Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 332
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000539

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently reported. In this study, several mIDH1 inhibitors with the common backbone pyridin-2-one were explored using the three-dimensional structure-activity relationship (3D-QSAR), scaffold hopping, absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, R2 = 0.980, Q2 = 0.765) and comparative molecular similarity index analysis (CoMSIA, R2 = 0.997, Q2 = 0.770) were used to build 3D-QSAR models, which yielded notably decent predictive ability. A series of novel structures was designed through scaffold hopping. The predicted pIC50 values of C3, C6, and C9 were higher in the model of 3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors, exhibiting strong binding interactions, while the analyzed parameters were free energy landscape (FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA). Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1, which was -93.25 ± 5.20 kcal/mol. This research offers theoretical guidance for the rational design of novel mIDH1 inhibitors.


Subject(s)
Isocitrate Dehydrogenase , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyridones/chemistry , Pyridones/pharmacology
2.
Phys Chem Chem Phys ; 26(27): 18989-18996, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38953374

ABSTRACT

Isocitrate dehydrogenase 2 (IDH2) is a homodimeric enzyme that plays an important role in energy production. A mutation R140Q in one monomer makes the enzyme tumourigenic. Enasidenib is an effective inhibitor of IDH2/R140Q. A secondary mutation Q316E leads to enasidenib resistance. This mutation was hitherto only found in trans, i.e. where one monomer has the R140Q mutation and the other carries the Q316E mutation. It is not clear if the mutation only leads to resistance when in trans or if it has been discovered in trans only by chance, since it was only reported in two patients. Using molecular dynamics (MD) simulations we show that the binding of enasidenib to IDH2 is indeed much weaker when the Q316E mutation takes place in trans not in cis, which provides a molecular explanation for the clinical finding. This is corroborated by non-covalent interaction (NCI) analysis and DFT calculations. Whereas the MD simulations show a loss of one hydrogen bond upon the resistance mutation, NCI and energy decomposition analysis (EDA) reveal that a multitude of interactions are weakened.


Subject(s)
Isocitrate Dehydrogenase , Molecular Dynamics Simulation , Mutation , Triazines , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Humans , Triazines/chemistry , Triazines/pharmacology , Hydrogen Bonding , Aminopyridines/chemistry , Aminopyridines/pharmacology , Density Functional Theory , Drug Resistance, Neoplasm/genetics
3.
Sci Rep ; 14(1): 16721, 2024 07 19.
Article in English | MEDLINE | ID: mdl-39030304

ABSTRACT

Antigen-specific cytotoxic CD8 T cells are extremely effective in controlling tumor growth and have been the focus of immunotherapy approaches. We leverage in silico tools to investigate whether the occurrence of mutations in proteins previously described as immunogenic and highly expressed by glioblastoma multiforme (GBM), such as Epidermal Growth Factor Receptor (EGFR), Isocitrate Dehydrogenase 1 (IDH1), Phosphatase and Tensin homolog (PTEN) and Tumor Protein 53 (TP53), may be contributing to the differential presentation of immunogenic epitopes. We recovered Class I MHC binding information from wild-type and mutated proteins using the Immune Epitope Database (IEDB). After that, we built peptide-MHC (pMHC-I) models in HLA-arena, followed by hierarchical clustering analysis based on electrostatic surface features from each complex. We identified point mutations that are determinants for the presentation of a set of peptides from TP53 protein. We point to structural features in the pMHC-I complexes of wild-type and mutated peptides, which may play a role in the recognition of CD8 T cells. To further explore these features, we performed 100 ns molecular dynamics simulations for the peptide pairs (wt/mut) selected. In pursuit of novel therapeutic targets for GBM treatment, we selected peptides where our predictive results indicated that mutations would not disrupt epitope presentation, thereby maintaining a specific CD8 T cell immune response. These peptides hold potential for future GBM interventions, including peptide-based or mRNA vaccine development applications.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , Glioblastoma , Isocitrate Dehydrogenase , Tumor Suppressor Protein p53 , Glioblastoma/immunology , Glioblastoma/genetics , Glioblastoma/therapy , Humans , CD8-Positive T-Lymphocytes/immunology , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Isocitrate Dehydrogenase/chemistry , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , Antigen Presentation/immunology , Mutation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/immunology , PTEN Phosphohydrolase/chemistry , ErbB Receptors/immunology , ErbB Receptors/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/therapy
4.
Proteins ; 92(9): 1113-1126, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38687146

ABSTRACT

An explicit analytic solution is given for the Langevin equation applied to the Gaussian Network Model of a protein subjected to both a random and a deterministic periodic force. Synchronous and asynchronous components of time correlation functions are derived and an expression for phase differences in the time correlations of residue pairs is obtained. The synchronous component enables the determination of dynamic communities within the protein structure. The asynchronous component reveals causality, where the time correlation function between residues i and j differs depending on whether i is observed before j or vice versa, resulting in directional information flow. Driver and driven residues in the allosteric process of cyclophilin A and human NAD-dependent isocitrate dehydrogenase are determined by a perturbation-scanning technique. Factors affecting phase differences between fluctuations of residues, such as network topology, connectivity, and residue centrality, are identified. Within the constraints of the isotropic Gaussian Network Model, our results show that asynchronicity increases with viscosity and distance between residues, decreases with increasing connectivity, and decreases with increasing levels of eigenvector centrality.


Subject(s)
Cyclophilin A , Humans , Cyclophilin A/chemistry , Cyclophilin A/metabolism , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Allosteric Regulation , Proteins/chemistry , Proteins/metabolism , Models, Molecular , Protein Conformation , Normal Distribution
5.
Curr Opin Struct Biol ; 82: 102672, 2023 10.
Article in English | MEDLINE | ID: mdl-37542909

ABSTRACT

Eukaryotic NAD-dependent isocitrate dehydrogenases (NAD-IDHs) are mitochondria-localized enzymes which catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate using NAD as a cofactor. In mammals, NAD-IDHs (or IDH3) consist of three types of subunits (α, ß, and γ), and exist as (α2ßγ)2 heterooctamer. Mammalian NAD-IDHs are regulated allosterically and/or competitively by a diversity of metabolites including citrate, ADP, ATP, NADH, and NADPH, which are associated with cellular metabolite flux, energy demands, and redox status. Proper assembly of the component subunits is essential for the catalysis and regulation of the enzymes. Recently, crystal structures of human IDH3 have been solved in apo form and in complex with various ligands, revealing the molecular mechanisms for the assembly, catalysis, and regulation of the enzyme.


Subject(s)
Isocitrate Dehydrogenase , NAD , Animals , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/metabolism , NAD/metabolism , Isocitrates/metabolism , Mammals/metabolism , Catalysis , Kinetics
6.
Biochemistry ; 62(6): 1145-1159, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36854124

ABSTRACT

Human isocitrate dehydrogenase 1 (IDH1) is a highly conserved metabolic enzyme that catalyzes the interconversion of isocitrate and α-ketoglutarate. Kinetic and structural studies with IDH1 have revealed evidence of striking conformational changes that occur upon binding of its substrates, isocitrate and NADP+, and its catalytic metal cation. Here, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to build a comprehensive map of the dynamic conformational changes experienced by IDH1 upon ligand binding. IDH1 proved well-suited for HDX-MS analysis, allowing us to capture profound changes in solvent accessibility at substrate binding sites and at a known regulatory region, as well as at more distant local subdomains that appear to support closure of this protein into its active conformation. HDX-MS analysis suggested that IDH1 is primarily purified with NADP(H) bound in the absence of its metal cation. Subsequent metal cation binding, even in the absence of isocitrate, was critical for driving large conformational changes. WT IDH1 folded into its fully closed conformation only when the full complement of substrates and metal was present. Finally, we show evidence supporting a previously hypothesized partially open conformation that forms prior to the catalytically active state, and we propose this conformation is driven by isocitrate binding in the absence of metal.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry , Isocitrate Dehydrogenase , Humans , Isocitrate Dehydrogenase/chemistry , Deuterium , Isocitrates/metabolism , Deuterium Exchange Measurement , NADP/metabolism , Ligands
7.
J Biol Chem ; 299(2): 102873, 2023 02.
Article in English | MEDLINE | ID: mdl-36621625

ABSTRACT

Variants of isocitrate dehydrogenase (IDH) 1 and 2 (IDH1/2) alter metabolism in cancer cells by catalyzing the NADPH-dependent reduction of 2-oxoglutarate (2OG) to (2R)-hydroxyglutarate. However, it is unclear how derivatives of 2OG can affect cancer cell metabolism. Here, we used synthetic C3- and C4-alkylated 2OG derivatives to investigate the substrate selectivities of the most common cancer-associated IDH1 variant (R132H IDH1), of two cancer-associated IDH2 variants (R172K IDH2, R140Q IDH2), and of WT IDH1/2. Absorbance-based, NMR, and electrochemical assays were employed to monitor WT IDH1/2 and IDH1/2 variant-catalyzed 2OG derivative turnover in the presence and absence of 2OG. Our results reveal that 2OG derivatives can serve as substrates of the investigated IDH1/2 variants, but not of WT IDH1/2, and have the potential to act as 2OG-competitive inhibitors. Kinetic parameters reveal that some 2OG derivatives, including the natural product 3-methyl-2OG, are equally or even more efficient IDH1/2 variant substrates than 2OG. Furthermore, NMR and mass spectrometry studies confirmed IDH1/2 variant-catalyzed production of alcohols in the cases of the 3-methyl-, 3-butyl-, and 3-benzyl-substituted 2OG derivatives; a crystal structure of 3-butyl-2OG with an IDH1 variant (R132C/S280F IDH1) reveals active site binding. The combined results highlight the potential for (i) IDH1/2 variant-catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhibition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv) possible use of IDH1/2 variants as biocatalysts.


Subject(s)
Isocitrate Dehydrogenase , Ketoglutaric Acids , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/chemistry , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Neoplasms/metabolism , Substrate Specificity , Protein Binding/drug effects , Crystallography
8.
J Biol Chem ; 298(12): 102695, 2022 12.
Article in English | MEDLINE | ID: mdl-36375638

ABSTRACT

Human NAD-dependent isocitrate dehydrogenase or IDH3 (HsIDH3) catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the tricarboxylic acid cycle. It consists of three types of subunits (α, ß, and γ) and exists and functions as the (αßαγ)2 heterooctamer. HsIDH3 is regulated allosterically and/or competitively by numerous metabolites including CIT, ADP, ATP, and NADH. Our previous studies have revealed the molecular basis for the activity and regulation of the αß and αγ heterodimers. However, the molecular mechanism for the allosteric activation of the HsIDH3 holoenzyme remains elusive. In this work, we report the crystal structures of the αß and αγ heterodimers and the (αßαγ)2 heterooctamer containing an α-Q139A mutation in the clasp domain, which renders all the heterodimers and the heterooctamer constitutively active in the absence of activators. Our structural analysis shows that the α-Q139A mutation alters the hydrogen-bonding network at the heterodimer-heterodimer interface in a manner similar to that in the activator-bound αγ heterodimer. This alteration not only stabilizes the active sites of both αQ139Aß and αQ139Aγ heterodimers in active conformations but also induces conformational changes of the pseudo-allosteric site of the αQ139Aß heterodimer enabling it to bind activators. In addition, the αQ139AICT+Ca+NADßNAD structure presents the first pseudo-Michaelis complex of HsIDH3, which allows us to identify the key residues involved in the binding of cofactor, substrate, and metal ion. Our structural and biochemical data together reveal new insights into the molecular mechanisms for allosteric regulation and the catalytic reaction of HsIDH3.


Subject(s)
Isocitrate Dehydrogenase , Humans , Allosteric Regulation , Allosteric Site , Catalysis , Catalytic Domain , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Kinetics , Mutation
9.
Protein Sci ; 30(12): 2396-2407, 2021 12.
Article in English | MEDLINE | ID: mdl-34647384

