Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
J Vis Exp ; (207)2024 May 31.
Article in English | MEDLINE | ID: mdl-38884476

ABSTRACT

Bone marrow mesenchymal stem cells (BMMSCs) are a type of stem cell with multi-directional differentiation potential. Compared with BMMSCs derived from appendicular bones, BMMSCs derived from the jaw have greater proliferative and osteogenic differentiation ability, gradually becoming important seed cells for jaw defect repair. However, the mandible has a complex bony structure and less cancellous content than appendicular bones. It is difficult to acquire a large number of high-quality jaw-derived marrow mesenchymal stem cells using traditional methods. This study presents a 'niche-based approach on stemness' for isolating and culturing rat jaw bone marrow mesenchymal stem cells (JBMMSCs). Primary rat JBMMSCs were isolated and cultured using the whole bone marrow adherent method combined with the bone slice digestion method. The isolated cells were identified as JBMMSCs through cell morphology observation, detection of cell surface markers, and multi-directional differentiation induction. The cells extracted by this method exhibit a 'fibroblast-like' spindle shape. The cells are long, spindle-shaped and fibroblast-like. The flow cytometry analysis shows these cells are positive for CD29, CD44, and CD90 but negative for CD11b/c, CD34, and CD45, which is congruent with BMMSCs characteristics. The cells show strong proliferation capacity and can undergo osteogenic, adipogenic, and chondrogenic differentiation. This study provides an effective and stable method for obtaining enough high-quality JBMMSCs with strong differentiation ability in a short time, which could facilitate further studies of the exploration of biological function, regenerative medicine, and related clinical applications.


Subject(s)
Bone Marrow Cells , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cells/cytology , Rats , Bone Marrow Cells/cytology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Jaw/cytology , Cytological Techniques/methods
2.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 435-443, 2024 May 09.
Article in Chinese | MEDLINE | ID: mdl-38636997

ABSTRACT

Objective: To explore the biological process of liver tissue-derived extracellular vesicle (LT-EV) in promoting osteogenic differentiation of mesenchymal stem cells and healing of jaw defects to provide a feasible treatment method for the clinical treatment of jaw bone defects. Methods: Enzymatic hydrolysis and differential centrifugation were used to extract LT-EV, scanning electron microscopy, Western blotting, and nanoparticle tracking analyzers were used to identify and characterize LT-EV, and further to explore the biological functions of LT-EV through proteomics and Kyoto Encyclopedia of Genes and Genomes. Flow cytometry was used to detect LT-EV plasma concentration and to calculate the plasma half-life of LT-EV. Small animal in vivo imaging system was used to detect the biological distribution of LT-EV 24 hours after injection. Six C57BL/6 mice were divided into control group and LT-EV group (3 mice in each group) by simple random sampling method. All mice underwent jaw bone defect surgery and tail vein injection every 7 days (the control group was injected with phosphoric buffer saline, LT-EV group was injected with LT-EV), micro-CT was used to evaluate the degree of mouse jaw bone healing 28 days after surgery, HE staining was used to analyze the multi-organ biosafety of LT-EV, and immunofluorescence staining was used to detect the jaw bone expression of osteogenic marker proteins in the defect area. Human jaw bone mesenchymal stem cells (hJBMSC) induced by osteogenic differentiation were treated with LT-EV (obtained from orthognathic surgery patients provided by the Department of Traumatology and Orthognathic Surgery of School of Stomatology of The Fourth Military Medical University resected normal jaw bone fragments), and the difference in osteogenic differentiation ability between the hJBMSC group and the control group (phosphate buffer saline treatment) was compared, and the in vitro bone differentiation promoting effect of LT-EV was verified through alkaline phosphatase (ALP) staining and real-time fluorescence quantitative PCR. Results: The yield of LT-EV was high, and proteomics and Kyoto Encyclopedia of Genes and Genomes showed that LT-EV contained a series of proteins that regulated cell biological functions. LT-EV injected into the tail vein could reach the mouse jaw bone defect area and promote the regeneration and repair of the jaw bone defect [the bone volume fractions of the LT-EV group and the control group were (36.06±4.20)% and (18.58±5.61)%, respectively; t=4.32, P=0.013], and had good biosafety. LT-EV could promote osteogenic differentiation of hJBMSC in vitro. Compared to the control group, ALP staining and osteogenic gene expression levels were significantly enhanced after osteogenic differentiation of hJBMSC (P<0.05). Conclusions: LT-EV exhibits a high yield, ease of acquisition, high biological safety, and excellent bone-promoting effects. It holds promise as a novel cell-free therapy strategy for regenerating craniofacial bone defects.


Subject(s)
Cell Differentiation , Extracellular Vesicles , Liver , Mesenchymal Stem Cells , Mice, Inbred C57BL , Osteogenesis , Animals , Mesenchymal Stem Cells/cytology , Extracellular Vesicles/metabolism , Mice , Liver/cytology , Jaw/cytology , Bone Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL