Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.451
1.
Mycoses ; 67(6): e13751, 2024 Jun.
Article En | MEDLINE | ID: mdl-38825584

BACKGROUND: Kerion is a severe type of tinea capitis that is difficult to treat and remains a public health problem. OBJECTIVES: To evaluate the epidemiologic features and efficacy of different treatment schemes from real-world experience. METHODS: From 2019 to 2021, 316 patients diagnosed with kerion at 32 tertiary Chinese hospitals were enrolled. We analysed the data of each patient, including clinical characteristics, causative pathogens, treatments and outcomes. RESULTS: Preschool children were predominantly affected and were more likely to have zoophilic infection. The most common pathogen in China was Microsporum canis. Atopic dermatitis (AD), animal contact, endothrix infection and geophilic pathogens were linked with kerion occurrence. In terms of treatment, itraconazole was the most applied antifungal agent and reduced the time to mycological cure. A total of 22.5% of patients received systemic glucocorticoids simultaneously, which reduced the time to complete symptom relief. Furthermore, glucocorticoids combined with itraconazole had better treatment efficacy, with a higher rate and shorter time to achieving mycological cure. CONCLUSIONS: Kerion often affects preschoolers and leads to serious sequelae, with AD, animal contact, and endothrix infection as potential risk factors. Glucocorticoids, especially those combined with itraconazole, had better treatment efficacy.


Antifungal Agents , Itraconazole , Microsporum , Tinea Capitis , Humans , Child, Preschool , Antifungal Agents/therapeutic use , Male , Female , Tinea Capitis/drug therapy , Tinea Capitis/epidemiology , Tinea Capitis/microbiology , Itraconazole/therapeutic use , China/epidemiology , Microsporum/isolation & purification , Child , Infant , Glucocorticoids/therapeutic use , Treatment Outcome , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/microbiology , Risk Factors , Adolescent , Adult , Middle Aged , Retrospective Studies
2.
J Zoo Wildl Med ; 55(2): 479-489, 2024 Jun.
Article En | MEDLINE | ID: mdl-38875206

Aspergillosis is a major cause of morbidity and mortality in penguins, with triazole antifungal drugs being commonly used for prophylaxis and treatment. This report describes 15 cases of fatal hemolysis associated with liquid itraconazole and voriconazole formulations administered to African penguins (Spheniscus demersus) from four institutions. All penguins underwent stressful events (e.g. relocation, induced molt) and were administered commercial liquid itraconazole formulations or compounded voriconazole liquid suspension. Observed clinical signs in affected penguins prior to death included hyporexia, weight loss, lethargy, dyspnea, red-tinged droppings, and obtunded mentation. Intra- and extravascular hemolysis and hemoglobinuric nephrosis were the primary pathologic manifestations on postmortem examination. The concentration-dependent hemolytic potentials of itraconazole, voriconazole, and commercial and compounded vehicle suspensions were evaluated in vitro by exposing chicken whole blood as a surrogate for penguin blood. Hemoglobin content in blood plasma was then measured by spectrophotometry. Neither itraconazole nor voriconazole alone induced hemolysis in vitro. The vehicle ingredients sorbitol and hydromellose induced hemolysis, but not at predicted plasma levels in chicken erythrocytes, suggesting neither the azole antifungals nor their major vehicles alone were likely to contribute to hemolysis in vivo in these penguins. Potential mechanisms of toxicosis include generation of an unmeasured reactive metabolite causing hemolysis, preexisting erythrocyte fragility, or species-specific differences in hemolytic thresholds that were not assessed in the chicken erythrocyte model. More research is needed on the potential for toxicosis of azole antifungal drugs and carrier molecules in this and other avian species.


Antifungal Agents , Bird Diseases , Hemolysis , Spheniscidae , Voriconazole , Animals , Bird Diseases/chemically induced , Bird Diseases/drug therapy , Hemolysis/drug effects , Antifungal Agents/adverse effects , Antifungal Agents/therapeutic use , Antifungal Agents/administration & dosage , Voriconazole/adverse effects , Voriconazole/therapeutic use , Itraconazole/adverse effects , Itraconazole/therapeutic use , Itraconazole/administration & dosage , Triazoles/adverse effects , Triazoles/therapeutic use , Male , Female , Animals, Zoo
3.
Mycopathologia ; 189(4): 53, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38864961

Sporotrichosis is a globally distributed subcutaneous mycosis caused by dimorphic Sporothrix species commonly found in soil, mosses, and decaying plant matter. The lymphocutaneous manifestation, historically associated with occupational activities and sapronotic transmission, has recently been observed to also occur through animal contact, particularly notable in Brazil. We describe a rare case of lymphocutaneous sporotrichosis with simultaneous pulmonary complications resulting from the scratching of a southern three-banded armadillo, Tolypeutes matacus, primarily inhabiting the arid forests of South America's central region. Speciation using multiplex quantitative polymerase chain reaction (qPCR) established the etiological agent as S. schenckii s. str., while amplified fragment length polymorphism (AFLP) analysis unveiled a novel genotype circulating in the Midwest of Brazil. The patient received treatment with itraconazole (200 mg/day) for two months, leading to substantial clinical improvement of cutaneous and pulmonary symptoms. This case highlights the critical role of animal-mediated transmission in sporotrichosis epidemiology, particularly within regions with diverse armadillo species. The unusual epidemiology and genetic characteristics of this case emphasize the need for enhanced awareness and diagnostic vigilance in atypical sporotrichosis presentations.


Antifungal Agents , Armadillos , Itraconazole , Sporothrix , Sporotrichosis , Animals , Humans , Male , Amplified Fragment Length Polymorphism Analysis , Antifungal Agents/therapeutic use , Armadillos/microbiology , Brazil , Genotype , Itraconazole/therapeutic use , Multiplex Polymerase Chain Reaction , Sporothrix/genetics , Sporothrix/isolation & purification , Sporothrix/classification , Sporotrichosis/microbiology , Sporotrichosis/diagnosis , Sporotrichosis/drug therapy , Sporotrichosis/transmission , Treatment Outcome , Middle Aged
5.
Mycopathologia ; 189(4): 54, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38865003

BACKGROUND: During the COVID-19 pandemic-associated mucor epidemic, acute antifungal drug shortage necessitated the exploration of other antifungals based on culture sensitivity. Itraconazole is a cheap, safe, and effective antifungal in sensitive cases. METHODOLOGY: We enrolled itraconazole-sensitive COVID-19-associated mucormycosis during the mucormycosis pandemic. After the intensive phase course of liposomal amphotericin B, Itraconazole was offered in susceptible cases during the maintenance phase along with standard of care. These patients were clinically and radiologically followed for 6 months. RESULTS: We enrolled 14 patients (Male: Female-11:3) of Rhino-orbito-cerebral mucormycosis (ROCM) which included 12 diabetics. All patients had facial swelling, orbital swelling, visual impairment, and headache. MRI showed involvement of bilateral sinus (10/14), orbital extension (13/14), cavernous sinus (5/14), cerebral part of the internal carotid artery (3/14), and brain infarcts (4/14). All 14 patients showed sensitivity to Itraconazole with 12 having minimum inhibitory concentration (MIC) ≤ 1 µg/ml and 2 having MIC ≤ 2 µg/ml. Follow-up at 6 months showed clinical improvement in the majority (11/14) and radiological improvement in six out of seven scanned patients. CONCLUSION: Our study shows the potential therapeutic role of oral Itraconazole in ROCM.


Amphotericin B , Antifungal Agents , Itraconazole , Mucormycosis , Rhizopus oryzae , Humans , Male , Itraconazole/therapeutic use , Itraconazole/administration & dosage , Female , Mucormycosis/drug therapy , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antifungal Agents/therapeutic use , Antifungal Agents/administration & dosage , Middle Aged , Adult , Rhizopus oryzae/drug effects , Microbial Sensitivity Tests , COVID-19/complications , Aged , Drug Therapy, Combination , Treatment Outcome
6.
Ann Clin Microbiol Antimicrob ; 23(1): 57, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38902740

Chromoblastomycosis (CBM), a chronic fungal infection affecting the skin and subcutaneous tissues, is predominantly caused by dematiaceous fungi in tropical and subtropical areas. Characteristically, CBM presents as plaques and nodules, often leading to scarring post-healing. Besides traditional diagnostic methods such as fungal microscopy, culture, and histopathology, dermatoscopy and reflectance confocal microscopy can aid in diagnosis. The treatment of CBM is an extended and protracted process. Imiquimod, acting as an immune response modifier, boosts the host's immune response against CBM, and controls scar hyperplasia, thereby reducing the treatment duration. We present a case of CBM in Guangdong with characteristic reflectance confocal microscopy manifestations, effectively managed through a combination of itraconazole, terbinafine, and imiquimod, shedding light on novel strategies for managing this challenging condition.


Antifungal Agents , Chromoblastomycosis , Imiquimod , Itraconazole , Terbinafine , Chromoblastomycosis/drug therapy , Chromoblastomycosis/microbiology , Imiquimod/therapeutic use , Humans , Antifungal Agents/therapeutic use , Itraconazole/therapeutic use , Terbinafine/therapeutic use , Male , Treatment Outcome , Microscopy, Confocal , Skin/pathology , Skin/microbiology , Middle Aged
7.
Braz J Infect Dis ; 28(3): 103768, 2024.
Article En | MEDLINE | ID: mdl-38851212

We report an autochthonous case of mild unifocal chronic pulmonary paracoccidioidomycosis in a 48-year-old previously healthy woman with no history of possible environmental exposures in endemic rural areas, supposedly resulting from reactivation of a latent pulmonary focus secondary to the use of methotrexate for the control of Chikungunya arthropathy. Laboratory investigation ruled out other immunosuppression. Her only symptoms were a dry cough and chest pain. Diagnosis confirmed by needle lung biopsy. There were no abnormalities on physical examination nor evidence of central nervous system involvement. MRI of the total abdomen showed no involvement of other organs. Computed chest tomography showed a favorable evolution under the use of itraconazole (200 mg/day). Different tomographic presentations findings are highlighted when performed before and after treatment. CONCLUSIONS: PCM should be considered even in a woman without a history of consistent environmental exposure and in a non-endemic geographic area.


Lung Diseases, Fungal , Methotrexate , Paracoccidioidomycosis , Humans , Female , Paracoccidioidomycosis/drug therapy , Middle Aged , Methotrexate/therapeutic use , Methotrexate/adverse effects , Lung Diseases, Fungal/drug therapy , Chronic Disease , Itraconazole/therapeutic use , Tomography, X-Ray Computed , Antifungal Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use
8.
Acta Trop ; 255: 107237, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723739

The surge in domestic cat adoption across India, particularly the rising preference for high-pedigree cats, coupled with environmental factors, has resulted in increased incidence of dermatophytosis among feline companions. Despite this growing concern, there is a noticeable scarcity of studies in India delving into the etiological factors contributing to dermatophytosis in cats. This disease is a threat to animal health and carries public health significance, given that cats are recognized reservoir hosts for Microsporum canis, a common dermatophyte affecting humans and animals. This study endeavours to identify the dermatophytes affecting cats and establish a standardized therapeutic regimen while accounting for the local stigma surrounding the regular bathing of cats. The study involved the examination of 82 cats presenting dermatological lesions, when subjected to cultural examination in dermatophyte test medium revealed 36 afflicted with dermatophytes. Isolates were presumptively identified by staining using lactophenol cotton blue, Chicago sky blue 6B, and Calcofluor white stains. Molecular-level identification of the isolates was confirmed through PCR-RFLP, amplifying the Internal Transcribed Spacer Sequence of 16 s rDNA, followed by restriction digestion using the Mva1 enzyme. Among the thirty-six isolates, 29 were identified as M. canis, while the remaining 7 were M. gypseum. The cases were categorized into five groups and treated with Lime Sulphur dip, 4 % chlorhexidine shampoo, a shampoo containing 2 % miconazole and 4 % chlorhexidine, oral itraconazole alone, and a combination of oral itraconazole with lime-Sulphur dip. Statistical analysis revealed that the response was notably swifter with lime Sulphur dip when considering only topical therapy. Moreover, the mycological cure was most expeditious when combining Lime Sulphur dip with oral itraconazole. These findings underscore the pivotal role of topical biocides in feline dermatophytosis treatment, potentially reducing the reliance on specific antifungals and thereby contributing to the mitigation of antimicrobial resistance emergence.


Antifungal Agents , Cat Diseases , Microsporum , Tinea , Cats/microbiology , Animals , Cat Diseases/microbiology , Cat Diseases/drug therapy , India/epidemiology , Tinea/veterinary , Tinea/microbiology , Tinea/drug therapy , Tinea/epidemiology , Antifungal Agents/therapeutic use , Microsporum/isolation & purification , Microsporum/genetics , Male , Female , Arthrodermataceae/isolation & purification , Arthrodermataceae/genetics , Arthrodermataceae/classification , Arthrodermataceae/drug effects , Itraconazole/therapeutic use , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics
9.
Mol Pharm ; 21(6): 3027-3039, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38755753

This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 µg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 µg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.


Calorimetry, Differential Scanning , Itraconazole , Liquid Crystals , Povidone , Solubility , X-Ray Diffraction , Itraconazole/chemistry , Liquid Crystals/chemistry , Povidone/chemistry , Calorimetry, Differential Scanning/methods , X-Ray Diffraction/methods , Polymers/chemistry , Antifungal Agents/chemistry , Drug Compounding/methods , Crystallization , Chemistry, Pharmaceutical/methods
10.
Mycopathologia ; 189(3): 44, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734862

A 50-year-old man, previously diagnosed with pulmonary tuberculosis and lung cavities, presented with symptoms including fever, shortness of breath, and cough. A pulmonary CT scan revealed multiple cavities, consolidation and tree-in-bud in the upper lungs. Further investigation through direct examination of bronchoalveolar lavage fluid showed septate hyphae with dichotomous acute branching. Subsequent isolation and morphological analysis identified the fungus as belonging to Aspergillus section Nigri. The patient was diagnosed with probable invasive pulmonary aspergillosis and successfully treated with a three-month oral voriconazole therapy. Phylogenetic analysis based on partial ß-tubulin, calmodulin and RNA polymerase second largest subunit sequences revealed that the isolate represents a putative new species related to Aspergillus brasiliensis, and is named Aspergillus hubkae here. Antifungal susceptibility testing demonstrated that the isolate is resistant to itraconazole but susceptible to voriconazole. This phenotypic and genetic characterization of A. hubkae, along with the associated case report, will serve as a valuable resource for future diagnoses of infections caused by this species. It will also contribute to more precise and effective patient management strategies in similar clinical scenarios.


Antifungal Agents , Aspergillus , Invasive Pulmonary Aspergillosis , Microbial Sensitivity Tests , Phylogeny , Sequence Analysis, DNA , Voriconazole , Humans , Male , Middle Aged , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Aspergillus/isolation & purification , Aspergillus/genetics , Aspergillus/classification , Aspergillus/drug effects , Bronchoalveolar Lavage Fluid/microbiology , Cluster Analysis , DNA, Fungal/genetics , DNA, Fungal/chemistry , Invasive Pulmonary Aspergillosis/microbiology , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/diagnosis , Itraconazole/pharmacology , Microscopy , Tomography, X-Ray Computed , Treatment Outcome , Tubulin/genetics , Voriconazole/therapeutic use , Voriconazole/pharmacology
11.
Eur J Pharm Sci ; 199: 106798, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38740075

OBJECTIVES: 1) Identify processes limiting the arrival of itraconazole at the intestinal epithelium when Sporanox® amorphous solid dispersion (ASD) pellets are transferred from the stomach through the upper small intestine, after a high-calorie, high-fat meal. 2) Evaluate whether itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine are useful for the assessment of dose effects in the fed state and food effects on plasma levels. METHODS: Itraconazole concentrations, apparent viscosity, and solubilization capacity were measured in aspirates from the upper gastrointestinal lumen collected during a recently performed clinical study in healthy adults. Published itraconazole concentrations in plasma, after a high-calorie high-fat meal and Sporanox® ASD pellets, and in contents of the upper small intestine of healthy adults, after administration of Sporanox® ASD pellets in the fasted state, were used to achieve the second objective. RESULTS: When Sporanox® ASD pellets (up to 200 mg) are transferred from the stomach through the upper small intestine, after a high-calorie, high-fat meal, itraconazole concentrations in the colloidal phase or the micellar phase of aqueous contents of the upper small intestine are unsaturated, in most cases. During the first 3 h post-dosing after a high-calorie, high-fat meal, the impact of dose (200 mg vs. 100 mg) on itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine seems to underestimate the impact of dose on plasma levels. When Sporanox® ASD pellets are administered after a high-calorie, high-fat meal at the 200 mg dose level, itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine are, on average, lower than those achieved in fasted state. CONCLUSIONS: When Sporanox® ASD pellets are transferred from the stomach to the upper small intestine after a high-calorie, high-fat meal, itraconazole's arrival at the intestinal epithelium seems to be limited by its arrival at the colloidal phase of aqueous contents of the upper small intestine. The impact of dose (100 mg vs. 200 mg) on plasma levels after a high-calorie, high-fat meal and during the gastrointestinal transfer of Sporanox® pellets requires consideration of pre-systemic itraconazole metabolism. At the 200 mg dose level, after taking into consideration differences in the volume of the contents of the upper small intestine between the fasted and the fed state during the gastrointestinal transfer of Sporanox® ASD pellets, itraconazole concentrations in the colloidal phase of aqueous contents of the upper small intestine suggest a mild negative food effect on average plasma levels; published clinical data are inconclusive.


Itraconazole , Itraconazole/pharmacokinetics , Itraconazole/administration & dosage , Itraconazole/blood , Itraconazole/chemistry , Administration, Oral , Humans , Adult , Antifungal Agents/pharmacokinetics , Antifungal Agents/administration & dosage , Antifungal Agents/blood , Male , Intestinal Absorption , Solubility , Food-Drug Interactions , Diet, High-Fat , Intestine, Small/metabolism , Viscosity , Female , Young Adult
12.
Expert Opin Pharmacother ; 25(5): 511-519, 2024 Apr.
Article En | MEDLINE | ID: mdl-38623728

INTRODUCTION: The reports of resistance to antifungal agents used for treating onychomycosis and other superficial fungal infections are increasing. This rise in antifungal resistance poses a public health challenge that requires attention. AREAS COVERED: This review explores the prevalence of dermatophytes and the current relationship between dermatophyte species, their minimum inhibitory concentrations (MICs) for terbinafine (an allylamine) and itraconazole (an azole), and various mutations prevalent in these species. The most frequently isolated dermatophyte associated with resistance in patients with onychomycosis and dermatophytosis was T. mentagrophytes. However, T. indotineae emerged as the most prevalent isolate with mutations in the SQLE gene, exhibiting the highest MIC of 8 µg/ml for terbinafine and MICs of 8 µg/ml and ≥ 32 µg/ml for itraconazole.Overall, the most prevalent SQLE mutations were Phe397Leu, Leu393Phe, Ala448Thr, Phe397Leu/Ala448Thr, and Lys276Asn/Leu415Phe (relatively recent). EXPERT OPINION: Managing dermatophyte infections requires a personalized approach. A detailed history should be obtained including details of travel, home and occupational exposure, and clinical examination of the skin, nails and other body systems. Relevant testing includes mycological examination (traditional and molecular). Additional testing, where available, includes MIC evaluation and detection of SQLE mutations. In case of suspected terbinafine resistance, itraconazole or voriconazole (less commonly) should be considered.


Antifungal Agents , Arthrodermataceae , Drug Resistance, Fungal , Microbial Sensitivity Tests , Mutation , Terbinafine , Tinea , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Humans , Drug Resistance, Fungal/genetics , Tinea/drug therapy , Tinea/microbiology , Arthrodermataceae/drug effects , Arthrodermataceae/genetics , Terbinafine/pharmacology , Terbinafine/therapeutic use , Itraconazole/pharmacology , Itraconazole/therapeutic use , Onychomycosis/drug therapy , Onychomycosis/microbiology
13.
Mycopathologia ; 189(2): 30, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578519

OBJECTIVE: To study the distribution of pathogenic Aspergillus strains of otomycosis in central China and the identification of their antifungal sensitivity. METHODS: We collected external ear canal secretions clinically diagnosed as otomycosis from April 2020 to January 2023 from the Department of Otolaryngology-Head and Neck Surgery in central China. The pathogenic Aspergillus strains were identified through morphological examination and sequencing. The antifungal sensitivity was performed using the broth microdilution method described in the Clinical Laboratory Standard Institute document M38-A3. RESULTS: In the 452 clinical strains isolated from the external ear canal, 284 were identified as Aspergillus terreus (62.83%), 92 as Aspergillus flavus (20.35%), 55 as Aspergillus niger (12.17%). In antifungal susceptibility tests the MIC of Aspergillus strains to bifonazole and clotrimazole was high,all the MIC90 is > 16 ug/mL. However, most Aspergillus isolates show moderate greatly against terbinafine, itraconazole and voriconazole. CONCLUSION: A. terreus is the most common pathogenic Aspergillus strain in otomycosis in central China. The selected topical antifungal drugs were bifonazole and clotrimazole; the drug resistance rate was approximately 30%. If the infection is persistent and requires systemic treatment, terbinafine and itraconazole can be used. The resistance of Aspergillus in otomycosis to voriconazole should be screened to avoid the systemic spread of infection in immunocompromised people and poor compliance with treatment. However, the pan-azole-resistant strain of Aspergillus should be monitored, particularly in high-risk patients with otomycosis.


Aspergillosis , Otomycosis , Humans , Antifungal Agents/pharmacology , Otomycosis/epidemiology , Otomycosis/microbiology , Itraconazole , Voriconazole , Terbinafine , Clotrimazole/pharmacology , Aspergillosis/epidemiology , Aspergillosis/microbiology , Aspergillus , Microbial Sensitivity Tests
14.
Int J Biol Macromol ; 267(Pt 2): 131404, 2024 May.
Article En | MEDLINE | ID: mdl-38582466

Chitosan has received much more attention as a functional biopolymer with applications in pharmaceuticals, agricultural, drug delivery systems and cosmetics. The objectives of present investigation were to carry out modification of chitosan for enhancement of aqueous solubility, which will impart increased solubility and dissolution rate of poorly soluble drug itraconazole (ITZ) and also evaluate the modified chitosan for soyabean seed germination studies. The modification of chitosan was accomplished through the antisolvent precipitation method; employing five carboxylic acids. The resulting products were assessed for changes in molecular weight, degree of deacetylation, solubility and solid state characterization. Subsequently, the modified chitosan was complexed with itraconazole using the co-grinding technique. The prepared formulations were evaluated for solubility, FTIR (Fourier-transform infrared spectroscopy), PXRD (Powder X-ray diffraction), in-vitro dissolution studies. Furthermore the effect of modified chitosan has been evaluated on soybean seed germination. Results demonstrated that, modified chitosan improves self and solubility of itraconazole by six folds. As there was increased degree of deacetylation of chitosan leads to improvement in solubility. The results of FTIR showed the slight shifting of peaks in co-grind formulations of itraconazole. Formulations showed reduction in crystallinity of drug which leads to enhancement in dissolution rate as compared to pure itraconazole. Retention of property of seed germination was observed with modified chitosan at optimum concentration of 3 % w/v, with benefit of enhanced aqueous solubility of chitosan. This positive result paves the way for the advancement of pharmaceutical and agrochemical products employing derivatives of chitosan.


Agrochemicals , Chitosan , Itraconazole , Solubility , Chitosan/chemistry , Agrochemicals/chemistry , Agrochemicals/pharmacology , Itraconazole/chemistry , Itraconazole/pharmacology , Glycine max/chemistry , Germination/drug effects , Seeds/chemistry , Seeds/drug effects , Chemical Phenomena , Spectroscopy, Fourier Transform Infrared , Molecular Weight , X-Ray Diffraction
15.
Mar Drugs ; 22(4)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38667795

This open-label, two-part, phase Ib drug-drug interaction study investigated whether the pharmacokinetic (PK) and safety profiles of lurbinectedin (LRB), a marine-derived drug, are affected by co-administration of itraconazole (ITZ), a strong CYP3A4 inhibitor, in adult patients with advanced solid tumors. In Part A, three patients were sequentially assigned to Sequence 1 (LRB 0.8 mg/m2, 1-h intravenous [IV] + ITZ 200 mg/day oral in Cycle 1 [C1] and LRB alone 3.2 mg/m2, 1 h, IV in Cycle 2 [C2]). In Part B, 11 patients were randomized (1:1) to receive either Sequence 1 (LRB at 0.9 mg/m2 + ITZ in C1 and LRB alone in C2) or Sequence 2 (LRB alone in C1 and LRB + ITZ in C2). Eleven patients were evaluable for PK analysis: three in Part A and eight in Part B (four per sequence). The systemic total exposure of LRB increased with ITZ co-administration: 15% for Cmax, area under the curve (AUC) 2.4-fold for AUC0-t and 2.7-fold for AUC0-∞. Co-administration with ITZ produced statistically significant modifications in the unbound plasma LRB PK parameters. The LRB safety profile was consistent with the toxicities described in previous studies. Co-administration with multiple doses of ITZ significantly altered LRB systemic exposure. Hence, to avoid LRB overexposure when co-administered with strong CYP3A4 inhibitors, an LRB dose reduction proportional to CL reduction should be applied.


Carbolines , Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , Heterocyclic Compounds, 4 or More Rings , Itraconazole , Neoplasms , Humans , Itraconazole/pharmacokinetics , Itraconazole/administration & dosage , Itraconazole/adverse effects , Male , Middle Aged , Female , Aged , Neoplasms/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/adverse effects , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Carbolines/pharmacokinetics , Carbolines/administration & dosage , Carbolines/adverse effects , Adult , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/adverse effects , Area Under Curve , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage
17.
Microbiol Spectr ; 12(6): e0396723, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38647345

Acylhydrazone (AH) derivatives represent a novel category of anti-fungal medications that exhibit potent activity against Sporothrix sp., both in vitro and in a murine model of sporotrichosis. In this study, we demonstrated the anti-fungal efficacy of the AH derivative D13 [4-bromo-N'-(3,5-dibromo-2-hydroxybenzylidene)-benzohydrazide] against both planktonic cells and biofilms formed by Sporothrix brasiliensis. In a clinical study, the effect of D13 was then tested in combination with itraconazole (ITC), with or without potassium iodide, in 10 cats with sporotrichosis refractory to the treatment of standard of care with ITC. Improvement or total clinical cure was achieved in five cases after 12 weeks of treatment. Minimal abnormal laboratory findings, e.g., elevation of alanine aminotransferase, were observed in four cats during the combination treatment and returned to normal level within a week after the treatment was ended. Although highly encouraging, a larger and randomized controlled study is required to evaluate the effectiveness and the safety of this new and exciting drug combination using ITC and D13 for the treatment of feline sporotrichosis. IMPORTANCE: This paper reports the first veterinary clinical study of an acylhydrazone anti-fungal (D13) combined with itraconazole against a dimorphic fungal infection, sporotrichosis, which is highly endemic in South America in animals and humans. Overall, the results show that the combination treatment was efficacious in ~50% of the infected animals. In addition, D13 was well tolerated during the course of the study. Thus, these results warrant the continuation of the research and development of this new class of anti-fungals.


Antifungal Agents , Cat Diseases , Drug Therapy, Combination , Itraconazole , Sporothrix , Sporotrichosis , Cats , Animals , Itraconazole/therapeutic use , Itraconazole/administration & dosage , Itraconazole/pharmacology , Sporotrichosis/drug therapy , Sporotrichosis/veterinary , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Cat Diseases/drug therapy , Cat Diseases/microbiology , Sporothrix/drug effects , Hydrazones/therapeutic use , Hydrazones/pharmacology , Female , Male , Microbial Sensitivity Tests , Biofilms/drug effects , Treatment Outcome
18.
Molecules ; 29(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38675589

The aim of this study was to develop cholic-acid-stabilized itraconazole nanosuspensions (ITZ-Nanos) with the objective of enhancing drug dissolution and oral absorption. A laboratory-scale microprecipitation-high-pressure homogenization method was employed for the preparation of the ITZ-Nanos, while dynamic light scattering, transmission electron microscope analysis, X-ray diffraction, differential scanning calorimetry, and high-performance liquid chromatography analysis were utilized to evaluate their physicochemical properties. The absorption and bioavailability of the ITZ-Nanos were assessed using Caco-2 cells and rats, with Sporanox® pellets as a comparison. Prior to lyophilization, the particle size of the ITZ-Nanos measured approximately 225.7 nm. Both X-ray diffraction and differential scanning calorimetry confirmed that the ITZ remained crystalline within the nanocrystals. Compared to the pellets, the ITZ-Nanos exhibited significantly higher levels of supersaturation dissolution and demonstrated enhanced drug uptake by the Caco-2 cells. The AUC(0-t) value for the ITZ-Nanos in rats was 1.33-fold higher than that observed for the pellets. These findings suggest that cholic acid holds promise as a stabilizer for ITZ nanocrystals, as well as potentially other nanocrystals.


Itraconazole , Nanoparticles , Solubility , Surface-Active Agents , Itraconazole/chemistry , Itraconazole/pharmacokinetics , Itraconazole/administration & dosage , Nanoparticles/chemistry , Humans , Caco-2 Cells , Animals , Rats , Administration, Oral , Surface-Active Agents/chemistry , Male , Biological Availability , Particle Size , X-Ray Diffraction , Calorimetry, Differential Scanning , Cholic Acid/chemistry
19.
Mycoses ; 67(4): e13724, 2024 Apr.
Article En | MEDLINE | ID: mdl-38584320

OBJECTIVE: This study aims to assess the clinical characteristics of sporotrichosis in low-endemic areas of China, including the prevalence geography, genotypic traits of patients, clinical manifestations, and strain virulence and drug sensitivities. The objective is to improve the currently used clinical management strategies for sporotrichosis. METHODS: Retrospective data were collected from patients diagnosed with sporotrichosis through fungal culture identification. The isolates from purified cultures underwent identification using CAL (Calmodulin) gene sequencing. Virulence of each strain was assessed using a Galleria mellonella (G. mellonella) larvae infection model. In vitro susceptibility testing against commonly used clinical antifungal agents for sporotrichosis was conducted following CLSI criteria. RESULTS: In our low-endemic region for sporotrichosis, the majority of cases (23) were observed in middle-aged and elderly women with a history of trauma, with a higher incidence during winter and spring. All clinical isolates were identified as Sporothrix globosa (S. globosa). The G. mellonella larvae infection model indicated independent and dose-dependent virulence among strains, with varying toxicity levels demonstrated by the degree of melanization of the G. mellonella. Surprisingly, lymphocutaneous types caused by S. globosa exhibited lower in vitro virulence but were more common in affected skin. In addition, all S.globosa strains displayed high resistances to fluconazole, while remaining highly susceptible to terbinafine, itraconazole and amphotericin B. CONCLUSION: Given the predominance of elderly women engaged in agricultural labour in our region, which is a low-epidemic areas, they should be considered as crucial targets for sporotrichosis monitoring. S. globosa appears to be the sole causative agent locally. However, varying degrees of melanization in larvae were observed among these isolates, indicating a divergence in their virulence. Itraconazole, terbinafine and amphotericin B remain viable first-line antifungal options for treating S.globosa infection.


Sporothrix , Sporotrichosis , Aged , Middle Aged , Humans , Female , Itraconazole/pharmacology , Itraconazole/therapeutic use , Sporotrichosis/microbiology , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Terbinafine/therapeutic use , Retrospective Studies , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Sporothrix/genetics , China/epidemiology
20.
Sci Total Environ ; 923: 171189, 2024 May 01.
Article En | MEDLINE | ID: mdl-38447726

Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.


Antifungal Agents , Fungal Proteins , Antifungal Agents/pharmacology , Retrospective Studies , Fungal Proteins/genetics , Fungi , Itraconazole , Aspergillus fumigatus , Microbial Sensitivity Tests , Azoles
...