morpho-growth indices (corm morphology and plant biomass) in plants through increasing key antioxidants including proline content and enzymes activity (superoxide dismutase, catalase and peroxidase), while negatively affected the total phenolic along with activity of defense-related enzymes (phenylalanine ammonia lyase, and polyphenol oxidase activity). SA application (50-200 ppm) in non-saline control or saline conditions improved morpho-physiological traits in concentration-dependent manners. In saline conditions, SA minimized salt-stress by enhancing chlorophyll content, accumulating organic osmolytes (glycine betaine and proline content), total phenolic, and boosting activity of antioxidant and defense-related enzymes. Principle component analysis based on all 16 morphological and physiological variables generated useful information regarding the classification of salt tolerant treatment according to their response to SA. These results suggest SA (100 or 150 ppm) could be used as an effective, economic, easily available and safe phenolic agent against salinity stress in G. grandiflorus.


Subject(s)
Iridaceae/physiology , Salicylic Acid/pharmacology , Salt Stress/drug effects , Antioxidants/metabolism , Betaine/metabolism , Carotenoids/metabolism , Catalase/metabolism , Catechol Oxidase/metabolism , Chlorophyll/metabolism , Iridaceae/anatomy & histology , Iridaceae/drug effects , Iridaceae/enzymology , Peroxidase/metabolism , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Photosynthesis/drug effects , Pigments, Biological/metabolism , Plant Leaves/drug effects , Principal Component Analysis , Proline/metabolism , Salt Tolerance/drug effects , Superoxide Dismutase/metabolism
2.
Plant Cell Physiol ; 61(7): 1365-1380, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32392327

ABSTRACT

Anthocyanin biosynthesis is mainly controlled by MYB-bHLH-WD40 (MBW) complexes that modulate the expression of anthocyanin biosynthetic genes (ABGs). The MYB regulators involved in anthocyanin biosynthesis arose early during plant evolution and thus might function divergently in different evolutionary lineages. Although the anthocyanin-promoting R2R3-MYB regulators in eudicots have been comprehensively explored, little consensus has been reached about functional discrepancies versus conservation among MYB regulators from different plant lineages. Here, we integrated transcriptome analysis, gene expression profiles, gain-of-function experiments and transient protoplast transfection assays to functionally characterize the monocot Freesia hybrida anthocyanin MYB regulator gene FhPAP1, which showed correlations with late ABGs. FhPAP1 could activate ABGs as well as TT8-clade genes FhTT8L, AtTT8 and NtAN1 when overexpressed in Freesia, Arabidopsis and tobacco, respectively. Consistently, FhPAP1 could interact with FhTT8L and FhTTG1 to form the conserved MBW complex and shared similar target genes with its orthologs from Arabidopsis. Most prominently, FhPAP1 displayed higher transactivation capacity than its homologs in Arabidopsis and tobacco, which was instantiated in its powerful regulation on ABGs. Moreover, we found that FhPAP1 might be the selected gene during the domestication and rapid evolution of the wild Freesia species to generate intensive flower pigmentation. These results showed that while the MBW complex was highly evolutionarily conserved between tested monocot and core eudicot plants, participating MYB regulators showed functional differences in transactivation capacity according to their activation domain and played important roles in the flower coloration domestication and evolution of angiosperms.


Subject(s)
Anthocyanins/biosynthesis , Flowers/metabolism , Iridaceae/metabolism , Transcription Factors/physiology , Arabidopsis , Cloning, Molecular , Conserved Sequence , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genes, Plant/physiology , Iridaceae/genetics , Iridaceae/physiology , Phylogeny , Plant Proteins/genetics , Plant Proteins/physiology , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Sequence Alignment , Transcription Factors/genetics
3.
New Phytol ; 224(3): 1160-1170, 2019 11.
Article in English | MEDLINE | ID: mdl-31148172

ABSTRACT

The causative link between phenotypic divergence and reproductive isolation is an important but poorly understood part of ecological speciation. We studied the effects of floral-tube length variation on pollen placement/receipt positions and reproductive isolation. In a population of Lapeirousia anceps (Iridaceae) with bimodal floral-tube lengths, we labelled pollen of short- and long-tubed flowers with different colour fluorescent nanoparticles (quantum dots). This enabled us to map pollen placement by long- and short-tubed flowers on the only floral visitor, a long-proboscid fly. Furthermore, it allowed us to quantify pollen movement within and between short- and long-tubed flowers. Short- and long-tubed flowers placed pollen on different parts of the pollinator, and long-tubed flowers placed more pollen per visit than short-tubed flowers. This resulted in assortative pollen receipt (most pollen received comes from the same phenotype) and strong but asymmetric reproductive isolation, where short-tubed plants are more reproductively isolated than long-tubed plants. These results suggest that floral-tube length divergence can promote mechanical isolation in plants through divergence in pollen placement sites on pollinators. Consequently, in concert with other reproductive isolation mechanisms, selection for differences in floral-tube length can play an important role in ecological speciation of plants.


Subject(s)
Biodiversity , Movement , Pollen Tube/anatomy & histology , Pollen Tube/physiology , Reproductive Isolation , Animals , Diptera/physiology , Iridaceae/physiology , Pollination/physiology , Species Specificity
4.
Plant Cell Physiol ; 60(1): 52-62, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30192973

ABSTRACT

Dormancy is one of the least understood phenomena in plant biology; however, bud/corm dormancy is an important economic trait in agricultural/horticultural breeding. In this study, we isolated an ABA biosynthesis gene, GhNCED, from the transcriptome database of corm dormancy release (CDR), and characterized its negative role in regulating CDR. To understand transcriptional regulation of GhNCED, yeast one-hybrid screening was conducted and GhTCP19 was identified and shown to regulate GhNCED expression directly. An in planta assay showed that GhTCP19 negatively regulates GhNCED expression. GhTCP19 is dramatically induced by exogenous cytokinins (CKs) and is induced during CDR. Silencing of GhTCP19 in dormant cormels delayed CDR, resulting in higher expression of GhNCED and ABA levels. Meanwhile, endogenous CK biosynthesis and signaling were inhibited in GhTCP19-silenced cormels. Taken together, our results reveal that GhTCP19 is a positive regulator of the CDR process by repressing expression of an ABA biosynthesis gene (GhNCED), promoting CK biosynthesis (GhIPT) and signal transduction (GhARR) as well as inducing cyclin genes. This study expands our knowledge on CDR which is mediated by TCP family members.


Subject(s)
Gene Expression Regulation, Plant , Iridaceae/genetics , Iridaceae/physiology , Plant Dormancy/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Base Sequence , Down-Regulation/genetics , Gene Silencing , Models, Biological , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Transcription, Genetic , Transcriptome/genetics , Up-Regulation/genetics
5.
J Exp Bot ; 70(4): 1221-1237, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30517656

ABSTRACT

Corm dormancy is an important trait for breeding in many bulb flowers, including the most cultivated Gladiolus hybridus. Gladiolus corms are modified underground stems that function as storage organs and remain dormant to survive adverse environmental conditions. Unlike seed dormancy, not much is known about corm dormancy. Here, we characterize the mechanism of corm dormancy release (CDR) in Gladiolus. We identified an important ABA (abscisic acid) signaling regulator, GhPP2C1 (protein phosphatase 2C1), by transcriptome analysis of CDR. GhPP2C1 expression increased during CDR, and silencing of GhPP2C1 expression in dormant cormels delayed CDR. Furthermore, we show that GhPP2C1 expression is directly regulated by GhNAC83, which was identified by yeast one-hybrid library screening. In planta assays show that GhNAC83 is a negative regulator of GhPP2C1, and silencing of GhNAC83 promoted CDR. As expected, silencing of GhNAC83 decreased the ABA level, but also dramatically increased cytokinin (CK; zeatin) content in cormels. Binding assays demonstrate that GhNAC83 associates with the GhIPT (ISOPENTENYLTRANSFERASE) promoter and negatively regulates zeatin biosynthesis. Taken together, our results reveal that GhNAC83 promotes ABA signaling and synthesis, and inhibits CK biosynthesis pathways, thereby inhibiting CDR. These findings demonstrate that GhNAC83 regulates the ABA and CK pathways, and therefore controls corm dormancy.


