Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters










Publication year range
1.
Fitoterapia ; 176: 106022, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772509

ABSTRACT

Five new components including two new isoflavones, 5, 7, 2', 3'-tetrahydroxy-6-methoxyisoflavone (1), 5, 7, 2', 3'-tetrahydroxy-8-methoxyisoflavone (2), one flavonol 3, 5, 3', 4'-tetrahydroxy-7, 2'-dimethoxyflavonol (3), one flavanone (2S)-5, 7, 3'-trihydroxy-2'-methoxyflavanone (4), and one flavanonol (2R, 3R)-3, 5, 3', 4'-tetrahydroxy-7, 2'-dimethoxyflavanonol (5), along with nine known flavonoids (6-14) were isolated from under ground parts of Iris tenuifolia Pall. Their structures were elucidated by NMR and HRESIMS data and by comparison of CD spectra with compounds having similar structure. The separated compounds were evaluated for in vitro antioxidant activities by DPPH and ABTS. The α-glucosidase inhibitory activity of the compounds were evaluated with the pNPG method, the results indicated flavonoids were potential inhibitors of α-glucosidase. Moreover, in vitro anti-oxidative assay using flow cytometry indicated that compounds 1-5 showed strong oxidation resistance ability on C8D1A cells without affecting the cell viability.


Subject(s)
Antioxidants , Flavonoids , Glycoside Hydrolase Inhibitors , Iris Plant , Molecular Structure , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/chemistry , Iris Plant/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Isoflavones/pharmacology , Isoflavones/isolation & purification , Isoflavones/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
2.
Fitoterapia ; 175: 105920, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531480

ABSTRACT

The expected toxicity and resistance of chemotherapeutic agents necessitate and encourage for the use of natural chemotherapeutic sources of plant origin in the clinical stage of cancer therapy. Plants of the genus Iris (Iridaceae) used by local populations for the treatment of cancer, bacterial and viral infections. In this study, an ethanol extract of rhizomes of I. scariosa was prepared and tested for the cytotoxicity using the MTT assay. The extract exhibited the most potent cytotoxicity against the breast cancer cell line MCF7 (IC50 = 9.28 ± 0.49 µg/ml, selectively index ˃5), and induced apoptosis in MCF7 lines. Notably, the extract significantly inhibited the colony formation of MCF7 and HepG2 cancer cells at a concentration range from 10.6 to 85.0 µg/ml, including non-toxic concentrations for HepG2 cells. The ethanol extract was analyzed by HPLC, revealed the identification of 5 secondary metabolites (quercetin, rutin, myricetin, apigenin, artemisetin), the content of which was shown to reach around 15% of the extract. The petroleum ether (PE) part of the extract (yield 2.62%) was analyzed by GC-MS. The composition of tert-butyl methyl ether (TBME) part of the extract (yield 23.72%) was studied. Total of 15 individual compounds: two benzophenones, eight isoflavones, four flavones and a (2R)-flavanone were isolated. The pentamethoxyflavone artemisetin and flavanone pinocembrin were isolated for the first from Iris sp. The readily available isoflavones from the TBME part of extract (irilone, iriflogenin, irigenin and tectorigenin) may serve as new leads for the discovery of anticancer drugs.


Subject(s)
Antineoplastic Agents, Phytogenic , Iris Plant , Phytochemicals , Plant Extracts , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Iris Plant/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Hep G2 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , MCF-7 Cells , Rhizome/chemistry , Apoptosis/drug effects , Molecular Structure
3.
Physiol Plant ; 175(5): e14016, 2023.
Article in English | MEDLINE | ID: mdl-37882258

ABSTRACT

Iris lactea var. chinensis (Fisch.) Koidz has a unique floral fragrance that differs from that of other Iris spp.; however, its characteristic aroma composition remains unknown. This study aimed to identify the floral fragrance components of I. lactea var. chinensis during different flowering stages using headspace solid-phase microextraction in conjunction with gas chromatography mass spectrometry, electronic nose, and sensory evaluation. During the three flowering phases (bud stage, bloom stage, and decay stage), 70 volatile organic compounds (VOCs), including 13 aldehydes, 13 esters, 11 alcohols, 10 alkanes, 8 ketones, 7 terpenes, 7 benzenoids, and 1 nitrogenous compound, were identified. According to principal component analysis, the primary VOCs were (-)-pinene, ß-irone, methyl heptenone, phenylethanol, hexanol, and 2-pinene. A comparison of the differential VOCs across the different flowering stages using orthogonal partial least squares discriminant analysis and hierarchical clustering analysis revealed that 3-carene appeared only in the bud stage, whereas hexanol, ethyl caprate, ethyl caproate, linalool, (-)-pinene, and 2-pinene appeared or were present at significantly increased levels during the bloom stage. The phenylethanol, methyl heptenone, 3-methylheptane, and ß-irone reached a peak in the decay stage. The odor activity value and sensory evaluation suggested that "spicy" is the most typical odor of I. lactea var. chinensis, mainly due to 2-methoxy-3-sec-butylpyrazine, which is rare in floral fragrances.


Subject(s)
Iris Plant , Phenylethyl Alcohol , Volatile Organic Compounds , Iris Plant/chemistry , Odorants/analysis , Norisoprenoids , Hexanols
4.
Phytochemistry ; 203: 113370, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35977602

ABSTRACT

Four undescribed flavonoid glucosides (iridins B-C, tectoridin A and ampelopsinin A); one undescribed phenolic glucoside (diplostephioside B); one undescribed phenolic compound (phenanthrenetriol A); and seventeen known compounds were isolated from the rhizomes of Iris domestica. The chemical structures of the undescribed compounds were established by spectroscopic/spectrometric data interpretation using HRESIMS, NMR, and ECD. Tectoridin A, nigricin A and naringenin exhibited anti-inflammatory activities with inhibition rates of 53.71%, 57.68% and 88.71%, respectively, against the NF-κB signaling pathway at a concentration of 10 µM. 4'-O-methylnyasol (10 µM) exhibited 84.91% antiproliferative activity against the K562 human leukemia cell line with an IC50 value of 4.20 µM.


Subject(s)
Antineoplastic Agents , Iris Plant , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Flavonoids/analysis , Glucosides/chemistry , Humans , Iris Plant/chemistry , Molecular Structure , NF-kappa B , Phenols , Rhizome/chemistry
5.
Sci Rep ; 12(1): 11457, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794127

ABSTRACT

The development of new natural drugs for Helicobacter pylori (H. pylori) management has recently received significant attention. Iris confusa (I. confusa) was long used for the treatment of bacterial infections and gastritis. This study aimed at evaluating its effect on management of H. pylori infection and exploring its bioactive metabolites. The inhibitory potential of the polar (PF), non-polar (NPF) fractions and the isolated compounds against H. pylori using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay in addition to their cyclooxygenases (COX-1 and COX-2), and nitric oxide (NO) inhibitory activities were assessed. The most biologically active compound was tested for its selective H. pylori inosine-5'-monophosphate dehydrogenase (HpIMPDH) inhibitory potential. Chromatographic purification of PF and NPF allowed isolation of tectoridin, orientin, irigenin, tectorigenin, isoarborinol and stigmasterol. The PF exhibited significant anti-H. pylori (MIC 62.50 µg/mL), COX-1, COX-2 (IC50 of 112.08 ± 0.60 and 47.90 ± 1.50 µg/mL respectively, selectivity index SI of 2.34), and NO (IC50 47.80 ± 0.89 µg/mL) inhibitory activities, while irigenin was the most potent isolated compound. Irigenin was found to have a promising activity against HpIMPDH enzyme (IC50 of 2.07 ± 1.90 µM) with low activity against human hIMPDH2 (IC50 > 10 µM) than clarithromycin, assuring its selectivity. Overall, I. confusa and its isolated compounds may serve as a potential source of plant-based drugs for H. pylori control. This study scientifically validated the claimed anti-bacterial activity of I. confusa and revealed irigenin potential as a novel lead exhibiting anti H. pylori activity in a first record.


Subject(s)
Cyclooxygenase 2 Inhibitors , Cyclooxygenase 2 , Helicobacter Infections , Helicobacter pylori , IMP Dehydrogenase , Iris Plant , Isoflavones , Cyclooxygenase 2/metabolism , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Humans , IMP Dehydrogenase/antagonists & inhibitors , Iris Plant/chemistry , Isoflavones/pharmacology
6.
Phytochem Anal ; 33(6): 869-878, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35680077

ABSTRACT

INTRODUCTION: Iris L. are promising in medicine due to the biological activity of extracts. Iris sibirica L. is spread in Russia but its phytochemical composition has not been studied in detail though it is included in the Red Book. For this reason, I. sibirica L. biotechnology is in high demand. One of the key points in biotechnology is the regulation of plant metabolism using phytohormones. Obtaining of chromatographic metabolite profiles allows to control this process. OBJECTIVE: The aim of this study was to develop an approach for effective control of biotechnological raw materials of I. sibirica L. by flavonoid profiles using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and to investigate the influence of phytohormones in nutrient media on content of flavonoids. METHODOLOGY: Iris sibirica L. regenerated plants were grown on Murashige-Skoog media with 6-benzylaminopurine (6-BAP) and α-naphtylacetic acid (NAA) additives. To optimise extraction conditions, the design of the experiment was used. Profiles of polyphenols were obtained by HPLC-MS/MS in the positive and negative ionisation modes. RESULTS: The process for efficient extraction from leaves of I. sibirica L. were developed. The factors influencing the extraction efficiency of flavonoids have been determined. A total of 36 compounds were identified by HPLC-MS/MS. Among them isoflavones and their glycosides are the main classes. Addition of an auxin-like hormone increased the non-polar flavonoid levels, but decreased the polar ones. The variation in concentration of cytokinin (6-BAP) affected almost all of the analytes. CONCLUSION: The methodology for effective control of I. sibirica L. raw plant material biotechnology was developed by analysing obtained chromatographic polyphenol profiles.


Subject(s)
Iris Plant , Tandem Mass Spectrometry , Biotechnology , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Iris Plant/chemistry , Plant Extracts/chemistry , Plant Growth Regulators , Polyphenols/analysis , Tandem Mass Spectrometry/methods
7.
Biomed Chromatogr ; 36(7): e5369, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35285530

ABSTRACT

Iris genus plants are a valuable source of bioactive compounds, which are an important component for pharmaceutical development. The present article shows the potential for mineral nutrition with application of magnesium sulfate, iron chelates and potassium oxide affecting the phenolic compound contents in Iris hybrida 'Tsikavynka', I. hybrida 'Tambo' and I. hybridа 'Widecombe Fire'. The effect of mineral processing was specific to plant organs and varied in the component composition. The Iris rhizomes had an increased total phenolic compound content after treatment (up to 10% of the total isoflavonoid content, up to 8% of phenolic acids, up to 5% of γ-pyrones and up to 13% of flavonoids), determined using UV-vis spectroscopy. A positive effect of nutrition on the biosynthesis and content of individual isoflavonoids (tectoridin, nigricin d-glucoside, genistin, iristectorigenin B, nigricin, irigenin and irisolidone) and xanthone mangiferin in Iris rhizomes by HPLC was established. In addition, an increase in the chlorogenic acid amount in Iris leaves was noted. The results demonstrate the sensitivity of Iris phenylpropanoid metabolism to mineral nutrition and can be used to predict medical plant cultivation with increased content of bioactive constituents.


Subject(s)
Iridaceae , Iris Plant , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Iris Plant/chemistry , Phenols/analysis , Rhizome/chemistry
8.
Chem Biodivers ; 19(4): e202200149, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35294108

ABSTRACT

The ever-growing demand for active compounds of plant origin contributes to the implementation of cultivation methods for medicinal plants, according to the WHO guideline "Good Agricultural and Collection Practice (GACP) for Starting Materials of Herbal Origin" to obtain high-quality raw material with the stable phytocomponent composition. Therefore, the development of the cultivation and processing stages of Iris varieties leaves is necessary and promising. The present article showed the potential of proper cultivation with GACP recommendations on affecting the phenolic compounds content in Iris×hybrida hort. 'Indian Pow Waw', Iris×hybrida hort. 'Galleon Gold', and Iris×hybrida hort. 'Mini Dinamo' leaves. The cultivation process was carried out on the experimental sites of the flowering and ornamental plants department of M.M. Hryshko National Botanical Garden of the National Academy of Sciences of Ukraine (Kyiv, Ukraine) during 2018-2021. A positive effect of Iris samples proper cultivation and content of isoflavonoids (tectoridin, nigricin D-glucoside, genistin, iristectorigenin B, nigricin, irigenin, irisolidone), xanthone mangiferin, and also chlorogenic acid in Irises leaves by HPLC has been established. According to the analysis mangiferin (7.57∼28.75 µg/g), genistin (3324.82∼14642.10 µg/g), irisolidone (673.53∼2015.81 µg/g), and irigenin (3904.37∼1595.94 µg/g) were the dominant components and these compounds can be proposed as chemical markers for Iris raw material. The obtained results indicate a significant positive effect of the introduction and observance of the proper cultivation of medicinal plants to obtain a stable bioactive compounds content, in this case, on the example of Iris genus plants. Further work on the implementation of the good practice recommendation is planned to be carried out for various medicinal plants, since only controlled cultivation makes it possible to obtain high-quality raw materials with a standardized composition.


Subject(s)
Iris Plant , Chromatography, High Pressure Liquid , Drug Industry , Iris Plant/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
9.
J Ethnopharmacol ; 282: 114658, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34555449

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The use of plant extracts and their phytochemicals as candidates for targeting the microbial resistance inhibition is increasingly focused in last decades. In Mongolian traditional medicine, Irises were long used for the treatment of bacterial infections. Irises have been used since the Ancient Egyptians. AIM OF THE STUDY: Chemical composition and virulence inhibition potential of both polar (PF) and non-polar fractions (NPF) of three common Iris species (I. confusa, I. pseudacorus and I. germanica) were explored. MATERIAL AND METHODS: Secondary metabolites profiling was characterized by the UPLC-HRMS/MS technique. Multi-variate data analysis was performed using Metaboanalyst 3.0. Anti-virulence inhibitory activity was evaluated via anti-haemolytic assay and Quantitative biofilm inhibition assay. RESULTS: I. pseudacorus PF exhibited the most potent effect against S. aureus haemolytic activity. All the tested fractions from all species, except I. pseudacorus NPF, have no significant inhibition on the biofilm formation of methicillin resistant and sensitive (MRSA and MSSA) S. aureus. I. pseudacorus NPF showed potent biofilm inhibitory potential of 71.4 and 85.8% against biofilm formation of MRSA and MSSA, respectively. Metabolite profiling of the investigated species revealed ninety and forty-five metabolites detected in the PFs and NPFs, respectively. Nigricin-type, tectorigenin-type isoflavonids and xanthones allowed the discrimination of I. pseudacorus PF from the other species, highlighting the importance of those metabolites in exerting its promising activity. On the other hand, triterpene acids, iridals, triacylglycerols and ceramides represented the metabolites detected in highest abundance in I. pseudacorus NPF. CONCLUSIONS: This is the sole map represents the secondary metabolites profiling of the PFs and NPFs of common Iris species correlating them with the potent explored Staphylococcus aureus anti-virulence activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chromatography, Liquid/methods , Iris Plant/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Staphylococcus aureus/drug effects , Tandem Mass Spectrometry/methods , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Biofilms/growth & development , Microbial Sensitivity Tests , Rhizome/chemistry , Staphylococcus aureus/physiology
10.
Molecules ; 26(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771113

ABSTRACT

Phytochemical investigation of the ethanol extract of underground parts of Iris tenuifolia Pall. afforded five new compounds; an unusual macrolide termed moniristenulide (1), 5-methoxy-6,7-methylenedioxy-4-O-2'-cycloflavan (2), 5,7,2',3'-tetrahydroxyflavanone (3), 5-hydroxy-6,7-dimethoxyisoflavone-2'-O-ß-d-glucopyranoside (9), 5,2',3'-dihydroxy-6,7-dimethoxyisoflavone (10), along with seven known compounds (4-8, 11-12). The structures of all purified compounds were established by analysis of 1D and 2D NMR spectroscopy and HR-ESI-MS. The antimicrobial activity of the compounds 1-3, 5, 9, and 10 was investigated using the agar diffusion method against fungi, Gram-positive and Gram-negative bacteria. In consequence, new compound 3 was found to possess the highest antibacterial activity against Enterococcus faecalis VRE and Mycobacterium vaccae. Cell proliferation and cytotoxicity tests were also applied on all isolated compounds and plant crude extract in vitro with the result of potent inhibitory effect against leukemia cells. In particular, the newly discovered isoflavone 10 was active against both of the leukemia cells K-562 and THP-1 while 4-6 of the flavanone type compounds were active against only THP-1.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Chromans/pharmacology , Iris Plant/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Cell Line , Cell Survival/drug effects , Chromans/chemistry , Dose-Response Relationship, Drug , Humans , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure , Plant Extracts/chemistry
11.
Mol Biotechnol ; 63(11): 1030-1039, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34196922

ABSTRACT

Glycosylflavonoids are a class of natural products with multiple pharmacological activities and a lot of glycosyltransferases from various plant species have been reported that they were involved in the biosynthesis of these phytochemicals. However, no corresponding glycosyltransferase has been identified from the famous horticultural and medicinal plant Iris tectorum Maxim. Here, UGT73CD1, a novel glycosyltransferase, was identified from I. tectorum. based on transcriptome analysis and functional identification. Phylogenetic analysis revealed that UGT73CD1 grouped into the clade of flavonoid 7-OH OGTs. Biochemical analysis showed that UGT73CD1 was able to glycosylate tectorigenin at 7-OH to produce tectoridin, and thus assigned as a 7-O-glycosyltransferase. In addition, it also possessed robust catalytic promiscuity toward 12 structurally diverse flavonoid scaffolds and 3, 4-dichloroaniline, resulting in forming O- and N-glycosides. This work will provide insights into efficient biosynthesis of structurally diverse flavonoid glycosides for drug discovery.


Subject(s)
Flavonoids/metabolism , Glycosides/metabolism , Glycosyltransferases/metabolism , Iris Plant/enzymology , Isoflavones/metabolism , Phylogeny , Plant Proteins/metabolism , Amino Acid Sequence , Flavonoids/chemistry , Glycosides/chemistry , Glycosylation , Glycosyltransferases/chemistry , Iris Plant/chemistry , Isoflavones/chemistry , Plant Proteins/chemistry , Sequence Homology, Amino Acid , Substrate Specificity
12.
J Ethnopharmacol ; 278: 114311, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34111536

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Iris is the largest genus in the family Iridaceae. Iris plants are distributed in tropical regions of the world. They are used as ornamentals and traditionally used to treat a variety of ailments. AIM: This study aimed to evaluate the anti-inflammatory effect of flavonoids isolated from Iris spuria L. MATERIALS AND METHODS: The isolated flavonoids (1-4) were identified on the basis of different spectroscopic methods (1D- and 2D-NMR) and co-TLC with authentic samples. The anti-inflammatory effect was tested on lipopolysaccharide (LPS)-induced nitric oxide (NO) production from rat-isolated peritoneal macrophages. Modeling and docking simulations of the compounds were performed using Molecular Operating Environment software and the crystal structure of the murine inducible nitric oxide synthase (iNOS). RESULTS: Four flavonoids (1-4) had been isolated from the rhizomes of Iris spuria L. (Hocka Hoona) for the first time. They were characterized as 5,7,2'-trihydroxy-6-methoxyflavanone (1), tectorigenin 7-O-ß-D-glucopyranoside (2), tectorigenin 4'-O-ß-D-glucopyranoside (3), and tectorigenin 4'-O-[ß-D-glucopyranosyl(1 â†’ 6)-ß-D-glucopyranoside] (4). The selective inducible NO synthase inhibitor; aminoguanidine was used as a positive control. The production of nitric oxide (NO) was inhibited in a dose-dependent manner of the isolated compounds along with isoflavonoids (5-9) previously isolated from Iris spuria L. (Calizona). A concentration of 60 µg/ml of all tested compounds showed a significant inhibitory effect compared to media with LPS. Molecular modeling experiments supported the obtained biological data. CONCLUSION: Our results reveal that flavonoids isolated from I. spuria L. (Hocka Hoona) and I. spuria L. (Calizona) appear to have a potential anti-inflammatory effect via inhibition of iNOS.


Subject(s)
Flavonoids/pharmacology , Inflammation/drug therapy , Iris Plant/chemistry , Lipopolysaccharides/toxicity , Macrophages/drug effects , Molecular Docking Simulation , Animals , Flavonoids/chemistry , Inflammation/chemically induced , Male , Molecular Structure , Nitric Oxide Synthase Type II/antagonists & inhibitors , Phytotherapy , Plant Extracts/chemistry , Rats , Rats, Wistar , Rhizome/chemistry
13.
J Pharm Pharmacol ; 73(5): 611-625, 2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33772287

ABSTRACT

OBJECTIVES: Iris germanica L. is a medicinal plant, which has a long history of uses, mainly in medieval Persia and many places worldwide for the management of a wide variety of diseases. In this study, we aimed to review ethnopharmacological applications in addition to phytochemical and pharmacological properties of I. germanica. KEY FINDINGS: Ethnomedical uses of I. germanica have been reported from many countries such as China, Pakistan, India, Iran and Turkey. The medicinal part of I. germanica is the rhizome and the roots. Based on phytochemical investigations, different bioactive compounds, including flavonoids, triterpenes, sterols, phenolics, ceramides and benzoquinones, have been identified in its medicinal parts. Current pharmacological studies represent that the plant possesses several biological and therapeutic effects, including neuroprotective, hypoglycaemic, hypolipidaemic, antimicrobial, antioxidant, antiproliferative, anti-inflammatory, antiplasmodial, antifungal, immunomodulatory, cytotoxic and antimutagenic effects. SUMMARY: Although the majority of preclinical studies reported various pharmacological activities of this plant, however, sufficient clinical trials are not currently available. Therefore, to draw a definitive conclusion about the efficacy and therapeutic activities of I. germanica and its bioactive compounds, further clinical and experimental studies are required. Moreover, it is necessary to focus on the pharmacokinetic and safety studies on the extracts of I. germanica.


Subject(s)
Iris Plant/chemistry , Plant Extracts/pharmacology , Animals , Anti-Infective Agents , China , Ethnopharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , India , Iran , Medicine, Traditional , Pakistan , Phytochemicals/pharmacology , Plants, Medicinal , Rhizome/chemistry
14.
Environ Geochem Health ; 43(4): 1385-1400, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33687604

ABSTRACT

This paper proposes the use of wetlands as a phytoremediation strategy for areas of mining and maritime influence in the southeast of Spain. Potentially toxic elements (PTEs) tolerant and salinity-resistant macrophytes (Phragmites australis, Juncus effusus and Iris pseudacorus) have been used. The experiment is carried out in an aerobic artificial wetland using representative sediments affected by mining activities in the study area. Selected species were placed in pots containing substrates made with different mixtures of topsoil and/or peat, mining residues (black or yellow sand). After six months, rhizosphere, root and aerial parts were collected. A transfer study of As, Pb, Zn and Cu is performed, determining contents in rhizosphere and plant (aerial and underground part). From these data, the TF and BCF were calculated for each plant in 15 different substrates. The work is complemented by an initial study of scanning electron microscopy (SEM-EDX) of plants. The obtained results indicate a tolerance of the metallophytes to these PTEs, which may favour the obtaining of a naturalized habitat that acts as an effective protective barrier to the ecosystem, that is easy to maintain and that avoid the risk of transfer to the trophic chain. The use of these species can be a complement to the chemical stabilization proposed for the whole area and carried out in experimental plots. Because they are perennial plants, it is necessary to continue with the experiments and obtain results in a longer period of time that allows to evaluate yield and stabilization.


Subject(s)
Biodegradation, Environmental , Metals/pharmacokinetics , Plants/metabolism , Soil Pollutants/pharmacokinetics , Wetlands , Calcium Compounds , Ecosystem , Hydrogen-Ion Concentration , Iris Plant/chemistry , Iris Plant/metabolism , Metals/analysis , Metals/toxicity , Mining , Oxides , Plants/chemistry , Poaceae/chemistry , Poaceae/metabolism , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Spain
15.
Chem Biodivers ; 18(3): e2000969, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33438337

ABSTRACT

The present article reports results of analysis of carboxylic acids in leaves of Iris species from Ukraine using a gas chromatography (GC) method with mass spectrometric (MS) detection (GC/MS). Carboxylic acids play significant roles in contemporary society as evidenced by multiple applications in fields of medicine, agriculture, pharmacy, food, and other industries. Study of natural plant products as a source of organic acids is of particular interest. Carboxylic acid composition of leaves of Iris hungarica Waldst. & Kit., Iris germanica L., Iris pallida Lam., and Iris variegate L. was studied for the first time applying GC/MS method. The mass spectrums of compounds were matched with NIST and WILEY Libraries. The GC/MS analysis revealed the presence of 26 common acids in the plant raw materials studied. The short-chain carboxylic acids, such as citric (1337.5-12364.4 mg/kg), malic (50.8-4558.0 mg/kg) and oxalic (1199.0-3435.2 mg/kg) acids were contained in significantly high quantity in all samples. Ferulic, p-coumaric and vanillic acids were the most abundant among phenolic acids. α-Linolenic acid was dominant in the leaves of I. germanica (869.5 mg/kg), I. pallida (753.3 mg/kg), and I. variegate (250.3 mg/kg) among polyunsaturated fatty acids, however, linoleic acid prevailed in the plant raw material of I. hungarica (1150.7 mg/kg). Since the leaves of Iris species studied contain carboxylic acids with diverse pharmacological activity, extracts of these raw materials are perspective for development food supplements and medicines.


Subject(s)
Carboxylic Acids/analysis , Iris Plant/chemistry , Phytochemicals/analysis , Gas Chromatography-Mass Spectrometry , Plant Leaves/chemistry , Species Specificity , Ukraine
16.
Molecules ; 26(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430398

ABSTRACT

A dozen Iris species (Iridaceae) are considered traditional remedies in Kurdistan, especially for treating inflammations. Phytochemical studies are still scarce. The information reported in the literature about Iris species growing in Kurdistan has been summarized in the first part of this paper, although, except for Iris persica, investigations have been performed on vegetal samples collected in countries different from Kurdistan. In the second part of the work, we have investigated, for the first time, the contents of the methanolic extracts of Iris postii aerial parts and rhizomes that were collected in Kurdistan. Both extracts exhibited a significant dose-dependent free radical scavenging and total antioxidant activities, comparable to those of ascorbic acid. Medium-pressure liquid chromatographic separations of the two extracts afforded l-tryptophan, androsin, isovitexin, swertisin, and 2″-O-α-l-rhamnopyranosyl swertisin from the aerial parts, whereas ε-viniferin, trans-resveratrol 3,4'-O-di-ß-d-glucopyranoside, and isotectorigenin were isolated from the rhizomes. This is the first finding of the last three metabolites from an Iris species. The various remarkable biological activities of isolated compounds scientifically sustain the traditional use of I. postii as a medicinal plant.


Subject(s)
Iris Plant/chemistry , Phenols/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Isoflavones , Molecular Structure , Phenols/analysis , Plant Extracts/chemistry , Plant Extracts/pharmacology
17.
Nat Prod Res ; 35(6): 1029-1034, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31135219

ABSTRACT

Oxidative stress has been identified as an underlying factor in the development of insulin resistance, ß-cell dysfunction, impaired glucose tolerance and type 2 diabetes mellitus and it also play major role in kidney stone formation. The present study is aimed to elucidate the in vitro nephroprotective activity of two isoflavonoid glycosides, tectorigenin 7-O-ß-D-glucosyl-(1→6)-ß-D-glucoside (1) and tectorigenin 7-O-ß-D-glucosyl-4'-O-ß-D-glucoside (2) isolated from the n-BuOH fraction of Iris spuria L. (Zeal) rhizome MeOH extract against oxalate and high glucose-induced oxidative stress in NRK-49F cells. The results revealed that compounds 1 and 2 significantly increased the antioxidant enzyme activities and decreased MDA levels in both oxalate and high glucose stress. Treatment with these phytochemicals effectively down-regulated expression of crystal modulator genes and pro-fibrotic genes in oxalate and high glucose-mediated stress respectively. This study indicates cytoprotective, antioxidant, anti-urolithic and anti-diabetic effects of compounds 1 and 2 against oxalate and high glucose stress.[Figure: see text].


Subject(s)
Glycosides/isolation & purification , Glycosides/therapeutic use , Hyperglycemia/drug therapy , Hyperoxaluria/drug therapy , Iris Plant/chemistry , Isoflavones/therapeutic use , Kidney/pathology , Protective Agents/therapeutic use , Animals , Antioxidants/pharmacology , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Cytoprotection/drug effects , Gene Expression Regulation/drug effects , Glucose/toxicity , Glycosides/chemistry , Glycosides/pharmacology , Hyperglycemia/genetics , Hyperoxaluria/genetics , Isoflavones/chemistry , Isoflavones/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/genetics , Protective Agents/chemistry , Protective Agents/pharmacology , Rats , Reactive Oxygen Species/metabolism
18.
Rapid Commun Mass Spectrom ; 35(1): e8959, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33001505

ABSTRACT

RATIONALE: Iris tectorum Maxim. is a traditional medicinal herb that is commonly used to treat inflammatory conditions. The present study investigated the fragmentation patterns of isoflavone glycosides and their qualitative analysis. In addition, lipopolysaccharide (LPS)-induced RAW264.7 macrophages were used to evaluate the anti-inflammatory properties of I. tectorum Maxim. samples collected at different time points during the year. METHODS: High-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (HPLC/QTOF-MS/MS) and HPLC with diode-array detection were employed for qualitative and quantitative analysis. The fragmentation patterns of the isoflavones were observed in negative electrospray ionization mode with collision-induced dissociation (CID). Their anti-inflammatory activity was assessed via nitric oxide (NO) production in LPS-treated RAW264.7 macrophages. RESULTS: A total of 15 chemical components were observed and tentatively identified using HPLC/QTOF-MS/MS. At low collision energy, the relative abundances of the aglycone radical anions Y0 - , [Y0 - H]-• , [Y0 - CH3 ]-• and [Y0 - H- CH2 ]-• were used for the structural characterization of tectoridin and tectorigenin-4'-O-ß-D-glucoside. The radical ions [Y0 - CH3 ]-• and [Y0 - H - 2CH3 ]-• were also employed to differentiate between iristectorin A and iristectorin B based upon their high-energy CID spectra. Levels of 9.02 mg/g of tectoridin and 1.04 mg/g of tectorigenin were found in samples collected in June, which exhibited 69.7% NO inhibitory activity. CONCLUSIONS: The characteristic fragmentation patterns enabled us to reliably identify isoflavone glycosides. The results of the quantitative determination and NO inhibitory activity offer insight into the optimal I. tectorum Maxim. harvesting time.


Subject(s)
Glycosides/analysis , Iris Plant/chemistry , Isoflavones/analysis , Nitric Oxide/metabolism , Plants, Medicinal/chemistry , Animals , Anti-Inflammatory Agents/analysis , Chromatography, High Pressure Liquid/methods , Mice , Nitric Oxide/analysis , Plant Extracts/chemistry , RAW 264.7 Cells , Tandem Mass Spectrometry/methods
19.
Molecules ; 25(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050063

ABSTRACT

The major groups of antioxidant compounds (isoflavonoids, xanthones, hydroxycinnamic acids) in the rhizome methanol extracts of four Ukrainian Iris sp. (Iris pallida, Iris hungarica, Iris sibirica, and Iris variegata) were qualitatively and quantitatively analyzed using HPLC-DAD and UPLC-MS/MS. Gallic acid, caffeic acid, mangiferin, tectoridin, irigenin, iristectorigenin B, irisolidone, 5,6-dihydroxy-7,8,3',5'-tetramethoxyisoflavone, irisolidone-7-O-ß-d-glucopyranoside, germanaism B, and nigricin were recognized by comparing their UV/MS spectra, chromatographic retention time (tR) with those of standard reference compounds. I. hungarica and I. variegata showed the highest total amount of phenolic compounds. Germanaism B was the most abundant component in the rhizomes of I. variegata (7.089 ± 0.032 mg/g) and I. hungarica (6.285 ± 0.030 mg/g). The compound analyses showed good calibration curve linearity (r2 > 0.999) and low detection and quantifications limit. These results validated the method for its use in the simultaneous quantitative evaluation of phenolic compounds in the studied Iris sp. I. hungarica and I. variegata rhizomes exhibited antioxidant activity, as demonstrated by the HPLC-ABTS system and NRF2 expression assay and anti-inflammatory activity on respiratory burst in human neutrophils. Moreover, the extracts showed anti-allergic and cytotoxic effects against cancer cells. Anti-coronavirus 229E and lipid formation activities were also evaluated. In summary, potent antioxidant marker compounds were identified in the examined Iris sp.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Iris Plant/chemistry , Plant Extracts/pharmacology , Coronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Humans , NF-E2-Related Factor 2/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Cells, Cultured
20.
Molecules ; 25(15)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722555

ABSTRACT

In this study, the chemical diversity of polyphenols in Iris lactea var. chinensis seeds was identified by combined MS/MS-NMR analysis. Based on the annotated chemical profile, the isolation of stilbene oligomers was conducted, and consequently, stilbene oligomers (1-10) were characterized. Of these, compounds 1 and 2 are previously undescribed stilbene dimer glycoside (1) and tetramer glycoside (2), respectively. Besides, to evaluate this plant seed as a rich source of stilbene oligomers, we quantified three stilbene oligomers of I. lactea var. chinensis seeds. The contents of three major stilbene oligomers-trans-ε-viniferin (3), vitisin A (6), and vitisin B (9)-in I. lactea var. chinensis seeds were quantified as 2.32 (3), 4.95 (6), and 1.64 (9) mg/g dry weight (DW). All the isolated compounds were tested for their inhibitory activities against influenza neuraminidase. Compound 10 was found to be active with the half maximal inhibitory concentration (IC50) values at 4.76 µM. Taken together, it is concluded that I. lactea var. chinensis seed is a valuable source of stilbene oligomers with a human health benefit.


Subject(s)
Iris Plant/chemistry , Neuraminidase/antagonists & inhibitors , Polyphenols/chemistry , Viruses/drug effects , Humans , Plant Roots/chemistry , Polyphenols/pharmacology , Seeds/chemistry , Tandem Mass Spectrometry , Viruses/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...