ABSTRACT

Many isocitrate dehydrogenases (IDHs) are dimeric enzymes whose catalytic sites are located at the intersubunit interface, whereas monomeric IDHs form catalytic sites with single polypeptide chains. It was proposed that monomeric IDHs were evolved from dimeric ones by partial gene duplication and fusion, but the evolutionary process had not been reproduced in laboratory. To construct a chimeric monomeric IDH from homo-dimeric one, it is necessary to reconstitute an active center by a duplicated region; to properly link the duplicated region to the rest part; and to optimize the newly formed protein surface. In this study, a chimeric monomeric IDH was successfully constructed by using homo-dimeric Escherichia coli IDH as a start point by rational design and site-saturation mutagenesis. The ~67 kDa chimeric enzyme behaved as a monomer in solution, with a Km of 61 µM and a kcat of 15 s-1 for isocitrate in the presence of NADP+ and Mn2+ . Our result demonstrated that dimeric IDHs have a potential to evolve monomeric ones. The evolution of the IDH family was also discussed.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Isocitrate Dehydrogenase/chemistry , Manganese/chemistry , NADP/chemistry , Protein Subunits/chemistry , Binding Sites , Cations, Divalent , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Evolution, Molecular , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Kinetics , Manganese/metabolism , Models, Molecular , Mutagenesis, Site-Directed , NADP/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Engineering , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
10.
Nat Commun ; 12(1): 5271, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489470

ABSTRACT

Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means.


Subject(s)
HLA-B7 Antigen/chemistry , Isocitrate Dehydrogenase/metabolism , Protein Engineering/methods , Receptors, Chimeric Antigen/chemistry , Animals , Antigens, Neoplasm/metabolism , COS Cells , Cell Line , Chlorocebus aethiops , Epitopes , HLA-B7 Antigen/metabolism , Humans , Immunoglobulin Fab Fragments/chemistry , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Mutation , Peptide Library , Protein Conformation , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/physiology
11.
Biochemistry ; 60(25): 1983-1994, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34143606

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) is a key metabolic enzyme for maintaining cytosolic levels of α-ketoglutarate (AKG) and preserving the redox environment of the cytosol. Wild-type (WT) IDH1 converts isocitrate to AKG; however, mutant IDH1-R132H that is recurrent in human cancers catalyzes the neomorphic production of the oncometabolite d-2-hydroxyglutrate (D-2HG) from AKG. Recent work suggests that production of l-2-hydroxyglutarte in cancer cells can be regulated by environmental changes, including hypoxia and intracellular pH (pHi). However, it is unknown whether and how pHi affects the activity of IDH1-R132H. Here, we show that in cells IDH1-R132H can produce D-2HG in a pH-dependent manner with increased production at lower pHi. We also identify a molecular mechanism by which this pH sensitivity is achieved. We show that pH-dependent production of D-2HG is mediated by pH-dependent heterodimer formation between IDH1-WT and IDH1-R132H. In contrast, neither IDH1-WT nor IDH1-R132H homodimer formation is affected by pH. Our results demonstrate that robust production of D-2HG by IDH1-R132H relies on the coincidence of (1) the ability to form heterodimers with IDH1-WT and (2) low pHi or highly abundant AKG substrate. These data suggest cancer-associated IDH1-R132H may be sensitive to physiological or microenvironmental cues that lower pH, such as hypoxia or metabolic reprogramming. This work reveals new molecular considerations for targeted therapeutics and suggests potential synergistic effects of using catalytic IDH1 inhibitors targeting D-2HG production in combination with drugs targeting the tumor microenvironment.


Subject(s)
Glutarates/metabolism , Isocitrate Dehydrogenase/metabolism , Mutant Proteins/metabolism , Animals , Hydrogen-Ion Concentration , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Mice , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutation , NIH 3T3 Cells , Protein Multimerization/drug effects
12.
Arch Biochem Biophys ; 708: 108898, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33957092

ABSTRACT

NAD+-linked isocitrate dehydrogenases (NAD-IDHs) catalyze the oxidative decarboxylation of isocitrate into α-ketoglutarate. Previously, we identified a novel phylogenetic clade including NAD-IDHs from several algae in the type II subfamily, represented by homodimeric NAD-IDH from Ostreococcus tauri (OtIDH). However, due to its lack of a crystalline structure, the molecular mechanisms of the ligand binding and catalysis of OtIDH are little known. Here, we elucidate four high-resolution crystal structures of OtIDH in a ligand-free and various ligand-bound forms that capture at least three states in the catalytic cycle: open, semi-closed, and fully closed. Our results indicate that OtIDH shows several novel interactions with NAD+, unlike type I NAD-IDHs, as well as a strictly conserved substrate binding mode that is similar to other homologs. The central roles of Lys283' in dual coenzyme recognition and Lys234 in catalysis were also revealed. In addition, the crystal structures obtained here also allow us to understand the catalytic mechanism. As expected, structural comparisons reveal that OtIDH has a very high structural similarity to eukaryotic NADP+-linked IDHs (NADP-IDHs) within the type II subfamily rather than with the previously reported NAD-IDHs within the type I subfamily. It has also been demonstrated that OtIDH exhibits substantial conformation changes upon ligand binding, similar to eukaryotic NADP-IDHs. These results unambiguously support our hypothesis that OtIDH and OtIDH-like homologs are possible evolutionary ancestors of eukaryotic NADP-IDHs in type II subfamily.


Subject(s)
Chlorophyta/enzymology , Evolution, Molecular , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/metabolism , NADP/metabolism , NAD/metabolism , Sequence Homology, Amino Acid , Amino Acid Sequence , Coenzymes/metabolism , Crystallography, X-Ray , Models, Molecular , Phylogeny , Protein Multimerization , Protein Structure, Quaternary
13.
Article in English | MEDLINE | ID: mdl-33832922

ABSTRACT

Somatic mutations in hotspot regions of the cytosolic or mitochondrial isoforms of the isocitrate dehydrogenase gene (IDH1 and IDH2, respectively) contribute to the pathogenesis of acute myeloid leukemia (AML) by producing the oncometabolite 2-hydroxyglutarate (2-HG). The allosteric IDH1 inhibitor, ivosidenib, suppresses 2-HG production and induces clinical responses in relapsed/refractory IDH1-mutant AML. Herein, we describe a clinical case of AML in which we detected the neomorphic IDH1 p.R132C mutation in consecutive patient samples with a mutational hotspot targeted next-generation sequencing (NGS) assay. The patient had a clinical response to ivosidenib, followed by relapse and disease progression. Subsequent sequencing of the relapsed sample using a newly developed all-exon, hybrid-capture-based NGS panel identified an additional IDH1 p.S280F mutation known to cause renewed 2-HG production and drug resistance. Structural modeling confirmed that serine-to-phenylalanine substitution at this codon sterically hinders ivosidenib from binding to the mutant IDH1 dimer interface and predicted a similar effect on the pan-IDH inhibitor AG-881. Joint full-exon NGS and structural modeling enables monitoring IDH1 inhibitor-treated AML patients for acquired drug resistance and choosing follow-up therapy.


Subject(s)
Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/pharmacology , Exons , Isocitrate Dehydrogenase/drug effects , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Aged , Binding Sites , Enzyme Inhibitors/chemistry , Female , Genetic Predisposition to Disease/genetics , Glycine/analogs & derivatives , Glycine/therapeutic use , High-Throughput Nucleotide Sequencing , Humans , Isocitrate Dehydrogenase/chemistry , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Mutation , Pyridines , Recurrence
14.
Int J Biol Macromol ; 182: 217-227, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33838186

ABSTRACT

Magnetic nanoparticles (MNPs) were modified by hyaluronic acid (HA). After the process of functionalization, two different strategies have been used to immobilize isocitrate dehydrogenases (IDH) on MNPs. In the first strategy, cross-linked enzyme aggregates were prepared. For this, firstly hyaluronic acid modified magnetic nanoparticles cross-linked enzyme fine aggregates of isocitrate dehydrogenases (IDH/HA/MNPs-CLEAs) were synthesized, and secondly bovine serum albumin (BSA) as co-feeder was used to synthesize the IDH/BSA/HA/MNPs-CLEAs. In the second strategy, the IDH was effectively immobilized on the HA/MNPs surface. The features of MNPs and its derivatives have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and zeta potential measurements. The activity and stability of IDH in IDH/HA/MNPs, IDH/HA/MNPs-CLEAs, and IDH/BSA/HA/MNPs-CLEAs were enhanced. Besides, the enzyme immobilized was readily separated via external magnet from the reaction medium and reused many times. The acquired findings indicate that HA/MNPs are a novel binder/support system to IDH, and IDH immobilized on this system can become a very important biocatalyst working with high accuracy and sensitivity for the determination of magnesium in drinking water and other biological solutions.


Subject(s)
Hyaluronic Acid/chemistry , Isocitrate Dehydrogenase/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Isocitrate Dehydrogenase/metabolism , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
15.
Ann Nucl Med ; 35(4): 493-503, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33532992

ABSTRACT

OBJECTIVE: Isocitrate dehydrogenase (IDH) mutation, telomerase reverse transcriptase (TERT) promoter mutation and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status are diagnostic, prognostic, predictive and therapeutic biomarkers for primary diffuse gliomas, and this study aimed to explore the relationship between choline (CHO) positron emission tomography (PET) parameters and these molecular alterations. METHODS: Twenty-eight patients who were histopathologically diagnosed with primary diffuse glioma and underwent presurgical CHO PET/CT were retrospectively analyzed, and IDH, TERT and MGMT alterations were examined. The volume of interest (VOI) was semiautomatically defined based on standardized uptake value (SUV) thresholds, and 5 traditional CHO parameters, namely, SUVmax, SUVmean, metabolic tumor volume (MTV), total lesion CHO uptake (TLC) and tumor-to-normal contralateral cortex activity ratio (T/N ratio), were calculated. Wilcoxon rank-sum tests and receiver operating characteristic (ROC) curves were applied to evaluate the differences and performances of the CHO parameters, and their capability to stratify patient prognosis was also evaluated. RESULTS: All 5 parameters were significantly higher in IDH-wildtype gliomas than in IDH-mutant gliomas (p = 0.0001-0.037), and SUVmax, SUVmean, TLC and the T/N ratio exhibited good performances in distinguishing the IDH status (areas under the ROC curve (AUCs) 0.856-0.918, accuracies 0.857-0.893) as well as stratifying patient prognosis. Although the differences and performances of the traditional parameters in distinguishing diverse TERT and MGMT statuses were moderate in the whole population, the T/N ratio and TLC displayed certain predictive value in discriminating the TERT status in the IDH-mutant and IDH-wildtype subgroups (p = 0.028-0.048, AUCs 0.857-0.860, accuracies 0.800-0.917, respectively). CONCLUSIONS: Traditional CHO PET parameters are capable of distinguishing IDH but not TERT or MGMT alterations in the whole population. In accordance with the clinical understanding of TERT promoter mutations, the T/N ratio and TLC can also discriminate the TERT status in IDH subgroups.


Subject(s)
Biomarkers, Tumor/analysis , Choline/analysis , DNA Modification Methylases/chemistry , DNA Repair Enzymes/chemistry , Glioma/diagnostic imaging , Isocitrate Dehydrogenase/chemistry , Telomerase/chemistry , Tumor Suppressor Proteins/chemistry , Adult , Aged , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Humans , Isocitrate Dehydrogenase/genetics , Male , Middle Aged , Mutation , Positron Emission Tomography Computed Tomography , Prognosis , Promoter Regions, Genetic , Retrospective Studies , Telomerase/genetics , Telomerase/metabolism , Tumor Suppressor Proteins/genetics
16.
FEBS Open Bio ; 11(3): 921-931, 2021 03.
Article in English | MEDLINE | ID: mdl-33455080

ABSTRACT

Sunitinib (Sun), a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, is the standard first-line treatment against advanced clear cell renal cell carcinoma (RCC), but resistance to therapy is inevitable. Reactive oxygen species production is associated with sensitivity to chemotherapy, but the underlying mechanisms are not completely understood. Here, we investigated the mechanisms contributing to Sun resistance using the RCC cell lines ACHN and 786-O. We report that Sun-resistant cells exhibited reduced apoptosis, increased cell viability, increased reactive oxygen species production and disrupted mitochondrial function. Furthermore, chronic Sun treatment resulted in an up-regulation of Sirt5/isocitrate dehydrogenase 2 (IDH2) expression levels. Knockdown of Sirt5/IDH2 impaired mitochondrial function and partially attenuated Sun resistance. Finally, up-regulation of Sirt5 enhanced the expression of IDH2 via modulation of succinylation at K413 and promoted protein stability. In conclusion, dysregulation of Sirt5/IDH2 partially contributes to Sun resistance in RCC cells by affecting antioxidant capacity.