Subject(s)
Abscisic Acid/metabolism , Cytokinins/biosynthesis , Iridaceae/physiology , Plant Dormancy/genetics , Plant Proteins/genetics , Plant Tubers/physiology , Iridaceae/genetics , Plant Proteins/metabolism , Signal Transduction
6.
Sci Total Environ ; 624: 1336-1347, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29929246

ABSTRACT

Rapidly developing industry raises concerns about the environmental risks of silver nanoparticles (AgNPs), but the effects of AgNPs on the performance and microbial community in the constructed wetlands remain unclear. In this study, long-term exposure of AgNPs in two VFCWs was conducted to determine the effects of AgNPs on the pollutant removal and microbial community structure. Before exposing AgNPs, the water quality of effluent was better in planted wetland (CW2), compared with unplanted wetland (CW1). After continuous exposure of 100µg/L AgNPs, the COD (chemical oxygen demand) removal of two CWs had no difference. However, addition of AgNPs reduced the nitrogen and phosphorus removal in two CWs, with decreasing average removal efficiencies of ammonia nitrogen from 46.31% to 32.09% and 59.66% to 51.06%, total nitrogen from 57.76% to 43.78% and 67.35 to 60.58%, total phosphorus from 71.29% to 59.31% and 67.35% to 60.58%, respectively. The vegetable wetlands showed higher resistances to AgNPs loading than unplanted wetlands. In addition, AgNPs accumulated in the wetland substrate, especially in the soil layer with the silver concentration of approximately 4.32µg/g. The small portion of silver was found in plant tissues, and plants played a minor role to remove the AgNPs from wastewater. Moreover, the constructed wetlands could effectively remove the AgNPs from the synthetic wastewater. The illumine high-throughput sequencing results demonstrated the variations of the bacterial community structure at the exposure of AgNPs. The results showed that the dominant phyla were Proteobacteria, Acidobacteria and Bacteroidetes. Compared with unplanted wetlands, the contents of several nitrifying bacteria such as Candidatus Nitrososphaera (AOA) and Nitrospira (NOB) at genus level increased, leading to the higher nitrogen removal in the planted wetlands.


Subject(s)
Iridaceae/physiology , Metal Nanoparticles/toxicity , Silver/toxicity , Soil Microbiology , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Wetlands , Nitrogen/analysis , Phosphorus/analysis , Wastewater/chemistry
7.
Plant Biol (Stuttg) ; 19(5): 760-766, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28509436

ABSTRACT

Studies have indicated that florivory and nectar robbing may reduce reproductive success of host plants. However, whether and how these effects might interact when plants are simultaneously attacked by both florivores and nectar robbers still needs further investigation. We used Iris bulleyana to detect the interactions among florivory, nectar robbing and pollination, and moreover, their effects on plant reproductive success. Field investigations and hand-pollination treatments were conducted on two experimental plots from a natural population, in which Experimental plot was protected from florivores and Control plot was not manipulated. The flower calyx was bitten by sawflies to consume the nectary, and three bumblebee species were pollinators. In addition, the short-tongued pollinator, Bombus friseanus, was the only robber when there was a hole made by a sawfly. The bumblebee had significantly shortened flower handling time when robbing, as compared to legitimate visits. Pollinator visitation and seed production decreased significantly in damaged flowers. However, seed production per flower after supplementary hand-pollination did not differ significantly between damaged and undamaged flowers. Compared to the Experimental plot, bumblebees visited fewer flowers per plant in a foraging bout in the Control plot. The flowers damaged by florivory allowed B. friseanus to shift to a nectar robber. Florivory and nectar robbing collectively decreased plant reproductive success by consuming nectar resources, which may reduce attractiveness to pollinators of the damaged flowers. However, the changes in pollinator behaviour might be beneficial to the plant by reducing the risk of geitonogamous mating.


Subject(s)
Iridaceae/physiology , Plant Nectar/physiology , Pollination/physiology , Reproduction/physiology , Animals , Bees/physiology
8.
Plant Biol (Stuttg) ; 19(3): 438-443, 2017 May.
Article in English | MEDLINE | ID: mdl-28146332

ABSTRACT

Rewardless plants can attract pollinators by mimicking floral traits of rewarding heterospecific plants. This should result in the pollination success of floral mimics being dependent on the relative abundance of their models, as pollinator abundance and conditioning on model signals should be higher in the vicinity of the models. However, the attraction of pollinators to signals of the models may be partially innate, such that spatial isolation of mimics from model species may not strongly affect pollination success of mimics. We tested whether pollination rates and fruit set of the rewardless orchid Disa pulchra were influenced by proximity and abundance of its rewarding model species, Watsonia lepida. Pollination success of the orchid increased with proximity to the model species, while fruit set of the orchid increased with local abundance of the model species. Orchids that were experimentally translocated outside the model population experienced reduced pollinaria removal and increased pollinator-mediated self-pollination. These results confirm predictions that the pollination success of floral mimics should be dependent on the proximity and abundance of model taxa, and thus highlight the importance of ecological facilitation among species involved in mimicry systems.


Subject(s)
Biological Mimicry , Flowers/physiology , Iridaceae/physiology , Orchidaceae/physiology , Pollination , Animals , South Africa
9.
Evolution ; 71(3): 582-594, 2017 03.
Article in English | MEDLINE | ID: mdl-28094438

ABSTRACT

The causes of exceptionally high plant diversity in Mediterranean-climate biodiversity hotspots are not fully understood. We asked whether a mechanism similar to the tropical niche conservatism hypothesis could explain the diversity of four large genera (Protea, Moraea, Banksia, and Hakea) with distributions within and adjacent to the Greater Cape Floristic Region (South Africa) or the Southwest Floristic Region (Australia). Using phylogenetic and spatial data we estimated the environmental niche of each species, and reconstructed the mode and dynamics of niche evolution, and the geographic history, of each genus. For three genera, there were strong positive relationships between the diversity of clades within a region and their inferred length of occupation of that region. Within genera, there was evidence for strong evolutionary constraint on niche axes associated with climatic seasonality and aridity, with different niche optima for hotspot and nonhotspot clades. Evolutionary transitions away from hotspots were associated with increases in niche breadth and elevated rates of niche evolution. Our results point to a process of "hotspot niche conservatism" whereby the accumulation of plant diversity in Mediterranean-type ecosystems results from longer time for speciation, with dispersal away from hotspots limited by narrow and phylogenetically conserved environmental niches.


Subject(s)
Biodiversity , Biological Evolution , Ecosystem , Iridaceae/physiology , Proteaceae/physiology , Australia , Climate , Phylogeny , South Africa
10.
Sci Rep ; 6: 35459, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27759040

ABSTRACT

The availabilities of light and soil water resources usually spatially co-vary in natural habitats, and the spatial pattern of such co-variation may affect the benefits of physiological integration between connected ramets of clonal plants. In a greenhouse experiment, we grew connected or disconnected ramet pairs [consisting of a proximal (relatively old) and a distal (relative young) ramet] of a rhizomatous herb Iris japonica in four heterogeneous environments differing in patch arrangement (reciprocal vs. parallel patchiness of light and soil water) and patch contrast (high vs. low contrast of light and water). Biomass of the proximal part, distal part and clonal fragment of I. japonica were all significantly greater in the intact than in the severed treatment, in the parallel than in the reciprocal patchiness treatment and in the high than in the low contrast treatment, but the effect of severing the connection between ramet pairs did not depend on patch arrangement or contrast. Severing the connection decreased number of ramets of the distal part and the clonal fragment in the parallel patchiness arrangement, but not in the reciprocal patchiness arrangement. Therefore, the spatial arrangement of resource patches can alter the effects of clonal integration on asexual reproduction in I. japonica.


Subject(s)
Iridaceae/physiology , Reproduction, Asexual , Biomass , Environment
11.
PLoS One ; 11(10): e0164381, 2016.
Article in English | MEDLINE | ID: mdl-27723785

ABSTRACT

Understanding the mechanisms shaping the spatiotemporal distribution of species has long been a central concern of ecology and evolutionary biology. Contemporary patterns of plant assemblies suggest that sexual interactions among species, i.e., reproductive interference, lead to the exclusive distributions of closely related species that share pollinators. However, the fitness consequences and the initial ecological/evolutionary responses to reproductive interference remain unclear in nature, since reproductive isolation or allopatric distribution has already been achieved in the natural community. In Japan, three species of blue-eyed grasses (Sisyrinchium) with incomplete reproductive isolation have recently colonized and occur sympatrically. Two of them are monomorphic with white flowers, whereas the other exhibits heritable color polymorphism (white and purple morphs). Here we investigated the effects of the presence of two monomorphic species on the distribution and reproductive success of color morphs. The frequency and reproductive success of white morphs decreased in area where monomorphic species were abundant, while those of purple morphs did not. The rate of hybridization between species was higher in white morphs than in the purple ones. Resource competition and habitat preference seemed not to contribute to the spatial distribution and reproductive success of two morphs. Our results supported that color-dependent reproductive interference determines the distribution of flower color polymorphism in a habitat, implying ecological sorting promoted by pollinator-mediated reproductive interference. Our study helps us to understand the evolution and spatial structure of flower color in a community.


Subject(s)
Chimera/physiology , Flowers/physiology , Iridaceae/physiology , Pigmentation/physiology , Polymorphism, Genetic , Japan , Reproduction/physiology
12.
Plant Biol (Stuttg) ; 18(6): 1048-1052, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27219484

ABSTRACT

Pollinator specialisation through exploitation barriers (such as long floral tubes) does not necessarily mean a lack of pollination when the favoured pollinator is rare or absent. Theory predicts that suboptimal visitors will contribute to plant reproduction in the absence of the most effective pollinator. Here I address these questions with Chasmanthe floribunda a long-tubed plant species in the Cape Floristic Region, which is reliant on one species of pollinator, the long-billed Malachite Sunbird. In contrast to short-billed sunbirds, the Malachite Sunbird occurs in lower abundance or is absent in transformed landscapes. Short-billed sunbirds rob and thieve nectar from long-tubed flowers, but their potential contribution towards pollination is unknown. Experiments assessing seed set after single flower visits were performed to determine whether thieving short-billed sunbirds can act as substitute pollinators. To determine whether short-billed sunbirds reduce pollen limitation in transformed areas, pollen supplementation was done by hand and compared to natural fruit set. Short billed sunbirds are unable to act as substitute pollinators, and seed set is significantly lower in the flowers that they visited, compared to flowers visited by long-billed sunbirds. This is substantiated on a landscape scale, where fruit production in Chasmanthe floribunda could artificially be increased by 35% in transformed landscapes, but not so in natural areas. These findings have important consequences for the management and conservation of long-tubed bird-pollinated plant species that exist in recently transformed landscapes. The potential vulnerability of specialised plant species in transformed landscapes is highlighted.


Subject(s)
Iridaceae/physiology , Passeriformes/physiology , Pollination , Animals , Flowers/anatomy & histology , Flowers/physiology , Iridaceae/anatomy & histology , Plant Nectar/physiology , Pollen/anatomy & histology , Pollen/physiology , Reproduction , Seeds/anatomy & histology , Seeds/physiology
13.
J Evol Biol ; 29(8): 1631-42, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27206242

ABSTRACT

Mating patterns and natural selection play important roles in determining whether genetic polymorphisms are maintained or lost. Here, we document an atypical population of Lapeirousia anceps (Iridaceae) with a bimodal distribution of floral-tube length and investigate the reproductive mechanisms associated with this pattern of variation. Flowers were visited exclusively by the long-proboscid fly Moegistorhynchus longirostris (Nemestrinidae), which exhibited a unimodal distribution of proboscis length and displayed a preference for long-tubed phenotypes. Despite being visited by a single pollinator species, allozyme markers revealed significant genetic differentiation between open-pollinated progeny of long- and short-tubed phenotypes suggesting mating barriers between them. We obtained direct evidence for mating barriers between the floral-tube phenotypes through observations of pollinator foraging, controlled hand pollinations and measurements of pollen competition and seed set. Intermediate tube-length phenotypes produced fewer seeds in the field than either long- or short-tubed phenotypes. Although floral-tube length bimodality may not be a stable state over long timescales, reproductive barriers to mating and low 'hybrid' fitness have the potential to contribute to the maintenance of this state in the short term.


Subject(s)
Genetic Fitness , Iridaceae/physiology , Pollination , Animals , Flowers , Iridaceae/growth & development , Reproduction , Selection, Genetic
14.
Biochem Biophys Res Commun ; 471(1): 198-204, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26826388

ABSTRACT

Abscisic acid (ABA) is an important phytohormone controlling seed dormancy. AFPs (ABA INSENSITIVE FIVE BINDING PROTEINS) are reported to be negative regulators of the ABA signaling pathway. The involvement of AFPs in dormant vegetative organs remains poorly understood. Here, we isolated and characterized a novel AFP family member from Gladiolus dormant cormels, GhAFP-like, containing three conserved domains of the AFP family. Quantitative PCR analysis revealed that GhAFP-like was expressed in dormant organs and its expression was down-regulated along with corm storage. GhAFP-like was verified to be a nuclear-localized protein. Overexpressing GhAFP-like in Arabidopsis thaliana not only showed weaker seed dormancy with insensitivity to ABA, but also changed the expression of some ABA related genes. In addition, a primary root elongation assay showed GhAFP-like may involve in auxin signaling response. The results in this study indicate that GhAFP-like acts as a negative regulator in ABA signaling and is related to dormancy.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Basic-Leucine Zipper Transcription Factors/metabolism , Iridaceae/physiology , Phosphoprotein Phosphatases/metabolism , Plant Dormancy/physiology , Cloning, Molecular , Germination/physiology , Plant Tubers
15.
Plant Cell Rep ; 34(6): 1063-74, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25708873

ABSTRACT

KEY MESSAGE: GhNPR1 shares similar functions as Arabidopsis NPR1 . Silencing of GhNPR1 in Gladiolus results in an enhanced susceptibility to Curvularia gladioli. We propose that GhNPR1 plays important roles in plant immunity. Gladiolus plants and corms are susceptible to various types of pathogens including fungi, bacteria and viruses. Understanding the innate defense mechanism in Gladiolus is a prerequisite for the development of new protection strategies. The non-expressor of pathogenesis-related gene 1 (NPR1) and bzip transcription factor TGA2 play a key role in regulating salicylic acid (SA)-mediated systemic acquired resistance (SAR). In this study, the homologous genes, GhNPR1 and GhTGA2, were isolated from Gladiolus and functionally characterized. Expression of GhNPR1 exhibited a 3.8-fold increase in Gladiolus leaves following salicylic acid treatment. A 1332 bp fragment of the GhNPR1 promoter from Gladiolus hybridus was identified. Inducibility of the GhNPR1 promoter by SA was demonstrated using transient expression assays in the leaves of Nicotiana benthamiana. The GhNPR1 protein is located in the nucleus and cytomembrane. GhNPR1 interacts with GhTGA2, as observed using the bimolecular fluorescence complementation system. Overexpression of GhNPR1 in an Arabidopsis npr1 mutant can restore its basal resistance to Pseudomonas syringae pv. tomato DC3000. Silencing of GhNPR1, using a tobacco rattle virus-based silencing vector, resulted in an enhanced susceptibility to Curvularia gladioli. In conclusion, these results suggest that GhNPR1 plays a pivotal role in the SA-dependent systemic acquired resistance in Gladiolus.


Subject(s)
Iridaceae/microbiology , Iridaceae/physiology , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Ascomycota/pathogenicity , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation, Plant , Gene Silencing , Genetic Complementation Test , Iridaceae/drug effects , Iridaceae/immunology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Pseudomonas syringae/pathogenicity , Salicylic Acid/metabolism , Salicylic Acid/pharmacology
16.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Article in English | MEDLINE | ID: mdl-25274360

ABSTRACT

Floral tubes are often thought to be a consequence of adaptive specialization towards pollinator morphology. We explore floral tube length evolution within Tritoniopsis revoluta (Iridaceae), a species with considerable geographical tube length variation. We ask whether tube lengths of T. revoluta populations are associated with pollinator proboscis lengths, whether floral divergence occurs in the presence of different pollinators and whether floral convergence occurs between distantly related populations pollinated by the same pollinator. Finally, we ask whether tube length evolution is directional. Shifts between morphologically different pollinators were always associated with shifts in floral morphology, even when populations were very closely related. Distantly related populations had similar tube lengths when they were pollinated by the same pollinator. Shifts in tube length tended to be from short to long, although reversals were not infrequent. After correcting for the population-level phylogeny, there was a strong positive, linear relationship between floral tube length and pollinator proboscis length, suggesting that plants are functionally specialized on different pollinators at different sites. However, because tube length evolution in this system can be a bidirectional process, specialization to the local pollinator fauna is unlikely to result in evolutionary or ecological dead-ends such as canalization or range limitation.


Subject(s)
Bees/anatomy & histology , Biological Evolution , Diptera/anatomy & histology , Iridaceae/anatomy & histology , Iridaceae/physiology , Pollination , Animals , Bees/physiology , Diptera/physiology , Flowers/anatomy & histology , Phylogeny , South Africa
17.
PLoS One ; 9(2): e90084, 2014.
Article in English | MEDLINE | ID: mdl-24587217

ABSTRACT

Grassland prairies of western Oregon and Washington are among the most endangered ecosystems in the United States. Active management and restoration are needed to promote biodiversity in the region. To support plant production for use in habitat restoration, we developed germination protocols for greenhouse propagation of Iris tenax (Oregon iris). Dormancy was most effectively overcome (63% germination) by four weeks of warm stratification at 20/30°C followed by 6-12 weeks of cold stratification at 5°C suggesting that I. tenax may have morphophysiological dormancy. This result was consistent across multiple source populations.


Subject(s)
Adaptation, Physiological , Germination/physiology , Iridaceae/physiology , Seeds/physiology , Conservation of Natural Resources , Ecosystem , Oregon , Plant Dormancy , Temperature , Washington
18.
Bull Environ Contam Toxicol ; 92(3): 300-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24441625

ABSTRACT

The emergent hydrophyte Iris pseudacorus was constantly exposed over a 35-day period to atrazine in the laboratory. It could survive at an atrazine level up to 32 mg/L. Its relative growth rates were inhibited significantly when exposure dosage reached at or exceeded 2 mg/L (p < 0.05). No observed effect concentration and lowest observed effect concentration for growth were 1 and 2 mg/L, respectively. Chlorophyll a and b contents of the plant in all treatment groups were affected significantly, and chlorophyll a/b ratios of all atrazine treatment levels were pronouncedly higher than those of the control within 5 days of exposure (p < 0.05), but thereafter recovered to the level of the control. Differences of photosynthetic efficiency were significant between all atrazine treatments and the control; except for 1 mg/L on day 1 and 5, and 2 mg/L on day 1. I. pseudacorus did not show phytotoxicity symptoms after 35 days exposure to atrazine below 2 mg/L level, but photosynthetic efficiency had begun to decline.


Subject(s)
Atrazine/toxicity , Herbicides/toxicity , Iridaceae/drug effects , Water Pollutants, Chemical/toxicity , Chlorophyll/metabolism , Chlorophyll A , Iridaceae/physiology , Photosynthesis
19.
Ann Bot ; 113(2): 357-71, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24323246

ABSTRACT

BACKGROUND AND AIMS: Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences. METHODS: Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia. KEY RESULTS: Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types. CONCLUSIONS: The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes.


Subject(s)
Flowers/physiology , Genetic Speciation , Iridaceae/physiology , Pollination/physiology , Animals , Bayes Theorem , DNA, Plant/genetics , Likelihood Functions , Phylogeny , Phylogeography , South Africa , Species Specificity
20.
Zhongguo Zhong Yao Za Zhi ; 39(23): 4553-8, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25911800

ABSTRACT

The study is aimed to provide the theoretical basis for exploiting and utilization of salt-alkaline soil and cultivating Belamcanda chinensis. In this study, we exerted exogenous substances SNP, Spd to relieve the damage of the mixing salt-alkaline stress on B. chinensis seedling which is NaCl, Na2SO4, NaHCO3 and Na2CO3 four kinds of salt molar ratio of 9: 1: 9: 1, salt concentration of 100 mmol x L(-1). The result illustrated that high pH stress is a major factor caused the salt-alkaline stress, the interaction between time and the concentration of each, treatment was observed, what is more, there are synergies between the salt and alkali stress. The content of B. chinensis seedling leaves' membrane peroxidation index (MDA, O2-*) and metabolites (soluble protein, soluble sugars, organic acids) are showing an upward trend in varying degrees under 100 mmol x L(-1) salt-alkaline stress. It is effective to reduce the content of MDA and O2-*. and improve the levels of metabolites, in which the SNP (0.05 mmol x L(-1)) and Spd (0.5 mmol x L(-1)) to alleviate damage effects is the best. Therefore we can hold the conclusion that SNP and Spd can effectively mitigate the damage of B. chinensis seedling on salt-alkaline stress, improve the resistance ability of B. chinensis seedling which can provide the scientific basis for the utilization of salt-alkaline soil, and the cultivation of B. chinensis.


Subject(s)
Alkalies/metabolism , Iridaceae/physiology , Nitric Oxide/pharmacology , Sodium Chloride/metabolism , Iridaceae/chemistry , Iridaceae/drug effects , Iridaceae/growth & development , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/physiology , Seedlings/chemistry , Seedlings/drug effects , Seedlings/growth & development , Seedlings/physiology
SELECTION OF CITATIONS
SEARCH DETAIL