Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.816
1.
Sci Rep ; 14(1): 10340, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710764

This study aims to evaluate the role of trefoil factor 3 (TFF3) peptides in type 2 diabetes mellitus (T2DM) from an inflammatory perspective. The focus was on exploring how TFF3 affects the function of T cells. TFF3 overexpression model was constructed using lentivirus in Jurkat cell lines. We evaluated the impact of TFF3 on the proliferation, apoptosis, and IL-17A levels of Jurkat cells cultured in high glucose. The T2DM model was induced in TFF3 knockout (KO) mice through streptozotocin combined with high-fat diet. The measurements included glucose tolerance, insulin tolerance, inflammation markers, Th17 cell proportion, and pancreatic pathological changes. The T2DM modeling led to splenomegaly in mice, and increased expression of TFF3 in their spleens. Overexpression of TFF3 increased the proportion of IL-17+ T cells and the levels of Th17-related cytokines in Jurkat cells. There was no difference in body weight and blood glucose levels between wild-type and TFF3 KO mice. However, T2DM mice lacking the TFF3 gene showed improved glucose utilization, ameliorated pancreatic pathology, decreased inflammation levels, and reduced Th17 cell ratio. TFF3 may be involved in the chronic inflammatory immune response in T2DM. Its mechanism may be related to the regulation of the RORγt/IL-17 signaling pathway and its impact on T cell proliferation and apoptosis.


Diabetes Mellitus, Type 2 , Mice, Knockout , Th17 Cells , Trefoil Factor-3 , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/immunology , Mice , Trefoil Factor-3/metabolism , Trefoil Factor-3/genetics , Jurkat Cells , Interleukin-17/metabolism , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Male , Cell Proliferation , Apoptosis , Diet, High-Fat/adverse effects
2.
Bull Exp Biol Med ; 176(5): 617-619, 2024 Mar.
Article En | MEDLINE | ID: mdl-38730108

We studied the effect of the HSP27 inhibitor, 5-(5-ethyl-2-hydroxy-4-methoxyphenyl)-4-(4-methoxyphenyl)-isoxazole, at a final concentration of 0.1 µM and/or the apoptosis inducer dexamethasone at a final concentration of 10 µM on the content of hydroxyl radical, reduced and oxidized glutathione, HSP27, activity of glutathione reductase, glutathione peroxidase, caspase-3, and the number of Annexin+ Jurkat tumor cells. The involvement of HSP27 in apoptosis of Jurkat tumor cells was demonstrated. Simultaneous exposure to the HSP27 inhibitor and dexamethasone resulted in an increase in the level of HSP27 against the background of developing oxidative stress (increase in the concentration of hydroxyl radicals and changes in the state of the glutathione system).


Apoptosis , Caspase 3 , Dexamethasone , Glutathione , HSP27 Heat-Shock Proteins , Oxidative Stress , Humans , Dexamethasone/pharmacology , Jurkat Cells , Apoptosis/drug effects , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Glutathione/metabolism , Caspase 3/metabolism , Caspase 3/genetics , Oxidative Stress/drug effects , Glutathione Reductase/metabolism , Glutathione Peroxidase/metabolism , Hydroxyl Radical/metabolism
3.
Methods Mol Biol ; 2800: 35-53, 2024.
Article En | MEDLINE | ID: mdl-38709476

Clustering of type II tumor necrosis factor (TNF) receptors (TNFRs) is essential for their activation, yet currently available drugs fail to activate signaling. Some strategies aim to cluster TNFR by using multivalent streptavidin or scaffolds based on dextran or graphene. However, these strategies do not allow for control of the valency or spatial organization of the ligands, and consequently control of the TNFR activation is not optimal. DNA origami nanostructures allow nanometer-precise control of the spatial organization of molecules and complexes, with defined spacing, number and valency. Here, we demonstrate the design and characterization of a DNA origami nanostructure that can be decorated with engineered single-chain TNF-related apoptosis-inducing ligand (SC-TRAIL) complexes, which show increased cell killing compared to SC-TRAIL alone on Jurkat cells. The information in this chapter can be used as a basis to decorate DNA origami nanostructures with various proteins, complexes, or other biomolecules.


DNA , Nanostructures , Nanostructures/chemistry , Humans , Jurkat Cells , DNA/chemistry , DNA/metabolism , TNF-Related Apoptosis-Inducing Ligand/chemistry , TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Receptors, Tumor Necrosis Factor/chemistry , Nanotechnology/methods , Nucleic Acid Conformation
4.
Front Immunol ; 15: 1392933, 2024.
Article En | MEDLINE | ID: mdl-38779683

Introduction: Antigen binding to the T cell antigen receptor (TCR) leads to the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 complex, and thereby to T cell activation. The CD3ε subunit plays a unique role in TCR activation by recruiting the kinase LCK and the adaptor protein NCK prior to ITAM phosphorylation. Here, we aimed to investigate how phosphorylation of the individual CD3ε ITAM tyrosines impacts the CD3ε signalosome. Methods: We mimicked irreversible tyrosine phosphorylation by substituting glutamic acid for the tyrosine residues in the CD3ε ITAM. Results: Integrating CD3ε phospho-mimetic variants into the complete TCR-CD3 complex resulted in reduced TCR signal transduction, which was partially compensated by the involvement of the other TCR-CD3 ITAMs. By using novel CD3ε phospho-mimetic Chimeric Antigen Receptor (CAR) variants, we avoided any compensatory effects of other ITAMs in the TCR-CD3 complex. We demonstrated that irreversible CD3ε phosphorylation prevented signal transduction upon CAR engagement. Mechanistically, we demonstrated that glutamic acid substitution at the N-terminal tyrosine residue of the CD3ε ITAM (Y39E) significantly reduces NCK binding to the TCR. In contrast, mutation at the C-terminal tyrosine of the CD3ε ITAM (Y50E) abolished LCK recruitment to the TCR, while increasing NCK binding. Double mutation at the C- and N-terminal tyrosines (Y39/50E) allowed ZAP70 to bind, but reduced the interaction with LCK and NCK. Conclusions: The data demonstrate that the dynamic phosphorylation of the CD3ε ITAM tyrosines is essential for CD3ε to orchestrate optimal TCR and CAR signaling and highlights the key role of CD3ε signalosome to tune signal transduction.


CD3 Complex , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Signal Transduction , CD3 Complex/metabolism , CD3 Complex/immunology , Phosphorylation , Humans , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Lymphocyte Activation/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptor-CD3 Complex, Antigen, T-Cell/metabolism , Receptor-CD3 Complex, Antigen, T-Cell/immunology , Receptor-CD3 Complex, Antigen, T-Cell/genetics , HEK293 Cells , ZAP-70 Protein-Tyrosine Kinase/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics , Immunoreceptor Tyrosine-Based Activation Motif , Protein Binding , Jurkat Cells , Oncogene Proteins
5.
Cell Commun Signal ; 22(1): 286, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790044

BACKGROUND: T-cell membrane scaffold proteins are pivotal in T cell function, acting as versatile signaling hubs. While CD6 forms a large intracellular signalosome, it is distinguished from typical scaffolds like LAT or PAG by possessing a substantial ectodomain that binds CD166, a well-characterized ligand expressed on most antigen-presenting cells (APC), through the third domain (d3) of the extracellular region. Although the intact form of CD6 is the most abundant in T cells, an isoform lacking d3 (CD6∆d3) is transiently expressed on activated T cells. Still, the precise character of the signaling transduced by CD6, whether costimulatory or inhibitory, and the influence of its ectodomain on these activities are unclear. METHODS: We expressed CD6 variants with extracellular deletions or cytosolic mutations in Jurkat cells containing eGFP reporters for NF-κB and NF-AT transcription factor activation. Cell activation was assessed by eGFP flow cytometry following Jurkat cell engagement with superantigen-presenting Raji cells. Using imaging flow cytometry, we evaluated the impact of the CD6-CD166 pair on cell adhesiveness during the antigen-dependent and -independent priming of T cells. We also examined the role of extracellular or cytosolic sequences on CD6 translocation to the immunological synapse, using immunofluorescence-based imaging. RESULTS: Our investigation dissecting the functions of the extracellular and cytosolic regions of CD6 revealed that CD6 was trafficked to the immunological synapse and exerted tonic inhibition wholly dependent on its cytosolic tail. Surprisingly, however, translocation to the synapse occurred independently of the extracellular d3 and of engagement to CD166. On the other hand, CD6 binding to CD166 significantly increased T cell:APC adhesion. However, this activity was most evident in the absence of APC priming with superantigen, and thus, in the absence of TCR engagement. CONCLUSIONS: Our study identifies CD6 as a novel 'on/off' scaffold-receptor capable of modulating responsiveness in two ways. Firstly, and independently of ligand binding, it establishes signaling thresholds through tonic inhibition, functioning as a membrane-bound scaffold. Secondly, CD6 has the capacity for alternative splicing-dependent variable ligand engagement, modulating its checkpoint-like activity.


Antigens, CD , Antigens, Differentiation, T-Lymphocyte , Signal Transduction , T-Lymphocytes , Humans , Jurkat Cells , Antigens, CD/metabolism , Antigens, CD/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/genetics , Ligands , Lymphocyte Activation , Protein Binding , Cell Adhesion
6.
J Colloid Interface Sci ; 669: 419-429, 2024 Sep.
Article En | MEDLINE | ID: mdl-38723531

As an emerging fluorophore, aggregation-induced emission luminogens (AIEgens) have received widespread attention in recent years, but the inherent drawbacks of AIEgens, such as the poor water-solubility and insufficient fluorescence stability in complex environments, restrict their performance in practical applications. Herein, we report a universal strategy based on hydrophobic dendritic mesoporous silica (HMSN) that can integrate different AIE molecules to construct multi-color fluorescent AIE materials. Specifically, HMSN with central radial pores was used as a powerful carrier for direct loading AIE molecules and restricting their intramolecular motions. Due to the pore-domain restriction effect and hydrophobic interaction, the obtained silica-based AIE materials have bright fluorescence with a maximum quantum yield of 68.38%, high colloidal/fluorescence stability, and excellent biosafety. Further, these silica-based AIE materials can be conjugated with functional antibodies to obtain probes with different targetability. After integration with immunomagnetic beads, the prepared detection probes achieved the quantitative detection of cardiac troponin I with the limit of detection (LOD) of 0.508 ng/mL. Overall, the targeting probes stemming from silica-based AIE materials can not only achieve cell-specific imaging, but quantify the number of Jurkat cells (LOD = 270 cells/mL) to further determine the specific etiology of the disease.


Fluorescent Dyes , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Fluorescent Dyes/chemistry , Jurkat Cells , Porosity , Hydrophobic and Hydrophilic Interactions , Surface Properties , Particle Size
7.
Dokl Biochem Biophys ; 516(1): 53-57, 2024 Jun.
Article En | MEDLINE | ID: mdl-38700816

Study of CD4+ T cell response and T cell receptor (TCR) specificity is crucial for understanding etiology of immune-mediated diseases and developing targeted therapies. However, solubility, accessibility, and stability of synthetic antigenic peptides used in T cell assays may be a critical point in such studies. Here we present a T cell activation reporter system using recombinant proteins containing antigenic epitopes fused with bacterial thioredoxin (trx-peptides) and obtained by bacterial expression. We report that co-incubation of CD4+ HA1.7 TCR+ reporter Jurkat 76 TRP cells with CD80+ HLA-DRB1*01:01+ HeLa cells or CD4+ Ob.1A12 TCR+ Jurkat 76 TRP with CD80+ HLA-DRB1*15:01+ HeLa cells resulted in activation of reporter Jurkat 76 TPR after addition of recombinant trx-peptide fusion proteins, containing TCR-specific epitopes. Trx-peptides were comparable with corresponding synthetic peptides in their capacity to activate Jurkat 76 TPR. These data demonstrate that thioredoxin as a carrier protein (trx) for antigenic peptides exhibits minimal interference with recognition of MHC-specific peptides by TCRs and consequent T cell activation. Our findings highlight potential feasibility of trx-peptides as a reagent for assessing the immunogenicity of antigenic fragments.


CD4-Positive T-Lymphocytes , Peptides , Receptors, Antigen, T-Cell , Recombinant Fusion Proteins , Thioredoxins , Humans , Thioredoxins/immunology , Thioredoxins/genetics , Jurkat Cells , CD4-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Peptides/pharmacology , Peptides/immunology , Peptides/chemistry , Lymphocyte Activation/drug effects , HeLa Cells
8.
Arch Microbiol ; 206(6): 266, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761213

We succeeded in homogeneously expressing and purifying L-asparaginase from Latilactobacillus sakei LK-145 (Ls-Asn1) and its mutated enzymes C196S, C264S, C290S, C196S/C264S, C196S/C290S, C264S/C290S, and C196S/C264S/C290S-Ls-Asn1. Enzymological studies using purified enzymes revealed that all cysteine residues of Ls-Asn1 were found to affect the catalytic activity of Ls-Asn1 to varying degrees. The mutation of Cys196 did not affect the specific activity, but the mutation of Cys264, even a single mutation, significantly decreased the specific activity. Furthermore, C264S/C290S- and C196S/C264S/C290S-Ls-Asn1 almost completely lost their activity, suggesting that C290 cooperates with C264 to influence the catalytic activity of Ls-Asn1. The detailed enzymatic properties of three single-mutated enzymes (C196S, C264S, and C290S-Ls-Asn1) were investigated for comparison with Ls-Asn1. We found that only C196S-Ls-Asn1 has almost the same enzymatic properties as that of Ls-Asn1 except for its increased stability for thermal, pH, and the metals NaCl, KCl, CaCl2, and FeCl2. We measured the growth inhibitory effect of Ls-Asn1 and C196S-Ls-Asn1 on Jurkat cells, a human T-cell acute lymphoblastic leukemia cell line, using L-asparaginase from Escherichia coli K-12 as a reference. Only C196S-Ls-Asn1 effectively and selectively inhibited the growth of Jurkat T-cell leukemia, which suggested that it exhibited antileukemic activity. Furthermore, based on alignment, phylogenetic tree analysis, and structural modeling, we also proposed that Ls-Asn1 is a so-called "Type IIb" novel type of asparaginase that is distinct from previously reported type I or type II asparaginases. Based on the above results, Ls-Asn1 is expected to be useful as a new leukemia therapeutic agent.


Asparaginase , Asparaginase/genetics , Asparaginase/metabolism , Asparaginase/chemistry , Asparaginase/isolation & purification , Asparaginase/pharmacology , Humans , Bacillaceae/enzymology , Bacillaceae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Hydrogen-Ion Concentration , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Jurkat Cells , Mutation , Amino Acid Sequence , Kinetics
9.
World J Microbiol Biotechnol ; 40(7): 204, 2024 May 17.
Article En | MEDLINE | ID: mdl-38755413

Globally colorectal cancer ranks as the third most widespread disease and the third leading cause of cancer-associated mortality. Immunotherapy treatments like PD-L1 blockade have been used to inhibit the PD-L1 legend, which boosts the activity of cytotoxic T lymphocytes. Recently, studies suggest that some probiotics could potentially enhance the effectiveness of immunotherapy treatments for cancer patients. We found that in Caco-2 and HT-29 cells, the live Leuconostoc mesenteroides treatment resulted an increase in the PD-L1 expression and this treatment stimulated interferon-gamma (IFN-γ) production in Jurkat T-cells. Due to the well-established ability of IFN-γ to enhance PD-L1 expression, the combination of IFN-γ and L. mesenteroides was used in colon cancer cell lines and a resulting remarkable increase of over tenfold in PD-L1 expression was obtained. Interestingly, when L. mesenteroides and IFN-γ are present, the blockage of PD-L1 using PD-L1 antibodies not only improved the viability of Jurkat T-cells but also significantly boosted the levels of IFN-γ and IL-2, the T-cells activation marker cytokines. In addition to upregulating PD-L1, L. mesenteroides also activated Toll-like receptors (TLRs) and NOD-like receptors (NODs) pathways, specifically through TLR2 and NOD2, while also exerting a suppressive effect on autophagy in colon cancer cell lines. In conclusion, our findings demonstrate a significant upregulation of PD-L1 expression in colon cancer cells upon co-culturing with L. mesenteroides. Moreover, the presence of PD-L1 antibodies during co-culturing activates Jurkat T cells. The observed enhancement in PD-L1 expression may be attributed to the inhibition of the Autophagy pathway or activation of the hippo pathway. KEY POINTS: Co-culturing L. mesenteroides increases PD-L1 gene and protein transaction in colon cancer. L. mesenteroides existing enhances T cells viability and activity. GPCR41/42 is a possible link between L. mesenteroides, YAP-1 and PD-L1.


B7-H1 Antigen , Colonic Neoplasms , Interferon-gamma , Leuconostoc mesenteroides , Up-Regulation , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Interferon-gamma/metabolism , Colonic Neoplasms/immunology , HT29 Cells , Jurkat Cells , Caco-2 Cells , Leuconostoc mesenteroides/metabolism , Leuconostoc mesenteroides/genetics , Interleukin-2/metabolism , Lymphocyte Activation , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Probiotics/pharmacology , Cell Line, Tumor , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics
10.
Biol Sex Differ ; 15(1): 41, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750588

BACKGROUND: Differences in immune responses between women and men are leading to a strong sex bias in the incidence of autoimmune diseases that predominantly affect women, such as multiple sclerosis (MS). MS manifests in more than twice as many women, making sex one of the most important risk factor. However, it is incompletely understood which genes contribute to sex differences in autoimmune incidence. To address that, we conducted a gene expression analysis in female and male human spleen and identified the transmembrane protein CD99 as one of the most significantly differentially expressed genes with marked increase in men. CD99 has been reported to participate in immune cell transmigration and T cell regulation, but sex-specific implications have not been comprehensively investigated. METHODS: In this study, we conducted a gene expression analysis in female and male human spleen using the Genotype-Tissue Expression (GTEx) project dataset to identify differentially expressed genes between women and men. After successful validation on protein level of human immune cell subsets, we assessed hormonal regulation of CD99 as well as its implication on T cell regulation in primary human T cells and Jurkat T cells. In addition, we performed in vivo assays in wildtype mice and in Cd99-deficient mice to further analyze functional consequences of differential CD99 expression. RESULTS: Here, we found higher CD99 gene expression in male human spleens compared to females and confirmed this expression difference on protein level on the surface of T cells and pDCs. Androgens are likely dispensable as the cause shown by in vitro assays and ex vivo analysis of trans men samples. In cerebrospinal fluid, CD99 was higher on T cells compared to blood. Of note, male MS patients had lower CD99 levels on CD4+ T cells in the CSF, unlike controls. By contrast, both sexes had similar CD99 expression in mice and Cd99-deficient mice showed equal susceptibility to experimental autoimmune encephalomyelitis compared to wildtypes. Functionally, CD99 increased upon human T cell activation and inhibited T cell proliferation after blockade. Accordingly, CD99-deficient Jurkat T cells showed decreased cell proliferation and cluster formation, rescued by CD99 reintroduction. CONCLUSIONS: Our results demonstrate that CD99 is sex-specifically regulated in healthy individuals and MS patients and that it is involved in T cell costimulation in humans but not in mice. CD99 could potentially contribute to MS incidence and susceptibility in a sex-specific manner.


The immune system protects us from bacterial and viral infections and impacts the outcome of many diseases. Thus, understanding immunological processes is crucial to unravel pathogenic mechanisms and to develop new therapeutic treatment options. Sex is a biological variable affecting immunity and it is known that females and males differ in their immunological responses. Women mount stronger immune responses leading to more rapid control of infections and greater vaccine efficacy compared to men. However, this enhanced immune responsiveness is accompanied by female preponderance and susceptibility to autoimmune diseases like systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis (MS). MS sex ratio varies around 2:1 to 3:1 with a steadily increasing incidence in female MS patients making sex one of the top risk factors for developing MS. However, the underlying biological mechanisms including sex hormones as well as genetic and epigenetic factors and their complex interplay remain largely unknown. Here, we discovered the gene and its encoded protein CD99 to be differentially expressed between women and men with men showing increased expression on many immune cell subsets including T cells. Since T cells are key contributors to MS pathogenesis, we examined the role of CD99 on T cells of healthy individuals and MS patients. We were able to identify CD99-mediated T cell regulation, which might contribute to sex differences in MS susceptibility and incidence indicating the importance to include sex as a biological variable. Of note, these differences were not reproduced in mice showing the necessity of functional research in humans.


12E7 Antigen , Multiple Sclerosis , Sex Characteristics , T-Lymphocytes , Animals , Female , Male , Humans , 12E7 Antigen/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Mice, Inbred C57BL , Jurkat Cells , Spleen/metabolism , Spleen/immunology , Species Specificity , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Mice, Knockout , Adult
11.
Front Immunol ; 15: 1327051, 2024.
Article En | MEDLINE | ID: mdl-38807599

Introduction: The CC chemokine ligand 18 (CCL18) is a chemokine highly expressed in chronic inflammation in humans. Recent observations of elevated CCL18 plasma levels in patients with acute cardiovascular syndromes prompted an investigation into the role of CCL18 in the pathogenesis of human and mouse atherosclerosis. Methods and results: CCL18 was profoundly upregulated in ruptured human atherosclerotic plaque, particularly within macrophages. Repeated administration of CCL18 in Western-type diet-fed ApoE -/- mice or PCSK9mut-overexpressing wild type (WT) mice led to increased plaque burden, enriched in CD3+ T cells. In subsequent experimental and molecular modeling studies, we identified CCR6 as a functional receptor mediating CCL18 chemotaxis, intracellular Ca2+ flux, and downstream signaling in human Jurkat and mouse T cells. CCL18 failed to induce these effects in vitro in murine spleen T cells with CCR6 deficiency. The ability of CCR6 to act as CCL18 receptor was confirmed in vivo in an inflammation model, where subcutaneous CCL18 injection induced profound focal skin inflammation in WT but not in CCR6-/- mice. This inflammation featured edema and marked infiltration of various leukocyte subsets, including T cells with a Th17 signature, supporting CCR6's role as a Th17 chemotactic receptor. Notably, focal overexpression of CCL18 in plaques was associated with an increased presence of CCR6+ (T) cells. Discussion: Our studies are the first to identify the CCL18/CCR6 axis as a regulator of immune responses in advanced murine and human atherosclerosis.


Atherosclerosis , Chemokines, CC , Receptors, CCR6 , Animals , Humans , Atherosclerosis/immunology , Atherosclerosis/metabolism , Mice , Receptors, CCR6/metabolism , Receptors, CCR6/genetics , Chemokines, CC/metabolism , Chemokines, CC/genetics , Disease Models, Animal , Mice, Inbred C57BL , Jurkat Cells , Plaque, Atherosclerotic/immunology , Mice, Knockout , Male , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Female , Mice, Knockout, ApoE
12.
J Immunol Res ; 2024: 6343757, 2024.
Article En | MEDLINE | ID: mdl-38715844

This study aims to explore the influence of coinfection with HCV and HIV on hepatic fibrosis. A coculture system was set up to actively replicate both viruses, incorporating CD4 T lymphocytes (Jurkat), hepatic stellate cells (LX-2), and hepatocytes (Huh7.5). LX-2 cells' susceptibility to HIV infection was assessed through measurements of HIV receptor expression, exposure to cell-free virus, and cell-to-cell contact with HIV-infected Jurkat cells. The study evaluated profibrotic parameters, including programed cell death, ROS imbalance, cytokines (IL-6, TGF-ß, and TNF-α), and extracellular matrix components (collagen, α-SMA, and MMP-9). The impact of HCV infection on LX-2/HIV-Jurkat was examined using soluble factors released from HCV-infected hepatocytes. Despite LX-2 cells being nonsusceptible to direct HIV infection, bystander effects were observed, leading to increased oxidative stress and dysregulated profibrotic cytokine release. Coculture with HIV-infected Jurkat cells intensified hepatic fibrosis, redox imbalance, expression of profibrotic cytokines, and extracellular matrix production. Conversely, HCV-infected Huh7.5 cells exhibited elevated profibrotic gene transcriptions but without measurable effects on the LX-2/HIV-Jurkat coculture. This study highlights how HIV-infected lymphocytes worsen hepatic fibrosis during HCV/HIV coinfection. They increase oxidative stress, profibrotic cytokine levels, and extracellular matrix production in hepatic stellate cells through direct contact and soluble factors. These insights offer valuable potential therapies for coinfected individuals.


Bystander Effect , Coculture Techniques , Coinfection , Cytokines , HIV Infections , Hepacivirus , Hepatic Stellate Cells , Hepatitis C , Liver Cirrhosis , Humans , Hepatic Stellate Cells/metabolism , HIV Infections/complications , HIV Infections/metabolism , HIV Infections/virology , HIV Infections/immunology , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Hepatitis C/complications , Hepatitis C/immunology , Jurkat Cells , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Liver Cirrhosis/etiology , Cytokines/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , HIV/physiology , Oxidative Stress , Cell Communication , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Extracellular Matrix/metabolism
13.
J Clin Immunol ; 44(6): 131, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775840

RHOH, an atypical small GTPase predominantly expressed in hematopoietic cells, plays a vital role in immune function. A deficiency in RHOH has been linked to epidermodysplasia verruciformis, lung disease, Burkitt lymphoma and T cell defects. Here, we report a novel germline homozygous RHOH c.245G > A (p.Cys82Tyr) variant in a 21-year-old male suffering from recurrent, invasive, opportunistic infections affecting the lungs, eyes, and brain. His sister also succumbed to a lung infection during early adulthood. The patient exhibited a persistent decrease in CD4+ T, B, and NK cell counts, and hypoimmunoglobulinemia. The patient's T cell showed impaired activation upon in vitro TCR stimulation. In Jurkat T cells transduced with RHOHC82Y, a similar reduction in activation marker CD69 up-regulation was observed. Furthermore, the C82Y variant showed reduced RHOH protein expression and impaired interaction with the TCR signaling molecule ZAP70. Together, these data suggest that the newly identified autosomal-recessive RHOH variant is associated with T cell dysfunction and recurrent opportunistic infections, functioning as a hypomorph by disrupting ZAP70-mediated TCR signaling.


Homozygote , Opportunistic Infections , Humans , Male , Young Adult , Jurkat Cells , Lymphocyte Activation/genetics , Opportunistic Infections/genetics , Opportunistic Infections/immunology , Pedigree , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Recurrence , T-Lymphocytes/immunology , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism
14.
Front Cell Infect Microbiol ; 14: 1334224, 2024.
Article En | MEDLINE | ID: mdl-38698905

Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) is capable of intoxicating lymphocytes macrophages, mast cells and epithelial cells. Following Cdt binding to cholesterol, in the region of membrane lipid rafts, the CdtB and CdtC subunits are internalized and traffic to intracellular compartments. These events are dependent upon, cellugyrin, a critical component of synaptic like microvesicles (SLMVCg+). Target cells, such as Jurkat cells, rendered unable to express cellugyrin are resistant to Cdt-induced toxicity. Similar to Cdt, SARS-CoV-2 entry into host cells is initiated by binding to cell surface receptors, ACE-2, also associated with cholesterol-rich lipid rafts; this association leads to fusion and/or endocytosis of viral and host cell membranes and intracellular trafficking. The similarity in internalization pathways for both Cdt and SARS-CoV-2 led us to consider the possibility that cellugyrin was a critical component in both processes. Cellugyrin deficient Calu-3 cells (Calu-3Cg-) were prepared using Lentiviral particles containing shRNA; these cells were resistant to infection by VSV/SARS-CoV-2-spike pseudotype virus and partially resistant to VSV/VSV-G pseudotype virus. Synthetic peptides representing various regions of the cellugyrin protein were prepared and assessed for their ability to bind to Cdt subunits using surface plasmon resonance. Cdt was capable of binding to a region designated the middle outer loop (MOL) which corresponds to a region extending into the cytoplasmic surface of the SLMVCg+. SARS-CoV-2 spike proteins were assessed for their ability to bind to cellugyrin peptides; SARS-CoV-2 full length spike protein preferentially binds to a region within the SLMVCg+ lumen, designated intraluminal loop 1A. SARS-CoV-2-spike protein domain S1, which contains the receptor binding domains, binds to cellugyrin N-terminus which extends out from the cytoplasmic surface of SLMV. Binding specificity was further analyzed using cellugyrin scrambled peptide mutants. We propose that SLMVCg+ represent a component of a common pathway that facilitates pathogen and/or pathogen-derived toxins to gain host cell entry.


Bacterial Toxins , SARS-CoV-2 , Synaptogyrins , Virus Internalization , Humans , Bacterial Toxins/metabolism , Bacterial Toxins/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Synaptogyrins/metabolism , COVID-19/metabolism , COVID-19/virology , Jurkat Cells , Aggregatibacter actinomycetemcomitans/metabolism , Aggregatibacter actinomycetemcomitans/genetics , Angiotensin-Converting Enzyme 2/metabolism , Endocytosis , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Membrane Microdomains/metabolism
15.
Toxicon ; 243: 107718, 2024 May 28.
Article En | MEDLINE | ID: mdl-38614246

Mycotoxins are toxic, fungal secondary metabolites that contaminate agricultural commodities, food, and feed. Among them, T-2, HT-2, and diacetoxyscirpenol (DAS; the major type A trichothecene) are primarily produced from Fusarium species. These mycotoxins exert numerous toxicological effects in animals and humans, such as dermatotoxicity, haematotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and immunotoxicity. In the present study, human Jurkat T cells were used as a model to investigate apoptotic cell death induced by T-2, HT-2, and DAS. The results showed that T-2, HT-2, and DAS decreased cell viability and increased production of Reactive Oxygen Species in a time- and dose-dependency. Based on their IC50 values, they could be ranked in decreasing order of cytotoxicity as T-2 > HT-2 > DAS. All tested mycotoxins caused DNA fragmentation, up-regulated cytochrome C, caspase 3, and caspase 9 mRNA levels, and down-regulated the relative expression of Bcl-2 and caspase 8. The effects of these trichothecenes on apoptosis were determined based on flow cytometry. At the IC50 concentrations, the percentages of apoptotic cells were significantly higher than for the controls. Taken together, these data suggested that T-2, HT-2, and DAS could induce apoptosis through the mitochondrial apoptotic pathway.


Apoptosis , Cell Survival , Reactive Oxygen Species , T-2 Toxin , Trichothecenes , Humans , Trichothecenes/toxicity , Jurkat Cells , T-2 Toxin/toxicity , T-2 Toxin/analogs & derivatives , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , DNA Fragmentation/drug effects , Cytochromes c/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
16.
Biochem Biophys Res Commun ; 710: 149857, 2024 May 28.
Article En | MEDLINE | ID: mdl-38583232

Molecular mobility of intracellular water is a crucial parameter in the study of the mechanism of desiccation tolerance. As one of the parameters that reflecting molecular mobility, the viscosity of intracellular water has been found intimately related with the protection of the phospholipid membrane because it quantifies the diffusion ability of water and mass in the intracellular environment. In this work we measured the intracellular water relaxation time, which can be translated into water viscosity, by using a previously established NIR-dielectric method to monitor the drying process of baker's yeast and Jurkat cells with different desiccation tolerance. We found that intracellular saccharide can significantly decrease the intracellular water viscosity. Also, the intracellular water diffusion coefficient obtained from this method were found in good agreement with other reports.


Yeast, Dried , Humans , Water/chemistry , Spectroscopy, Near-Infrared , Jurkat Cells , Saccharomyces cerevisiae/chemistry , Desiccation
17.
Front Biosci (Landmark Ed) ; 29(4): 163, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38682179

BACKGROUND: Glucocorticoids (GCs) are commonly used as the primary chemotherapy for lymphoid malignancies, including acute lymphoblastic leukemia (ALL). However, the development of GC resistance limits their prolonged use. METHODS: In this study, we investigated the potential of a newly synthesized indole derivative called LWX-473, in combination with the classic GC Dexamethasone (DEX), to enhance the responsiveness of Jurkat cells to GC treatment. RESULTS: Our findings demonstrate that LWX-473 alone or in combination with DEX significantly improves GC-induced cell apoptosis and arrests the cell cycle in the G1 phase. Notably, the combination of LWX-473 and DEX exhibits superior efficacy in killing Jurkat cells compared to LWX-473 alone. Importantly, this compound demonstrates reduced toxicity towards normal cells. CONCLUSIONS: Our study reveals that LWX-473 has the ability to restore the sensitivity of Jurkat cells to DEX by modulating the mitochondrial membrane potential, activating the expression of DEX-liganded glucocorticoid receptor (GR), and inhibiting key molecules in the JAK/STAT signaling pathway. These findings suggest that LWX-473 could be a potential therapeutic agent for overcoming GC resistance in lymphoid malignancies.


Apoptosis , Dexamethasone , Drug Resistance, Neoplasm , Glucocorticoids , Indoles , Membrane Potential, Mitochondrial , Receptors, Glucocorticoid , Humans , Jurkat Cells , Apoptosis/drug effects , Dexamethasone/pharmacology , Drug Resistance, Neoplasm/drug effects , Glucocorticoids/pharmacology , Indoles/pharmacology , Receptors, Glucocorticoid/metabolism , Membrane Potential, Mitochondrial/drug effects , Signal Transduction/drug effects
18.
Scand J Immunol ; 99(5): e13358, 2024 May.
Article En | MEDLINE | ID: mdl-38605535

Adapter proteins are flexible and dynamic modulators of cellular signalling that are important for immune cell function. One of these, the T-cell-specific adapter protein (TSAd), interacts with the non-receptor tyrosine kinases Src and Lck of the Src family kinases (SFKs) and Itk of the Tec family kinases (TFKs). Three tyrosine residues in the TSAd C-terminus are phosphorylated by Lck and serve as docking sites for the Src homology 2 (SH2) domains of Src and Lck. The TSAd proline-rich region (PRR) binds to the Src homology 3 (SH3) domains found in Lck, Src and Itk. Despite known interactors, the role TSAd plays in cellular signalling remains largely unknown. TSAd's ability to bind both SFKs and TFKs may point to its function as a general scaffold for both kinase families. Using GST-pulldown as well as peptide array experiments, we found that both the SH2 and SH3 domains of the SFKs Fyn and Hck, as well as the TFKs Tec and Txk, interact with TSAd. This contrasts with Itk, which interacts with TSAd only through its SH3 domain. Although our analysis showed that TSAd is both co-expressed and may interact with Fyn, we were unable to co-precipitate Fyn with TSAd from Jurkat cells, as detected by Western blotting and affinity purification mass spectrometry. This may suggest that TSAd-Fyn interaction in intact cells may be limited by other factors, such as the subcellular localization of the two molecules or the co-expression of competing binding partners.


Adaptor Proteins, Signal Transducing , src-Family Kinases , Humans , Adaptor Proteins, Signal Transducing/metabolism , Jurkat Cells , Protein Binding , src Homology Domains , src-Family Kinases/metabolism , Tyrosine/metabolism
19.
Gene ; 918: 148463, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38631652

BACKGROUND: Recent studies have revealed that circRNA can serve as ceRNA to participate in multiple autoimmune diseases. Our study aims to explore the key circRNA as ceRNA and biomarker for MG. METHODS: We used circRNA microarray to explore differentially expressed circRNAs (DECs) from MG and compare with control. Then, we predicted the target miRNA associated with DECs and screened miRNAs by the algorithm of random walk with restart (RWR). Next, we constructed the circRNA-miRNA-mRNA ceRNA regulated network (CMMC) to identify the hub objects. Following, we detected the expression of hub-circRNAs by RT-PCR. We verify has_circ_0004183 (circFRMD4) sponging miR-145-5p regulate cells proliferation using luciferase assay and CCK-8. RESULTS: We found that the expression level of circFRMD4 and has_circ_0035381 (circPIGB) were upregulated and has_circ_0089153(circ NUP214) had the lowest expression level in MG. Finally, we proved circFRMD4 sponging miR-145-5p regulate Jurkat cells proliferation. CircFRMD4 take part in the genesis and development of MG via circFRMD4/miR145-5p axis. CONCLUSIONS: We found that circFRMD4, circPIGB and circNUP214 can be considered as valuable potential novel biomarkers for AchR + MG. CircFRMD4 participate in the development of AchR + MG via targeting binding with miR-145-5p.


Biomarkers , Gene Regulatory Networks , MicroRNAs , Myasthenia Gravis , RNA, Circular , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myasthenia Gravis/genetics , Biomarkers/metabolism , Jurkat Cells , Cell Proliferation/genetics , Female , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling/methods , Adult , RNA, Competitive Endogenous
20.
PLoS Pathog ; 20(4): e1012172, 2024 Apr.
Article En | MEDLINE | ID: mdl-38662769

The implementation of antiretroviral therapy (ART) has effectively restricted the transmission of Human Immunodeficiency Virus (HIV) and improved overall clinical outcomes. However, a complete cure for HIV remains out of reach, as the virus persists in a stable pool of infected cell reservoir that is resistant to therapy and thus a main barrier towards complete elimination of viral infection. While the mechanisms by which host proteins govern viral gene expression and latency are well-studied, the emerging regulatory functions of non-coding RNAs (ncRNA) in the context of T cell activation, HIV gene expression and viral latency have not yet been thoroughly explored. Here, we report the identification of the Cytoskeleton Regulator (CYTOR) long non-coding RNA (lncRNA) as an activator of HIV gene expression that is upregulated following T cell stimulation. Functional studies show that CYTOR suppresses viral latency by directly binding to the HIV promoter and associating with the cellular positive transcription elongation factor (P-TEFb) to activate viral gene expression. CYTOR also plays a global role in regulating cellular gene expression, including those involved in controlling actin dynamics. Depletion of CYTOR expression reduces cytoplasmic actin polymerization in response to T cell activation. In addition, treating HIV-infected cells with pharmacological inhibitors of actin polymerization reduces HIV gene expression. We conclude that both direct and indirect effects of CYTOR regulate HIV gene expression.


Gene Expression Regulation, Viral , HIV Infections , HIV-1 , RNA, Long Noncoding , Virus Latency , Humans , RNA, Long Noncoding/genetics , HIV Infections/virology , HIV Infections/genetics , HIV-1/genetics , HIV-1/physiology , Promoter Regions, Genetic , Lymphocyte Activation , Jurkat Cells
...