Subject(s)
Carcinoma, Renal Cell/metabolism , Drug Resistance, Neoplasm , Isocitrate Dehydrogenase/metabolism , Kidney Neoplasms/metabolism , Sirtuins/metabolism , Carcinoma, Renal Cell/drug therapy , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Kidney Neoplasms/drug therapy , Protein Stability , Sunitinib/pharmacology , Up-Regulation
17.
Biochimie ; 181: 77-85, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33290880

ABSTRACT

Acinetobacter baumannii encodes all enzymes required in the tricarboxylic acid (TCA) cycle and glyoxylate bypass except for isocitrate dehydrogenase kinase/phosphatase (IDHKP), which can phosphorylate isocitrate dehydrogenase (IDH) at a substrate-binding Ser site and control the carbon flux in enterobacteria, such as Escherichia coli. The potential kinase was not successfully pulled down from A. baumannii cell lyase; therefore, whether the IDH 1 from A. baumannii (AbIDH1) can be phosphorylated to regulate intracellular carbon flux has not been clarified. Herein, the AbIDH1 gene was cloned, the encoded protein was expressed and purified to homogeneity, and phosphorylation and enzyme kinetics were evaluated in vitro. Gel filtration and SDS-PAGE analyses showed that AbIDH1 is an 83.5 kDa homodimer in solution. The kinetics showed that AbIDH1 is a fully active NADP-dependent enzyme. The Michaelis constant Km is 46.6 (Mn2+) and 18.1 µM (Mg2+) for NADP+ and 50.5 (Mn2+) and 65.4 µM (Mg2+) for the substrate isocitrate. Phosphorylation experiments in vitro indicated that AbIDH1 is a substrate for E. coli IDHKP. The activity of AbIDH1 treated with E. coli IDHKP immediately decreased by 80% within 9 min. Mass spectrometry indicated that the conserved Ser113 of AbIDH1 is phosphorylated. Continuous phosphorylation-mimicking mutants (Ser113Glu and Ser113Asp) lack almost all enzymatic activity. Side-chain mutations at Ser113 (Ser113Thr, Ser113Ala, Ser113Gly and Ser113Tyr) remarkably reduce the enzymatic activity. Understanding the potential of AbIDH1 phosphorylation enables further investigations of the AbIDH1 physiological functions in A. baumannii.


Subject(s)
Acinetobacter baumannii/enzymology , Bacterial Proteins/chemistry , Isocitrate Dehydrogenase/chemistry , Acinetobacter baumannii/genetics , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutagenesis, Site-Directed , Mutation, Missense , Phosphorylation
18.
Mol Biochem Parasitol ; 240: 111320, 2020 11.
Article in English | MEDLINE | ID: mdl-32980452

ABSTRACT

Leishmania parasites are of great relevance to public health because they are the causative agents of various long-term and health-threatening diseases in humans. Dependent on the manifestation, drugs either require difficult and lengthy administration, are toxic, expensive, not very effective or have lost efficacy due to the resistance developed by these pathogens against clinical treatments. The intermediary metabolism of Leishmania parasites is characterized by several unusual features, among which whether the Krebs cycle operates in a cyclic and/or in a non-cyclic mode is included. Our survey of the genomes of Leishmania species and monoxenous parasites such as those of the genera Crithidia and Leptomonas (http://www.tritrypdb.org) revealed that two genes encoding putative isocitrate dehydrogenases (IDHs) -with distantly related sequences- are strictly conserved among these parasites. Thus, in this study, we aimed to functionally characterize the two leishmanial IDH isoenzymes, for which we selected the genes LmxM10.0290 (Lmex_IDH-90) and LmxM32.2550 (Lmex_IDH-50) from L. mexicana. Phylogenetic analysis showed that Lmex_IDH-50 clustered with members of Subfamily I, which contains mainly archaeal and bacterial IDHs, and that Lmex_IDH-90 was a close relative of eukaryotic enzymes comprised within Subfamily II IDHs. 3-D homology modeling predicted that both IDHs exhibited the typical folding motifs recognized as canonical for prokaryotic and eukaryotic counterparts, respectively. Both IDH isoforms displayed dual subcellular localization, in the cytosol and the mitochondrion. Kinetic studies showed that Lmex_IDH-50 exclusively catalyzed the reduction of NAD+, while Lmex_IDH-90 solely used NADP+ as coenzyme. Besides, Lmex_IDH-50 differed from Lmex_IDH-90 by exhibiting a nearly 20-fold lower apparent Km value towards isocitrate (2.0 µM vs 43 µM). Our findings showed, for the first time, that the genus Leishmania differentiates not only from other trypanosomatids such as Trypanosoma cruzi and Trypanosoma brucei, but also from most living organisms, by exhibiting two functional homo-dimeric IDHs, highly specific towards NAD+ and NADP+, respectively. It is tempting to argue that any or both types of IDHs might be directly or indirectly linked to the Krebs cycle and/or to the de novo synthesis of glutamate. Our results about the biochemical and structural features of leishmanial IDHs show the relevance of deepening our knowledge of the metabolic processes in these pathogenic parasites to potentially identify new therapeutic targets.


Subject(s)
Cloning, Molecular , Gene Expression , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Leishmania mexicana/enzymology , Leishmania mexicana/genetics , Amino Acid Sequence , Enzyme Activation , Humans , Isocitrate Dehydrogenase/chemistry , Isoenzymes , Kinetics , Leishmania mexicana/classification , Leishmaniasis, Cutaneous/parasitology , NAD/metabolism , NADP/metabolism , Phylogeny , Protein Transport , Sequence Analysis, DNA , Structure-Activity Relationship , Substrate Specificity
19.
Biochem Biophys Res Commun ; 532(4): 591-597, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32900482

ABSTRACT

Mitochondria play a central role in biological oxidation that inevitably generates reactive oxygen species (ROS) as by-products. Maintenance of mitochondrial redox balance status requires NADPH, which is primarily generated by the mitochondrial matrix protein isocitrate dehydrogenase 2 (IDH2). The activity of IDH2 is regulated by post-translational modifications (PTMs). In this study, we found IDH2 is modified by small ubiquitin-like modifier 1 (SUMO1) at lysine 45. SUMO specific protease 1 (SENP1) is responsible for deSUMOylation of IDH2. SUMOylation of IDH2 is induced by oxidants and enhances the antioxidant activity of IDH2 to protect cells against oxidative stress. Mutation of the SUMOylation site impairs the enzymatic activity of IDH2 and hence decreases levels of α-ketoglutarate (α-KG), NADPH and GSH. Cells with SUMOylation deficient IDH2 suffer more apoptosis than that with wild type IDH2 under oxidative stress. These results indicate that SUMOylation is an important way to regulate IDH2 activity to maintain mitochondrial redox balance.


Subject(s)
Isocitrate Dehydrogenase/metabolism , Oxidative Stress , Sumoylation , Animals , Cell Line , Cell Survival , Enzyme Activation , Humans , Isocitrate Dehydrogenase/chemistry , Lysine/metabolism , Mice
20.
Eur Biophys J ; 49(7): 549-559, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32880665

ABSTRACT

Chiral discrimination in biological systems, such as L-amino acids in proteins and d-sugars in nucleic acids, has been proposed to depend on various mechanisms, and chiral discrimination by mutated enzymes mediating cancer cell signaling is important in current research. We have explored how mutated isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate which in turn is converted to d-2-hydroxyglutatrate (d-2HG) as a preferred product instead of l-2-hydroxyglutatrate (l-2HG) according to quantum chemical calculations. Using transition state structure modeling, we delineate the preferred product formation of d-2HG over l-2HG in an IDH active site model. The mechanisms for the formation of d-2HG over l-2HG are assessed by identifying transition state structures and activation energy barriers in gas and solution phases. The calculated reaction energy profile for the formation of d-2HG and l-2HG metabolites shows a 29 times higher value for l-2HG as compared to d-2HG. Results for second-order Møller-Plesset perturbation theory (MP2) do not alter the observed trend based on Density Functional Theory (DFT). The observed trends in reaction energy profile explain why the formation of D-2HG is preferred over l-2HG and reveal why mutation leads to the formation of d-2HG instead of l-2HG. For a better understanding of the observed difference in the activation barrier for the formation of the two alternative products, we performed natural bond orbital analysis, non-covalent interactions analysis and energy decomposition analysis. Our findings based on computational calculations clearly indicate a role for chiral discrimination in mutated enzymatic pathways in cancer biology.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/enzymology , Catalytic Domain , Glioma/enzymology , Glutarates/chemistry , Humans , Isocitrate Dehydrogenase/chemistry , Ketoglutaric Acids/chemistry , Molecular Conformation , Mutation , Neoplasms/genetics , Stereoisomerism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL