Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.608
Filter
1.
Rapid Commun Mass Spectrom ; 38(22): e9892, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39287025

ABSTRACT

RATIONALE: Heavy-labelled internal standards increasingly represent the gold standard for absolute quantitation in mass spectrometry (MS)-based bottom-up proteomics. The biggest drawbacks of using these standards are that they have high costs and lengthy lead times. METHODS: We describe an efficient, low-cost optimised method to enable 'in-house' heavy labelling of synthetic tryptic peptides for absolute quantification using tandem LC-MS/MS mass spectrometry. Our methodology uses 18O water in a trypsin-catalysed oxygen exchange reaction at the carboxyl terminus with the overall aim of reducing the costs and lead time associated with sourcing heavy standards from commercial vendors. RESULTS: Step-by-step instructions are provided on how to execute this protocol with high-throughput adaptations utilising a 96-well plate and a liquid-handling robot. Detailed notes on experimental setup, tips for troubleshooting and suggested improvements to maximise labelling efficiencies are highlighted to achieve the best results. Under optimum conditions, labelling efficiencies of peptides can reach from 95% to 100%. CONCLUSIONS: The application of the 'in-house' labelled standards in generating calibration curves to quantify endogenous peptide concentrations is just as effective as using the synthetically sourced standards while also having great cost reduction implications as well as saving time spent waiting for peptides to arrive. The protocol is highly adaptable and can be customized to fit the specific setup of any laboratory, maximizing achievable labelling efficiencies.


Subject(s)
Isotope Labeling , Peptides , Proteomics , Tandem Mass Spectrometry , Proteomics/methods , Tandem Mass Spectrometry/methods , Peptides/chemistry , Peptides/analysis , Isotope Labeling/methods , Oxygen Isotopes/analysis , Oxygen Isotopes/chemistry , Trypsin/chemistry , Trypsin/metabolism , Chromatography, Liquid/methods
2.
Molecules ; 29(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39274956

ABSTRACT

With low background radiation, tritiate compounds exclusively emit intense beta particles without structural changes. This makes them a useful tool in the drug discovery arsenal. Thanks to the recent rapid progress in tritium chemistry, the preparation and analysis of tritium-labeled compounds are now much easier, simpler, and cheaper. Pharmacokinetics, autoradiography, and protein binding studies have been much more efficient with the employment of tritium-labeled compounds. This review provides a comprehensive overview of tritium-labeled compounds regarding their properties, synthesis strategies, and applications.


Subject(s)
Tritium , Tritium/chemistry , Humans , Biomedical Research , Isotope Labeling/methods , Animals , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Drug Discovery
3.
Molecules ; 29(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39275108

ABSTRACT

Natural compounds are important precursors for the synthesis of new drugs. The development of novel molecules that are useful for various diseases is the main goal of researchers, especially for the diagnosis and treatment of many diseases. Some pathologies need to be treated with radiopharmaceuticals, and, for this reason, radiopharmaceuticals that use the radiolabeling of natural derivates molecules are arousing more and more interest. Radiopharmaceuticals can be used for both diagnostic and therapeutic purposes depending on the radionuclide. ß+- and gamma-emitting radionuclides are used for diagnostic use for PET or SPECT imaging techniques, while α- and ß--emitting radionuclides are used for in metabolic radiotherapy. Based on these assumptions, the purpose of this review is to highlight the studies carried out in the last ten years, to search for potentially useful radiopharmaceuticals for nuclear medicine that use molecules of natural origin as lead structures. In this context, the main radiolabeled compounds containing natural products as scaffolds are analyzed, in particular curcumin, stilbene, chalcone, and benzofuran. Studies on structural and chemical modifications are emphasized in order to obtain a collection of potential radiopharmaceuticals that exploit the biological properties of molecules of natural origin. The radionuclides used to label these compounds are 68Ga, 44Sc, 18F, 64Cu, 99mTc, and 125I for diagnostic imaging.


Subject(s)
Biological Products , Nuclear Medicine , Radiopharmaceuticals , Radiopharmaceuticals/chemistry , Biological Products/chemistry , Humans , Nuclear Medicine/methods , Positron-Emission Tomography/methods , Radioisotopes/chemistry , Animals , Isotope Labeling/methods , Tomography, Emission-Computed, Single-Photon/methods
4.
J Vis Exp ; (210)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39248529

ABSTRACT

Lipids are highly diverse, and small changes in lipid structures and composition can have profound effects on critical biological functions. Stable isotope labeling (SIL) offers several advantages for the study of lipid distribution, mobilization, and metabolism, as well as de novo lipid synthesis. The successful implementation of the SIL technique requires the removal of interferences from endogenous molecules. In the present work, we describe a high-throughput analytical protocol for the screening of SIL lipids from biological samples; examples will be shown of lipid de novo identification during mosquito ovary development. The use of complementary liquid chromatography trapped ion mobility spectrometry and mass spectrometry allows for the separation and lipids assignment from a single sample in a single scan (<1 h). The described approach takes advantage of recent developments in data-dependent acquisition and data-independent acquisition, using parallel accumulation in the mobility trap followed by sequential fragmentation and collision-induced dissociation. The measurement of SIL at the fatty acid chain level reveals changes in lipid dynamics during the ovary development of mosquitoes. The lipids de novo structures are confidently assigned based on their retention time, mobility, and fragmentation pattern.


Subject(s)
Isotope Labeling , Lipids , Tandem Mass Spectrometry , Isotope Labeling/methods , Animals , Lipids/analysis , Lipids/chemistry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Female , Ovary/metabolism , Ovary/chemistry
5.
Microbiome ; 12(1): 146, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113100

ABSTRACT

BACKGROUND: Bioaugmentation is considered a sustainable and cost-effective methodology to recover contaminated environments, but its outcome is highly variable. Predation is a key top-down control mechanism affecting inoculum establishment, however, its effects on this process have received little attention. This study focused on the impact of trophic interactions on bioaugmentation success in two soils with different pollution exposure histories. We inoculated a 13C-labelled pollutant-degrading consortium in these soils and tracked the fate of the labelled biomass through stable isotope probing (SIP) of DNA. We identified active bacterial and eukaryotic inoculum-biomass consumers through amplicon sequencing of 16S rRNA and 18S rRNA genes coupled to a novel enrichment factor calculation. RESULTS: Inoculation effectively increased PAH removal in the short-term, but not in the long-term polluted soil. A decrease in the relative abundance of the inoculated genera was observed already on day 15 in the long-term polluted soil, while growth of these genera was observed in the short-term polluted soil, indicating establishment of the inoculum. In both soils, eukaryotic genera dominated as early incorporators of 13C-labelled biomass, while bacteria incorporated the labelled biomass at the end of the incubation period, probably through cross-feeding. We also found different successional patterns between the two soils. In the short-term polluted soil, Cercozoa and Fungi genera predominated as early incorporators, whereas Ciliophora, Ochrophyta and Amoebozoa were the predominant genera in the long-term polluted soil. CONCLUSION: Our results showed differences in the inoculum establishment and predator community responses, affecting bioaugmentation efficiency. This highlights the need to further study predation effects on inoculum survival to increase the applicability of inoculation-based technologies. Video Abstract.


Subject(s)
Bacteria , Biodegradation, Environmental , RNA, Ribosomal, 16S , RNA, Ribosomal, 18S , Soil Microbiology , Soil Pollutants , Soil , Soil/chemistry , Soil Pollutants/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Biomass , Carbon Isotopes/metabolism , Food Chain , Polycyclic Aromatic Hydrocarbons/metabolism , Isotope Labeling
6.
Anal Chem ; 96(33): 13576-13587, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39102235

ABSTRACT

Glucuronidation, a crucial process in phase II metabolism, plays a vital role in the detoxification and elimination of endogenous substances and xenobiotics. A comprehensive and confident profiling of glucuronate-conjugated metabolites is imperative to understanding their roles in physiological and pathological processes. In this study, a chemical isotope labeling and dual-filtering strategy was developed for global profiling of glucuronide metabolites in biological samples. N,N-Dimethyl ethylenediamine (DMED-d0) and its deuterated counterpart DMED-d6 were used to label carboxylic acids through an amidation reaction. First, carboxyl-containing compounds were extracted based on a characteristic mass difference (Δm/z, 6.037 Da) observed in MS between light- and heavy-labeled metabolites (filter I). Subsequently, within the pool of carboxyl-containing compounds, glucuronides were identified using two pairs of diagnostic ions (m/z 247.1294/253.1665 and 229.1188/235.1559 for DMED-d0/DMED-d6-labeled glucuronides) originating from the fragmentation of the derivatized glucuronic acid group in MS/MS (filter II). Compared with non-derivatization, DEMD labeling significantly enhanced the detection sensitivity of glucuronides, as evidenced by a 3- to 55-fold decrease in limits of detection for representative standards. The strategy was applied to profiling glucuronide metabolites in urine samples from colorectal cancer (CRC) patients. A total of 685 features were screened as potential glucuronides, among which 181 were annotated, mainly including glucuronides derived from lipids, organic oxygen, and phenylpropanoids. Enzymatic biosynthesis was employed to accurately identify unknown glucuronides without standards, demonstrating the reliability of the dual-filtering strategy. Our strategy exhibits great potential for profiling the glucuronide metabolome with high coverage and confidence to reveal changes in CRC and other diseases.


Subject(s)
Glucuronides , Isotope Labeling , Humans , Glucuronides/urine , Glucuronides/metabolism , Glucuronides/chemistry , Tandem Mass Spectrometry/methods , Colorectal Neoplasms/urine , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism
7.
J Labelled Comp Radiopharm ; 67(10): 341-348, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107085

ABSTRACT

Radioimmunoconjugates (RICs) composed of tumor-targeting monoclonal antibodies and radionuclides have been developed for diagnostic and therapeutic application. A new radiolabeling method using microfluidic devices is expected to facilitate simpler and more rapid synthesis of RICs. In the microfluidic method, microfluidic chips can promote the reaction between reactants by mixing them efficiently, and pumping systems enable automated synthesis. In this study, we synthesized RICs by the pre-labeling method, in which the radiometal is coordinated to the chelator and then the radiolabeled chelator is incorporated into the antibodies, using microfluidic devices for the first time. As a result of examining the reaction parameters including the material of mixing units, reaction temperature, and flow rate, RICs with radiochemical purity (RCP) exceeding 90% were obtained. These high-purity RICs were successfully synthesized without any purification simply by pumping three solutions of a chelating agent, radiometal, and antibody into microfluidic devices. Under the same conditions, the RCP of RICs labeled by conventional methods was below 50%. These findings indicate the utility of microfluidic devices for automatic and rapid synthesis of high-quality RICs.


Subject(s)
Immunoconjugates , Isotope Labeling , Immunoconjugates/chemistry , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Antibodies, Monoclonal/chemistry , Chelating Agents/chemistry , Lab-On-A-Chip Devices , Automation , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis
8.
Microbiome ; 12(1): 148, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118147

ABSTRACT

BACKGROUND: Proteomic stable isotope probing (SIP) is used in microbial ecology to trace a non-radioactive isotope from a labeled substrate into de novo synthesized proteins in specific populations that are actively assimilating and metabolizing the substrate in a complex microbial community. The Sipros algorithm is used in proteomic SIP to identify variably labeled proteins and quantify their isotopic enrichment levels (atom%) by performing enrichment-resolved database searching. RESULTS: In this study, Sipros was upgraded to improve the labeled protein identification, isotopic enrichment quantification, and database searching speed. The new Sipros 4 was compared with the existing Sipros 3, Calisp, and MetaProSIP in terms of the number of identifications and the accuracy and precision of atom% quantification on both the peptide and protein levels using standard E. coli cultures with 1.07 atom%, 2 atom%, 5 atom%, 25 atom%, 50 atom%, and 99 atom% 13C enrichment. Sipros 4 outperformed Calisp and MetaProSIP across all samples, especially in samples with ≥ 5 atom% 13C labeling. The computational speed on Sipros 4 was > 20 times higher than Sipros 3 and was on par with the overall speed of Calisp- and MetaProSIP-based pipelines. Sipros 4 also demonstrated higher sensitivity for the detection of labeled proteins in two 13C-SIP experiments on a real-world soil community. The labeled proteins were used to trace 13C from 13C-methanol and 13C-labeled plant exudates to the consuming soil microorganisms and their newly synthesized proteins. CONCLUSION: Overall, Sipros 4 improved the quality of the proteomic SIP results and reduced the computational cost of SIP database searching, which will make proteomic SIP more useful and accessible to the border community. Video Abstract.


Subject(s)
Algorithms , Isotope Labeling , Proteomics , Proteomics/methods , Escherichia coli/metabolism , Carbon Isotopes/metabolism , Tandem Mass Spectrometry/methods , Proteome
9.
Methods Enzymol ; 702: 215-227, 2024.
Article in English | MEDLINE | ID: mdl-39155113

ABSTRACT

The sequencing of microbial genomes has far outpaced their functional annotation. Stable isotopic labeling can be used to link biosynthetic genes with their natural products; however, the availability of the required isotopically substituted precursors can limit the accessibility of this approach. Here, we describe a method for using inverse stable isotopic labeling (InverSIL) to link biosynthetic genes with their natural products. With InverSIL, a microbe is grown on an isotopically substituted medium to create a fully substituted culture, and subsequently, the incorporation of precursors of natural isotopic abundance can be tracked by mass spectrometry. This eliminates issues with isotopically substituted precursor availability. We demonstrate the utility of this approach by linking a luxI-type acyl-homoserine lactone synthase gene in a bacterium that grows on methanol with its quorum sensing signal products. In the future, InverSIL can also be used to link biosynthetic gene clusters hypothesized to produce siderophores with their natural products.


Subject(s)
Biological Products , Isotope Labeling , Isotope Labeling/methods , Biological Products/metabolism , Biological Products/chemistry , Multigene Family , Quorum Sensing/genetics , Mass Spectrometry/methods , Biosynthetic Pathways/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon Isotopes/chemistry
10.
Phys Chem Chem Phys ; 26(33): 21930-21953, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39108200

ABSTRACT

The objective of this work is to highlight the power of isotope-edited Fourier transform infrared (FTIR) spectroscopy in resolving important problems encountered in biochemistry, biophysics, and biomedical research, focusing on protein-protein and protein membrane interactions that play key roles in practically all life processes. An overview of the effects of isotope substitutions in (bio)molecules on spectral frequencies and intensities is given. Data are presented demonstrating how isotope-labeled proteins and/or lipids can be used to elucidate enzymatic mechanisms, the mode of membrane binding of peripheral proteins, regulation of membrane protein function, protein aggregation, and local and global structural changes in proteins during functional transitions. The use of polarized attenuated total reflection FTIR spectroscopy to identify the spatial orientation and the secondary structure of a membrane-bound interfacial enzyme and the mode of lipid hydrolysis is described. Methods of production of site-directed, segmental, and domain-specific labeling of proteins by the synthetic, semisynthetic, and recombinant strategies, including advanced protein engineering technologies such as nonsense suppression and frameshift quadruplet codons are overviewed.


Subject(s)
Membrane Proteins , Spectroscopy, Fourier Transform Infrared , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Isotope Labeling , Cell Membrane/metabolism , Cell Membrane/chemistry , Proteins/chemistry , Proteins/metabolism
11.
J Agric Food Chem ; 72(33): 18630-18637, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39116173

ABSTRACT

The formation pathway and mechanism of various pyrazines were investigated during the thermal treatment of the alanine-xylose Amadori compound (Ala-ARP) and exogenous alanine (Ala). 15N-labeled Ala was used to coheated with Ala-ARP to clarify the nitrogen sources and the respective contributions of exogenous Ala and the regenerated Ala released from Ala-ARP to different pyrazine formation. It was found that exogenous Ala exhibited a priority in capturing glyoxal (GO) to form pyrazine during the thermal degradation of ARP. Compared to the Ala-methylglyoxal (MGO) model, a lower activation energy was required for the Ala-GO reaction, where the reaction dynamics of Ala-GO followed a zero-order model. In addition to forming pyrazine, the interaction between existing exogenous Ala and GO would accelerate the thermal degradation of Ala-ARP and retro-aldolization reaction of deoxyxylosones (DXs) to α-dicarbonyls. During this process, the release of regenerated Ala and MGO was promoted. Accordingly, as GO was expended by exogenous Ala during the initial stage of ARP-Ala degradation, the condensation between regenerated Ala and MGO became intensified, leading to the generation of methylpyrazine and 2,5-dimethylpyrazine. As a result, in the thermally treated mixture of Ala-ARP and exogenous Ala, 55% of the formed pyrazine originated from exogenous Ala, while 63% of the formed methylpyrazine and 57% of the formed 2,5-dimethylpyrazine were derived from regenerated Ala (120 °C, 30 min).


Subject(s)
Alanine , Hot Temperature , Pyrazines , Pyrazines/chemistry , Alanine/chemistry , Alanine/analogs & derivatives , Isotope Labeling , Nitrogen/chemistry , Xylose/chemistry , Maillard Reaction , Kinetics
12.
Elife ; 132024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158544

ABSTRACT

The protein dynamical transition at ~200 K, where the biomolecule transforms from a harmonic, non-functional form to an anharmonic, functional state, has been thought to be slaved to the thermal activation of dynamics in its surface hydration water. Here, by selectively probing the dynamics of protein and hydration water using elastic neutron scattering and isotopic labeling, we found that the onset of anharmonicity in the two components around 200 K is decoupled. The one in protein is an intrinsic transition, whose characteristic temperature is independent of the instrumental resolution time, but varies with the biomolecular structure and the amount of hydration, while the one of water is merely a resolution effect.


Subject(s)
Water , Water/chemistry , Proteins/chemistry , Proteins/metabolism , Neutron Diffraction , Temperature , Isotope Labeling
13.
Bioconjug Chem ; 35(9): 1335-1342, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39172920

ABSTRACT

Single-domain antibodies, or nanobodies (Nbs), are promising biomolecules for use in molecular imaging due to their excellent affinity, specificity, and fast clearance from the blood. Given their short blood half-life, pairing Nbs with short-lived imaging radioisotopes is desirable. Because fluorine-18 (18F) is routinely used for clinical imaging, it is an attractive radioisotope for Nbs. We report a novel sortase-based, site-specific 18F-labeling method applied to three nanobodies. Labeled nanobodies were synthesized either by a two-step indirect radiolabeling method in one pot or by a one-step direct labeling method using a sortase-mediated conjugation of either the radiolabeled chelator (H-GGGK((±)-Al[18F]FH3RESCA)-NH2) or the unlabeled chelator (H-GGGK((±)-H3RESCA)-NH2) followed by labeling with Al[18F]F, respectively. The overall radiochemical yields were 15-43% (n = 22, decay-corrected) in 70 min (indirect labeling) and 23-58% (n = 12, decay-corrected) in 50 min (direct labeling). The radiochemical purities of the labeled nanobodies prepared by both methods were >98% with a specific activity of 400-600 Ci/mmol (n = 22) for each of the three Nbs tested and exhibited excellent stability profiles under physiological conditions. This simple, site-specific, reproducible, and generalizable 18F-labeling method to prepare nanobodies (Nb-Al[18F]F-RESCA) or other low molecular weight biomolecules can easily be adopted in various settings for preclinical and clinical studies.


Subject(s)
Aminoacyltransferases , Fluorine Radioisotopes , Single-Domain Antibodies , Fluorine Radioisotopes/chemistry , Single-Domain Antibodies/chemistry , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Bacterial Proteins/chemistry , Isotope Labeling/methods , Chelating Agents/chemistry , Humans , Radiopharmaceuticals/chemistry
14.
Anal Chem ; 96(37): 14963-14970, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39214608

ABSTRACT

Solution-phase hydrogen/deuterium exchange (HDX) coupled to native ion mobility spectrometry mass spectrometry (IMS-MS) can provide complementary structural information about the conformational dynamics of biological molecules. In the present work, the solution-stable isotope labeling (SIL) combined with trapped ion mobility spectrometry (TIMS) in tandem with top-down electron capture dissociation (ECD) is illustrated for the structural characterization of the solution native states of ubiquitin. Four different ubiquitin electrospray solution conditions: (i) single-tip nondeuterated, (ii) theta tip for online SIL HDX, (iii) single-tip SIL-deuterated, and (iv) theta tip for online SIL H/D back exchange (HDbX), were investigated to assess the H/D exchange reactivities of native ubiquitin. The combination of TIMS and ECD in a q-ToF MS instrument allowed for additional inspection of gas-phase HDbX added by top-down fragmentation, revealing the exposed and protected residues with limited scrambling effects (e.g., intramolecular H/D migration). A native charge state distribution (5+ to 7+) and TIMS profiles were observed under the single-tip nondeuterated solution conditions. Mass shift distributions of ∼40, ∼104, and ∼87D were observed when incorporating deuterium for online SIL HDX, SIL HDX, and online SIL HDbX, respectively, while retaining similar conformational states. ECD fragmentation allowed for the localization of the deuterated labeled residues of the peptide fragments, with a sequence coverage of ∼90%, for each of the ubiquitin solution condition. Changes in the TIMS trapping time settings (∼70 to ∼795 ms) were used to determine the H/D back exchange dynamics of native ubiquitin. HDbX-TIMS-q-ECD-MS/MS exhibited H/D back exchanges in the six-residue C-terminal tail as well as around Lys6, Lys11, Lys33, Lys48, and Lys63 residues, indicating that these regions are the most exposed area (less protected hydrogens) of ubiquitin as compared to the rest of the core residues that adopt a compact ß-grasp fold (protected hydrogens), which was consistent with the accessible surface area of ubiquitin. The present data highlight for the first time consistency between the solution HDX and gas-phase HDbX-TIMS data for native studies.


Subject(s)
Ion Mobility Spectrometry , Isotope Labeling , Ubiquitin , Ubiquitin/chemistry , Deuterium Exchange Measurement , Tandem Mass Spectrometry/methods , Solutions , Protein Conformation , Models, Molecular , Amino Acid Sequence
15.
Sci Rep ; 14(1): 18843, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39138264

ABSTRACT

Application of stable isotopically labelled (SIL) molecules in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) over a series of time points allows the temporal and spatial dynamics of biochemical reactions to be tracked in a biological system. However, these large kinetic MSI datasets and the inherent variability of biological replicates presents significant challenges to the rapid analysis of the data. In addition, manual annotation of downstream SIL metabolites involves human input to carefully analyse the data based on prior knowledge and personal expertise. To overcome these challenges to the analysis of spatiotemporal MALDI-MSI data and improve the efficiency of SIL metabolite identification, a bioinformatics pipeline has been developed and demonstrated by analysing normal bovine lens glucose metabolism as a model system. The pipeline consists of spatial alignment to mitigate the impact of sample variability and ensure spatial comparability of the temporal data, dimensionality reduction to rapidly map regional metabolic distinctions within the tissue, and metabolite annotation coupled with pathway enrichment modules to summarise and display the metabolic pathways induced by the treatment. This pipeline will be valuable for the spatial metabolomics community to analyse kinetic MALDI-MSI datasets, enabling rapid characterisation of spatio-temporal metabolic patterns from tissues of interest.


Subject(s)
Glucose , Lens, Crystalline , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Cattle , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Lens, Crystalline/metabolism , Glucose/metabolism , Isotope Labeling/methods , Workflow , Metabolomics/methods , Data Analysis , Metabolic Networks and Pathways
16.
Appl Radiat Isot ; 212: 111460, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094205

ABSTRACT

Radiolabelled autologous leukocytes have been used for the clinical diagnosis of inflammation and infection. To develop a stable and efficient radiopharmaceutical for labelling leukocytes, we prepared a novel radioiodinated cell-penetrating peptide, 125I-TAT, using a bi-functional linker. 125I-TAT was stable for two days under three different temperature conditions of -20 °C, 4 °C, and 40 °C, with its radiochemical purity remaining over 99%. Iodinated TAT was non-toxic to leukocytes with an IC50 value of over 100 µM. The labelling efficiency of 125I-TAT using 1x107 cells ranged from 27% to 53% when the three leukocyte cell lines were pre-treated with DMSO. This is comparable to the labelling efficiency recommended by the guideline for conventional labelling agents using 2x108 cells. Radioiodinated cell-penetrating peptide may be an improved radiopharmaceutical for white blood cell scans by further optimization.


Subject(s)
Iodine Radioisotopes , Leukocytes , Radiopharmaceuticals , Humans , Radiopharmaceuticals/pharmacokinetics , Cell-Penetrating Peptides/chemistry , Isotope Labeling/methods
17.
Appl Radiat Isot ; 213: 111484, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39208473

ABSTRACT

The aim of the presented work was to develop folate based radiolabeled compound intended to be used as diagnostic aid for the various folate-receptor overexpressing cancers eg. breast cancer, brain tumors, lung cancer etc. Folate was directly radiolabeled with Tc-99m using Quality-by-Design and encapsulated in micellar nanocarriers. The authors are of the view that the stable radiolabeled folate could be of potential diagnostic value in cancers overexpressing folate receptors thereby opening novel possibilities to diagnostic applications of radiolabeled folate. SUMMARY FOR TECHNICAL NOTES: Folic acid was directly radiolabeled with Tc-99m utilizing a quality by design approach. The experimental trials were designed using the Box-Behenken design with the concentration of drug, concentration of reducing agent and the incubation time as dependent variable and percent radiolabeling as the response for the same. The applied design in the method section was validated with a series of experiments and the percent labeling of the FA with Tc-99m was found to be around 94%. The radiolabeled compound was imperilled to stability evaluation by incubating the same with serum and physiological pH and the same was found to be stable at the end of 4h. On subjecting to DTPA challenge test, the compound displayed no change in the radiolabeling percentage thereby indicating the robustness of the formed Tc-99m-FA complex, The radiolabeled Tc-99m-FA was further encapsulated into micellar nanocarriers and the same were also found to be robust and stable.


Subject(s)
Folic Acid , Radiopharmaceuticals , Technetium , Folic Acid/chemistry , Radiopharmaceuticals/chemistry , Technetium/chemistry , Isotope Labeling/methods , Humans , Micelles
18.
Nanomedicine (Lond) ; 19(17): 1569-1580, 2024 07 14.
Article in English | MEDLINE | ID: mdl-39011593

ABSTRACT

Radiolabeling of bionanomaterials with technetium-99m (99mTc) has become a promising approach in combining the benefits of nanotechnology and nuclear medicine for diagnostic and therapeutic purposes. This review is intended to provide a comprehensive overview of the state-of-the-art of radiolabeling of bionanomaterials with 99mTc, highlighting the synthesis methods, labeling mechanisms, biological evaluation, physicochemical characterization and clinical applications of 99mTc-labeled bionanomaterials. Various types of nanomaterials are considered in the review, including lipid- and protein-based nanosystems, dendrimers and polymeric nanomaterials. Moreover, the review assesses the challenges presented by this emerging field, such as stability of the radiolabel, potential toxicity of the nanomaterials and regulatory aspects. Finally, promising future perspectives and areas of research development in 99mTc-labeled bionanomaterials are discussed.


[Box: see text].


Subject(s)
Nanostructures , Technetium , Technetium/chemistry , Humans , Nanostructures/chemistry , Radiopharmaceuticals/chemistry , Isotope Labeling/methods , Animals , Dendrimers/chemistry
19.
Water Res ; 263: 122153, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39079194

ABSTRACT

The application of the fermentative bacteria and microalgae coupling system in the wastewater treatment has been studied, but there remains few knowledge regarding the organic and inorganic carbon metabolism within this system. In this study, the carbon metabolism of microalgae and fermentative bacteria was elucidated by 13C stable isotope labeling and functional gene prediction, respectively. The 13C glucose and 13C NaHCO3 were used as stable isotope tracers to clarify the organic and inorganic carbon metabolism of microalgae, indicating that approximately 71.5 % of the Acetyl-CoA in microalgae was synthesized from organic carbon sources, while 26.8 % was synthesized through the utilization of inorganic carbon sources. Inorganic carbon sources can enhance the activity of photosynthetic system and facilitate the Calvin cycle. Considering the adequate organic carbon sources and insufficient inorganic carbon sources in the fermentative bacteria and microalgae coupling system, NaHCO3 was added to improve carbon utilization of microalgae. The maximum microalgal lipid yield reached 1130.37 mg/L with 1000 mg/L NaHCO3 supplementation. Functional gene prediction was used to analysis the effect of various carbon composition on the bacterial carbon metabolism. Notably, the additional inorganic carbon sources increased the abundance of bacterial functional genes associated with the fermentation and acetic acids synthesis, which was advantageous for VFAs production and further promoted microalgae growth. This study can gain a deeper understanding of microbial metabolic mechanisms during the operation of fermentative bacteria and microalgae system, and improve its sustained operational stability.


Subject(s)
Bacteria , Carbon , Fermentation , Isotope Labeling , Microalgae , Microalgae/metabolism , Microalgae/genetics , Carbon/metabolism , Bacteria/metabolism , Bacteria/genetics , Carbon Isotopes
20.
Anal Chem ; 96(29): 11644-11650, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38991974

ABSTRACT

Isobaric chemical labeling is a widely used strategy for high-throughput quantitative proteomics based on mass spectrometry. However, commercially available reagents have high costs in applications as well as the sensitivity limitations for detection of the trace protein samples. Previously, we developed a 2-plex isobaric labeling strategy based on phosphorus chemistry for ultrasensitive proteome quantification with high accuracy. In this work, 6-plex tandem phosphorus tags (TPT) were developed with 3-fold increase in the multiplexing quantitative capacity compared to the 2-plex isobaric phosphorus reagents introduced previously. High isotope enrichment of 18O labeling was incorporated into the phosphoryl group with three exchangeable oxygen atoms by using commercially available H218O. The combinational incorporations of 18O atom in reporter ions and balance group set up the low-cost foundation for development of multiplex TPT reagents. The novel 6-plex TPT reagents could produce phosphoramidate as unique reporter ions with approximately 1 Da mass difference and thus enable 6-plex quantitative analysis in high-resolution ESI-MS/MS analysis. Using HeLa cell tryptic peptides, we concluded that 6-plex TPT reagents could facilitate large-scale accurate quantitative proteomics with very high labeling efficiency.


Subject(s)
Phosphorus , Proteomics , Tandem Mass Spectrometry , Proteomics/methods , Humans , HeLa Cells , Phosphorus/chemistry , Tandem Mass Spectrometry/methods , Isotope Labeling , Oxygen Isotopes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL