Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 295
1.
J Transl Med ; 22(1): 443, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730319

BACKGROUND: The immune microenvironment impacts tumor growth, invasion, metastasis, and patient survival and may provide opportunities for therapeutic intervention in pancreatic ductal adenocarcinoma (PDAC). Although never studied as a potential modulator of the immune response in most cancers, Keratin 17 (K17), a biomarker of the most aggressive (basal) molecular subtype of PDAC, is intimately involved in the histogenesis of the immune response in psoriasis, basal cell carcinoma, and cervical squamous cell carcinoma. Thus, we hypothesized that K17 expression could also impact the immune cell response in PDAC, and that uncovering this relationship could provide insight to guide the development of immunotherapeutic opportunities to extend patient survival. METHODS: Multiplex immunohistochemistry (mIHC) and automated image analysis based on novel computational imaging technology were used to decipher the abundance and spatial distribution of T cells, macrophages, and tumor cells, relative to K17 expression in 235 PDACs. RESULTS: K17 expression had profound effects on the exclusion of intratumoral CD8+ T cells and was also associated with decreased numbers of peritumoral CD8+ T cells, CD16+ macrophages, and CD163+ macrophages (p < 0.0001). The differences in the intratumor and peritumoral CD8+ T cell abundance were not impacted by neoadjuvant therapy, tumor stage, grade, lymph node status, histologic subtype, nor KRAS, p53, SMAD4, or CDKN2A mutations. CONCLUSIONS: Thus, K17 expression correlates with major differences in the immune microenvironment that are independent of any tested clinicopathologic or tumor intrinsic variables, suggesting that targeting K17-mediated immune effects on the immune system could restore the innate immunologic response to PDAC and might provide novel opportunities to restore immunotherapeutic approaches for this most deadly form of cancer.


Keratin-17 , Pancreatic Neoplasms , Humans , Keratin-17/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment/immunology , Female , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Male , CD8-Positive T-Lymphocytes/immunology , Macrophages/metabolism , Macrophages/immunology , Middle Aged , Aged , Receptors, Cell Surface , Antigens, Differentiation, Myelomonocytic , Antigens, CD
2.
Hum Pathol ; 146: 43-48, 2024 Apr.
Article En | MEDLINE | ID: mdl-38593961

Upper tract urothelial carcinoma (UTUC) presents diagnostic challenges due to small biopsy specimen size, poor orientation, and technical obstacles that can yield equivocal diagnoses. This uncertainty often mandates repeated biopsies to evaluate the necessity of nephroureterectomy. Prior studies have suggested cytokeratin 17 (CK17) immunostain as an adjunctive tool for diagnosing bladder urothelial neoplasia in both urine cytology and tissue biopsy specimens. We evaluated the utility of CK17 in differentiating UTUC from benign urothelium and its ability to stratify low-grade from high-grade neoplasia. Our study involved a cohort of previously diagnosed cytology (n = 29) and tissue specimens from biopsies and resections (n = 85). We evaluated CK17 staining percentage in cytology and tissue samples and localization patterns in biopsy/resection samples. Our findings showed a statistically significant distinction (p < 0.05) between UTUC and benign tissue specimens based on full thickness localization pattern (odds ratio 8.8 [95% CI 1.53-67.4]). The percentage of CK17 staining failed to significantly differentiate neoplastic from non-neoplastic cases in cytology or tissue samples. Additionally, based on prior research showing the efficacy of CK20/CD44/p53 triple panel in bladder urothelial neoplasia, we utilized tissue microarrays to evaluate if these markers could distinguish UTUC from benign urothelium. We found that CK20/CD44/p53, individually or in combination, could not distinguish urothelial neoplasia from non-neoplasia. Full thickness CK17 urothelial localization by immunohistochemistry was highly reproducible with excellent interobserver agreement and may play a supplementary role in distinguishing upper tract urothelial neoplasia from benign urothelium.


Biomarkers, Tumor , Hyaluronan Receptors , Immunohistochemistry , Keratin-17 , Keratin-20 , Tumor Suppressor Protein p53 , Urothelium , Humans , Biomarkers, Tumor/analysis , Biopsy , Carcinoma, Transitional Cell/diagnosis , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/metabolism , Diagnosis, Differential , Hyaluronan Receptors/analysis , Hyaluronan Receptors/metabolism , Keratin-17/analysis , Keratin-20/analysis , Keratin-20/metabolism , Neoplasm Grading , Predictive Value of Tests , Reproducibility of Results , Tumor Suppressor Protein p53/analysis , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/pathology , Urologic Neoplasms/diagnosis , Urologic Neoplasms/pathology , Urothelium/pathology , Urothelium/chemistry
3.
Biochem Biophys Res Commun ; 709: 149834, 2024 May 21.
Article En | MEDLINE | ID: mdl-38547608

BACKGROUND: Cadmium exposure induces dermatotoxicity and epidermal barrier disruption and leads to the development of various pathologies. HaCaT cells are immortalized human keratinocytes that are widely used as alternatives to primary human keratinocytes, particularly for evaluating cadmium toxicity. HaCaT cells bear two gain-of-function (GOF) mutations in the TP53 gene, which strongly affect p53 function. Mutant forms of p53 are known to correlate with increased resistance to various stimuli, including exposure to cytotoxic substances. In addition, keratin 17 (KRT17) was recently shown to be highly expressed in HaCaT cells in response to genotoxic stress. Moreover, p53 is a direct transcriptional repressor of KRT17. However, the impact of TP53 mutations in HaCaT cells on the regulation of cell death and keratin 17 expression is unclear. In this study, we aimed to evaluate the impact of p53 on the response to Cd-induced cytotoxicity. METHODS AND RESULTS: Employing the MTT assay and Annexin V/propidium iodide staining, we demonstrated that knockout of TP53 leads to a decrease in the sensitivity of HaCaT cells to the cytotoxic effects of cadmium. Specifically, HaCaT cells with TP53 knockout (TP53 KO HaCaT) exhibited cell death at a cadmium concentration of 10 µM or higher, whereas wild-type cells displayed cell death at a concentration of 30 µM. Furthermore, apoptotic cells were consistently detected in TP53 KO HaCaT cells upon exposure to low concentrations of cadmium (10 and 20 µM) but not in wild-type cells. Our findings also indicate that cadmium cytotoxicity is mediated by reactive oxygen species (ROS), which were significantly increased only in TP53 knockout cells treated with 30 µM cadmium. An examination of proteomic data revealed that TP53 knockout in HaCaT cells resulted in the upregulation of proteins involved in the regulation of apoptosis, redox systems, and DNA repair. Moreover, RT‒qPCR and immunoblotting showed that cadmium toxicity leads to dose-dependent induction of keratin 17 in p53-deficient cells but not in wild-type cells. CONCLUSIONS: The connection between mutant p53 in HaCaT keratinocytes and increased resistance to cadmium toxicity was demonstrated for the first time. Proteomic profiling revealed that TP53 knockout in HaCaT cells led to the activation of apoptosis regulatory circuits, redox systems, and DNA repair. In addition, our data support the involvement of keratin 17 in the regulation of DNA repair and cell death. Apparently, the induction of keratin 17 is p53-independent but may be inhibited by mutant p53.


Genes, p53 , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cadmium/metabolism , Keratin-17/genetics , Keratin-17/metabolism , Proteomics , Cell Line , Cell Death , Keratinocytes/metabolism , Apoptosis/genetics
4.
Histopathology ; 84(7): 1212-1223, 2024 Jun.
Article En | MEDLINE | ID: mdl-38356340

AIMS: Verruciform acanthotic vulvar intra-epithelial neoplasia (vaVIN) is an HPV-independent, p53 wild-type lesion with distinct morphology and documented risk of recurrence and cancer progression. vaVIN is rare, and prospective distinction from non-neoplastic hyperplastic lesions can be difficult. CK17, SOX2 and GATA3 immunohistochemistry has emerging value in the diagnosis of HPV-independent lesions, particularly differentiated VIN. We aimed to test the combined value of these markers in the diagnosis of vaVIN versus its non-neoplastic differentials in the vulva. METHODS AND RESULTS: CK17, SOX2 and GATA3 immunohistochemistry was evaluated on 16 vaVINs and 34 mimickers (verruciform xanthoma, lichen simplex chronicus, lichen sclerosus, psoriasis, pseudo-epitheliomatous hyperplasia). CK17 was scored as 3+ = full-thickness, 2+ = partial-thickness, 1+ = patchy, 0 = absent; SOX2 as 3+ = strong staining ≥ 10% cells, 2+ = moderate, 1 + =weak, 0 = staining in < 10% cells; and GATA3 as pattern 0 = loss in < 25% basal cells, 1 = loss in 25-75% basal cells, 2 = loss in > 75% basal cells. For analysis, results were recorded as positive (CK17 = 3+, SOX2 = 3+, GATA3 = patterns 1/2) or negative (CK17 = 2+/1+/0, SOX2 = 2+/1+/0, GATA3 = pattern 0). CK17, SOX2 and GATA3 positivity was documented in 81, 75 and 58% vaVINs, respectively, versus 32, 17 and 22% of non-neoplastic mimickers, respectively; ≥ 2 marker positivity conferred 83 sensitivity, 88 specificity and 86% accuracy in vaVIN diagnosis. Compared to vaVIN, SOX2 and GATA3 were differentially expressed in lichen sclerosus, lichen simplex chronicus and pseudo-epitheliomatous hyperplasia, whereas CK17 was differentially expressed in verruciform xanthoma and adjacent normal mucosa. CONCLUSIONS: CK17, SOX2 and GATA3 can be useful in the diagnosis of vaVIN and its distinction from hyperplastic non-neoplastic vulvar lesions. Although CK17 has higher sensitivity, SOX2 and GATA3 are more specific, and the combination of all markers shows optimal diagnostic accuracy.


Biomarkers, Tumor , GATA3 Transcription Factor , Immunohistochemistry , Keratin-17 , SOXB1 Transcription Factors , Vulvar Neoplasms , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Carcinoma in Situ/diagnosis , Carcinoma in Situ/pathology , Carcinoma in Situ/metabolism , Diagnosis, Differential , GATA3 Transcription Factor/analysis , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Immunohistochemistry/methods , Keratin-17/analysis , Keratin-17/immunology , Keratin-17/metabolism , SOXB1 Transcription Factors/analysis , SOXB1 Transcription Factors/immunology , SOXB1 Transcription Factors/metabolism , Vulvar Neoplasms/pathology , Vulvar Neoplasms/diagnosis , Vulvar Neoplasms/metabolism
5.
Int Immunopharmacol ; 127: 111344, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38086269

OBJECTIVES: Psoriasis is a prevalent chronic inflammatory skin disease in humans that is characterized by frequent relapses and challenging to cure. WB518 is a novel small molecule compound with an undisclosed structure. Therefore, our study aimed to investigate the therapeutic potential of WB518 in vitro and in vivo for the treatment of psoriasis, specifically targeting the abnormal proliferation, aberrant differentiation of epidermal keratinocytes, and pathogenic inflammatory response. MATERIALS AND METHODS: We employed dual luciferase reporter assay to screen compounds capable of inhibiting STAT3 gene transcription. Flow cytometry was utilized to analyze CD3-positive cells. Protein and mRNA levels were assessed through Western blotting, immunofluorescence, immunohistochemistry, and real-time PCR. Cell viability was measured using the MTS assay, while in vivo models of psoriasis induced by IMQ and TPA were employed to study the anti-psoriasis effect of WB518. RESULTS: WB518 was found to significantly reduce the mRNA and protein levels of Keratin 17 (K17) in HaCaT cells by inhibiting the phosphorylation of STAT3 Tyr705 (Y705). In the IMQ and TPA-induced psoriasis mouse model, WB518 effectively improved scaling, epidermal hyperplasia, and inflammation. WB518 also suppressed the expression of inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, IL-17, and IL-23. Furthermore, WB518 decreased the proportion of CD3-positive cells in the psoriatic skin of mice. CONCLUSIONS: WB518 exhibits promising potential as a treatment candidate for psoriasis.


Keratin-17 , Psoriasis , Humans , Animals , Mice , Keratin-17/metabolism , Phosphorylation , Imiquimod/pharmacology , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Skin/pathology , Keratinocytes , RNA, Messenger/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Cell Proliferation , STAT3 Transcription Factor/metabolism
6.
Viruses ; 15(12)2023 11 25.
Article En | MEDLINE | ID: mdl-38140561

A growing body of literature suggests that the expression of cytokeratin 17 (K17) correlates with inferior clinical outcomes across various cancer types. In this scoping review, we aimed to review and map the available clinical evidence of the prognostic and predictive value of K17 in human cancers. PubMed, Web of Science, Embase (via Scopus), Cochrane Central Register of Controlled Trials, and Google Scholar were searched for studies of K17 expression in human cancers. Eligible studies were peer-reviewed, published in English, presented original data, and directly evaluated the association between K17 and clinical outcomes in human cancers. Of the 1705 studies identified in our search, 58 studies met criteria for inclusion. Studies assessed the prognostic significance (n = 54), predictive significance (n = 2), or both the prognostic and predictive significance (n = 2). Altogether, 11 studies (19.0%) investigated the clinical relevance of K17 in cancers with a known etiologic association to HPV; of those, 8 (13.8%) were focused on head and neck squamous cell carcinoma (HNSCC), and 3 (5.1%) were focused on cervical squamous cell carcinoma (SCC). To date, HNSCC, as well as triple-negative breast cancer (TNBC) and pancreatic cancer, were the most frequently studied cancer types. K17 had prognostic significance in 16/17 investigated cancer types and 43/56 studies. Our analysis suggests that K17 is a negative prognostic factor in the majority of studied cancer types, including HPV-associated types such as HNSCC and cervical cancer (13/17), and a positive prognostic factor in 2/17 studied cancer types (urothelial carcinoma of the upper urinary tract and breast cancer). In three out of four predictive studies, K17 was a negative predictive factor for chemotherapy and immune checkpoint blockade therapy response.


Carcinoma, Squamous Cell , Carcinoma, Transitional Cell , Head and Neck Neoplasms , Keratin-17 , Papillomavirus Infections , Urinary Bladder Neoplasms , Uterine Cervical Neoplasms , Female , Humans , Biomarkers, Tumor/metabolism , Keratin-17/analysis , Keratin-17/metabolism , Papillomavirus Infections/complications , Prognosis , Squamous Cell Carcinoma of Head and Neck , Uterine Cervical Neoplasms/pathology
7.
Nat Cancer ; 4(9): 1362-1381, 2023 09.
Article En | MEDLINE | ID: mdl-37679568

Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection.


Adenocarcinoma , Neoadjuvant Therapy , Humans , Cytochrome P-450 CYP3A , Adjuvants, Immunologic , Keratin-17 , Phenotype
8.
Ann Clin Lab Sci ; 53(4): 529-538, 2023 Jul.
Article En | MEDLINE | ID: mdl-37625827

OBJECTIVE: Psoriasis is characterized by excessive proliferation and abnormal differentiation of epidermal keratinocytes. This study aimed to reveal the function and mechanism of a N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein 15 (RBM15) in IL-17A-induced keratinocytes. METHODS: A immortalized keratinocyte cell line HaCaT was used to undergo the IL-17A stimulation. The mRNA levels were detected by qRT-PCR, whereas the protein levels were measured by western blotting. The change of keratinocytes proliferation was determined using CCK8 and EdU assays, and the inflammation factors (IL-8 and TNF-α) in keratinocytes were analyzed by qRT-PCR. The m6A modification of Keratin 17 (K17) was confirmed by MeRIP and mRNA stability assays. RESULTS: The levels of RBM15 and K17 in skin samples from patients with psoriasis and IL-17A-induced keratinocytes were upregulated, and showed the positive correlation. Silencing RBM15 suppressed viability, proliferation, and inflammation of keratinocytes that were enhanced by IL-17A stimulation. Moreover, RBM15 knockdown reduced the stability of K17 mRNA via m6A modification method. Since K17 is modified by RBM15, its overexpression relieved the effects of RBM15 knockdown on keratinocytes under IL-17A stimulation. CONCLUSION: This study revealed that RBM15 knockdown suppressed proliferation and inflammation by mediating m6A modification of K17 to reduce K17 stability in IL-17A-induced keratinocytes. Our findings may provide novel idea for improving the treatment of psoriasis.


Keratin-17 , Psoriasis , Humans , Interleukin-17/genetics , Keratinocytes , Psoriasis/genetics , Inflammation , RNA, Messenger/genetics , RNA-Binding Proteins/genetics
9.
Genes Genomics ; 45(10): 1329-1338, 2023 10.
Article En | MEDLINE | ID: mdl-37634232

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and is easily resistant to drugs due to the lack of hormone receptors. Research on the resistance mechanisms in TNBC is particularly important. Keratin 17 (KRT17) is highly expressed in TNBC. Anthracycline doxorubicin (Dox) is a commonly used chemotherapeutic drug for early stage triple-negative breast cancer. OBJECTIVE: This study investigated the role of KRT17 in TNBC-Dox resistance. METHODS: Immuno-histochemical staining, qPCR, western blotting (WB), and immunofluorescence were used to detect the expression of KRT17 in TNBC-Dox-resistant patients and in TNBC-Dox-resistant MDA-MB-468 and MDA-MB-231. the effect of KRT17 on the proliferation and migration in KRT17 knockdown of TNBC-Dox-resistant cells was determined by the CCK8, clone formation, transwell invasion and wound healing assays were used to determine. RESULTS: KRT17 was highly expressed in the TNBC-Dox-resistant cells. Knockdown of KRT17 significantly reduced the IC50s of TNBC-Dox-resistant and parental strains and also reduced the proliferation and invasion abilities of TNBC-Dox-resistant cell lines. KRT17 regulated the Wnt/ß-catenin signaling pathway. The inhibitory effect of KRT17 knockdown on the proliferation and migration of TNBC-Dox-resistant cells was reversed by an activator of the Wnt signaling pathway. CONCLUSION: KRT17 can inhibit the Wnt/ß-catenin signaling pathway, thereby reducing the proliferation and invasion ability of TNBC-Dox-resistant cells.


Triple Negative Breast Neoplasms , Humans , Anthracyclines , Doxorubicin/pharmacology , Keratin-17/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Wnt Signaling Pathway
10.
Biomed Pharmacother ; 166: 115307, 2023 Oct.
Article En | MEDLINE | ID: mdl-37573659

The chronic disease psoriasis is associated with severe inflammation and abnormal keratinocyte propagation in the skin. Tranexamic acid (TXA), a plasmin inhibitor, is used to cure serious bleeding. We investigated whether TXA ointment mitigated Imiquimod (IMQ)-induced psoriasis-like inflammation. Furthermore, this study investigated the effect of noncytotoxic concentrations of TXA on IL-17-induced human keratinocyte (HaCaT) cells to determine the status of proliferative psoriatic keratinocytes. We found that TXA reduced IMQ-induced psoriasis-like erythema, thickness, scaling, and cumulative scores (erythema plus thickness plus scaling) on the back skin of BALB/c mice. Additionally, TXA decreased ear thickness and suppressed hyperkeratosis, hyperplasia, and inflammation of the ear epidermis in IMQ-induced BALB/c mice. Furthermore, TXA inhibited IMQ-induced splenomegaly in BALB/c mouse models. In IL-17-induced HaCaT cells, TXA inhibited ROS production and IL-8 secretion. Interestingly, TXA suppressed the IL-17-induced NFκB signaling pathway via IKK-mediated IκB degradation. TXA inhibited IL-17-induced activation of the NLRP3 inflammasome through caspase-1 and IL1ß expression. TXA inhibited IL-17-induced NLRP3 inflammasome activation by enhancing autophagy, as indicated by LC3-II accumulation, p62/SQSTM1 expression, ATG4B inhibition, and Beclin-1/Bcl-2 dysregulation. Notably, TXA suppressed IL-17-induced Nrf2-mediated keratin 17 expression. N-acetylcysteine pretreatment reversed the effects of TXA on NFκB, NLRP3 inflammasomes, and the Nrf2-mediated keratin 17 pathway in IL-17-induced HaCaT cells. Results further confirmed that in the ear skin of IMQ-induced mice, psoriasis biomarkers such as NLRP3, IL1ß, Nrf2, and keratin 17 expression were downregulated by TXA treatment. TXA improves IMQ-induced psoriasis-like inflammation in vivo and psoriatic keratinocytes in vitro. Tranexamic acid is a promising future treatment for psoriasis.


Dermatitis , Psoriasis , Tranexamic Acid , Humans , Animals , Mice , Interleukin-17/metabolism , Tranexamic Acid/pharmacology , Tranexamic Acid/therapeutic use , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Keratin-17 , NF-E2-Related Factor 2 , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/metabolism , Skin , Keratinocytes , Inflammation/drug therapy , Inflammation/chemically induced , Imiquimod/pharmacology , NF-kappa B/metabolism , Mice, Inbred BALB C , Disease Models, Animal
11.
Int J Biol Sci ; 19(11): 3395-3411, 2023.
Article En | MEDLINE | ID: mdl-37497003

Dysregulated glucose metabolism is an important characteristic of psoriasis. Cytoskeletal protein keratin 17 (K17) is highly expressed in the psoriatic epidermis and contributes to psoriasis pathogenesis. However, whether K17 is involved in the dysregulated glucose metabolism of keratinocytes (KCs) in psoriasis remains unclear. In the present study, loss- and gain-of-function studies showed that elevated K17 expression was critically involved in glycolytic pathway activation in psoriatic KCs. The level of α-enolase (ENO1), a novel potent interaction partner of K17, was also elevated in psoriatic KCs. Knockdown of ENO1 by siRNA or inhibition of ENO1 activity by the inhibitor ENOBlock remarkably suppressed KCs glycolysis and proliferation. Moreover, ENO1 directly interacted with K17 and maintained K17-Ser44 phosphorylation to promote the nuclear translocation of K17, which promoted the transcription of the key glycolysis enzyme lactic dehydrogenase A (LDHA) and resulted in enhanced KCs glycolysis and proliferation in vitro. Finally, either inhibiting the expression and activation of ENO1 or repressing K17-Ser44 phosphorylation significantly alleviated the IMQ-induced psoriasis-like phenotype in vivo. These findings provide new insights into the metabolic profile of psoriatic KCs and suggest that modulation of the ENO1-K17-LDHA axis is a potentially innovative therapeutic approach to psoriasis.


Keratin-17 , Psoriasis , Humans , Cell Proliferation/genetics , Glucose/metabolism , Keratin-17/genetics , Keratin-17/metabolism , Keratinocytes/metabolism , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism
12.
J Invest Dermatol ; 143(12): 2436-2446.e13, 2023 12.
Article En | MEDLINE | ID: mdl-37414246

Keratin 17 (K17) is a cytoskeletal protein that is part of the intermediate filaments in epidermal keratinocytes. In K17-/- mice, ionizing radiation induced more severe hair follicle damage, whereas the epidermal inflammatory response was attenuated compared with that in wild-type mice. Both p53 and K17 have a major impact on global gene expression because over 70% of the differentially expressed genes in the skin of wild-type mice showed no expression change in p53-/- or K17-/- skin after ionizing radiation. K17 does not interfere with the dynamics of p53 activation; rather, global p53 binding in the genome is altered in K17-/- mice. The absence of K17 leads to aberrant cell cycle progression and mitotic catastrophe in epidermal keratinocytes, which is due to nuclear retention, thus reducing the degradation of B-Myb, a key regulator of the G2/M cell cycle transition. These results expand our understanding of the role of K17 in regulating global gene expression and ionizing radiation-induced skin damage.


Keratin-17 , Radiodermatitis , Animals , Mice , Cell Cycle/genetics , Gene Expression , M Cells , Radiation, Ionizing , Tumor Suppressor Protein p53
13.
Proc Natl Acad Sci U S A ; 120(12): e2214225120, 2023 03 21.
Article En | MEDLINE | ID: mdl-36917668

A murine papillomavirus, MmuPV1, infects both cutaneous and mucosal epithelia of laboratory mice and can be used to model high-risk human papillomavirus (HPV) infection and HPV-associated disease. We have shown that estrogen exacerbates papillomavirus-induced cervical disease in HPV-transgenic mice. We have also previously identified stress keratin 17 (K17) as a host factor that supports MmuPV1-induced cutaneous disease. Here, we sought to test the role of estrogen and K17 in MmuPV1 infection and associated disease in the female reproductive tract. We experimentally infected wild-type and K17 knockout (K17KO) mice with MmuPV1 in the female reproductive tract in the presence or absence of exogenous estrogen for 6 mon. We observed that a significantly higher percentage of K17KO mice cleared the virus as opposed to wild-type mice. In estrogen-treated wild-type mice, the MmuPV1 viral copy number was significantly higher compared to untreated mice by as early as 2 wk postinfection, suggesting that estrogen may help facilitate MmuPV1 infection and/or establishment. Consistent with this, viral clearance was not observed in either wild-type or K17KO mice when treated with estrogen. Furthermore, neoplastic disease progression and cervical carcinogenesis were supported by the presence of K17 and exacerbated by estrogen treatment. Subsequent analyses indicated that estrogen treatment induces a systemic immunosuppressive state in MmuPV1-infected animals and that both estrogen and K17 modulate the local intratumoral immune microenvironment within MmuPV1-induced neoplastic lesions. Collectively, these findings suggest that estrogen and K17 act at multiple stages of papillomavirus-induced disease at least in part via immunomodulatory mechanisms.


Papillomavirus Infections , Mice , Female , Humans , Animals , Papillomavirus Infections/genetics , Keratin-17 , Mice, Transgenic , Immunity , Papillomaviridae/genetics , Estrogens
14.
Biochem Med (Zagreb) ; 32(3): 030707, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-36277429

Introduction: Systemic sclerosis (Ssc) is a multiorgan debilitating autoimmune disease that associates the triad: vascular involvement, tissue fibrosis and profound immune response alterations. Numerous previous studies focused on identification of candidate proteomic Ssc biomarkers using mass-spectrometry techniques and a large number of candidate Ssc biomarkers emerged. These biomarkers must firstly be confirmed in independent patient groups. The aim of the present study was to investigate the association of cytokeratin 17 (CK17), marginal zone B1 protein (MZB1) and leucine-rich α2-glycoprotein-1 (LRG1) with clinical and biological Ssc characteristics. Material and methods: Serum CK17, MZB1 and LRG1 were assessed in samples of the available Ssc biobank comprising of samples from 53 Ssc patients and 26 matched age and gender controls. Results: Circulatory CK17, LRG1 and MZB1 concentrations were increased in Ssc patients. Cytokeratin 17 is independently associated with Ssc disease activity. Patients with pulmonary fibrosis expressed higher LRG1 and MZB1 concentrations. Serum MZB1 concentrations were also associated with extensive skin fibrosis. Conclusions: Serum CK17, MZB1 and LRG1 were confirmed biomarkers for Ssc. LRG1 seems a good biomarker for pulmonary fibrosis, while MZB1 is a good biomarker for extensive skin fibrosis. CK17 proved to be independently associated with Ssc disease severity, higher CK17 values being protective for a more active disease.


Pulmonary Fibrosis , Scleroderma, Systemic , Humans , Biomarkers , Fibrosis , Glycoproteins/metabolism , Keratin-17/metabolism , Proteomics , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/metabolism , Scleroderma, Systemic/diagnosis , Severity of Illness Index , Adaptor Proteins, Signal Transducing/metabolism
15.
Am J Dermatopathol ; 44(12): 886-890, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-36197047

ABSTRACT: Desmoplastic trichilemmoma (DTL) is a variant of trichilemmoma characterized by a prominent desmoplastic stroma that may mimic invasive carcinoma. These lesions typically show features of a conventional trichilemmoma at the periphery, surrounding dense hyalinized stroma with entrapped cords of tumor cells. On a small or superficial biopsy, DTL may pose a diagnostic challenge in distinguishing this benign adnexal neoplasm from invasive carcinoma, particularly basal cell carcinoma (BCC). We aimed to investigate whether the immunohistochemical expression of cytokeratin 17 (CK17) would be useful in the differentiation between DTL and BCC. CK17 is expressed in normal adnexal structures and has been shown to demonstrate strong staining in BCCs. Expression of CK17 was examined in 23 cases of DTL and 23 BCCs. An immunoreactivity score was assigned using the percentage of tumor cells staining with scoring as follows: 0, complete negativity; 1, < 15% tumor cells staining; 2, 15%-84% tumor cells staining; and 3, >85% staining. All cases of BCC scored as 3, whereas 18% of DTL scored as 3. The mean percent staining for CK17 was significantly higher for BCCs (97% of tumor cells) than DTLs (57% of tumor cells); P < 0.001 in the unpaired t test. The pattern of CK17 staining may also help differentiate between cases scoring 3. All BCCs showed strong diffuse staining throughout, whereas for those cases of DTL with a score of 3, the peripheral basaloid rim in the tumor lobules did not stain. CK17 is a useful adjunct in distinguishing DTL from BCC in small or superficial biopsy specimens.


Carcinoma, Basal Cell , Skin Neoplasms , Humans , Keratin-17/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Basal Cell/pathology , Skin Neoplasms/pathology , Skin/pathology , Diagnosis, Differential
16.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article En | MEDLINE | ID: mdl-36293530

Cancer develops in a multi-step process where environmental carcinogenic exposure is a primary etiological component, and where cell-cell communication governs the biological activities of tissues. Identifying the molecular genes that regulate this process is essential to targeting metastatic breast cancer. Ionizing radiation can modify and damage DNA, RNA, and cell membrane components such as lipids and proteins by direct ionization. Comparing differential gene expression can help to determine the effect of radiation and estrogens on cell adhesion. An in vitro experimental breast cancer model was developed by exposure of the immortalized human breast epithelial cell line MCF-10F to low doses of high linear energy transfer α particle radiation and subsequent growth in the presence of 17ß-estradiol. The MCF-10F cell line was analyzed in different stages of transformation that showed gradual phenotypic changes including altered morphology, increase in cell proliferation relative to the control, anchorage-independent growth, and invasive capability before becoming tumorigenic in nude mice. This model was used to determine genes associated with cell adhesion and communication such as E-cadherin, the desmocollin 3, the gap junction protein alpha 1, the Integrin alpha 6, the Integrin beta 6, the Keratin 14, Keratin 16, Keratin 17, Keratin 6B, and the laminin beta 3. Results indicated that most genes had greater expression in the tumorigenic cell line Tumor2 derived from the athymic animal than the Alpha3, a non-tumorigenic cell line exposed only to radiation, indicating that altered expression levels of adhesion molecules depended on estrogen. There is a significant need for experimental model systems that facilitate the study of cell plasticity to assess the importance of estrogens in modulating the biology of cancer cells.


Breast Neoplasms , Mice , Animals , Humans , Female , Breast Neoplasms/metabolism , Keratin-14 , Keratin-16 , Cell Transformation, Neoplastic/genetics , Mice, Nude , Desmocollins , Keratin-17 , Keratin-6 , Laminin , Estrogens/pharmacology , Radiation, Ionizing , Cell Adhesion Molecules , Estradiol/pharmacology , Cadherins/genetics , RNA , Connexins , Lipids , DNA , Cell Adhesion
17.
Exp Eye Res ; 224: 109251, 2022 11.
Article En | MEDLINE | ID: mdl-36150542

The purpose of this study is to investigate the effects of latanoprost on the secretion of cytokines and chemokines from meibomian gland epithelial cells, and to evaluate the modulation of peroxisome proliferator-activated receptor γ (PPAR-γ) and retinoid X receptor α (RXR-α) during latanoprost-induced inflammation. Mouse meibomian gland epithelial cells were cultured in proliferation and differentiation medium, respectively. Cells were exposed to latanoprost, rosiglitazone (PPAR-γ agonist), or LG100268 (RXR-α agonist), respectively. The expression of IL-6, IL-1ß, TNF-α, MMP-9, MCP-1, and CCL-5 were detected by real-time PCR and ELISA. The effect of latanoprost, rosiglitazone, LG100268, and inflammatory cytokines on the differentiation of meibocyte were evaluated by related gene expression and lipid staining. The expression of Keratin-1, 6, 17 protein was detected by western immunoblotting. The results showed that the above cytokines could be induced by latanoprost in meibomian gland epithelial cells. LG100268 and rosiglitazone could inhibit the production of IL-6 and TNF-α induced by latanoprost, respectively. Latanoprost suppressed the expression of differentiation-related mRNA through a positive feedback loop by enhancement of COX-2 expression via FP receptor-activated ERK signaling. The expression of Keratin-17 was upregulated by rosiglitazone and suppressed by LG100268. The application of IL-6 and TNF-α showed negative effects on lipid accumulation in meibomian gland epithelial cells. These results demonstrated that latanoprost could induce inflammation and suppress differentiation of mouse meibomian gland epithelial cells. The activation of PPAR-γ and RXR-α showed an anti-inflammatory effect, showing a potential role to antagonize the effect of latanoprost eyedrops on meibomian gland epithelial cells.


Meibomian Glands , PPAR gamma , Mice , Animals , PPAR gamma/metabolism , Meibomian Glands/metabolism , Rosiglitazone , Latanoprost , Matrix Metalloproteinase 9/metabolism , Keratin-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Retinoid X Receptor alpha/metabolism , Keratin-17/metabolism , Cyclooxygenase 2 , Interleukin-6/metabolism , Epithelial Cells/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Cytokines/genetics , Cytokines/metabolism , Chemokines/metabolism , RNA, Messenger/metabolism , Ophthalmic Solutions/metabolism , Anti-Inflammatory Agents/metabolism
18.
Biomolecules ; 12(9)2022 08 25.
Article En | MEDLINE | ID: mdl-36139022

Breast cancer (BC) is one of the most common types of malignancies in women and greatly threatens female health. KRT17 is a member of the keratin (KRT) protein family that is abundant in the outer layer of the skin, where it protects epithelial cells from damage. Although KRT17 has been studied in many types of cancer, the expression of KRT17 in specific subtypes of BC remains to be determined. In our study, we explored the expression and prognostic implications of KRT17 in BC patients using mRNA transcriptome data and clinical BC data from The Cancer Genome Atlas (TCGA). Receiver operating characteristic (ROC) curves and the chi-square test were used to assess the diagnostic value of KRT17 expression. Quantitative real-time PCR (qRT-PCR) analysis of BC cells and tissues and immunohistochemistry (IHC) analysis of clinical tissues were used for external validation. Furthermore, the relationship between KRT17 and immune function was studied by using the CIBERSORT algorithm to predict the proportions of tumor-infiltrating immune cells (TIICs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the potential mechanisms by which KRT17 expression influences patient survival. We found that KRT17 expression was significantly lower in BC tissues than in normal tissues, especially in the luminal-A, luminal-B and human epidermal growth factor receptor-2 (HER2)+ subtypes of BC. ROC analysis revealed that KRT17 expression had moderate diagnostic value. Interestingly, decreased expression of KRT17 was significantly correlated with poor prognosis in BC patients, especially in HER2high and ERhigh patients. This trend was also verified by tissue microarray (TMA) analysis. KRT17 was found to be involved in some antitumor immune pathways, especially the IL-17 signaling pathway, and associated with multiple immune cells, such as natural killer (NK) and CD4+ T cells. In conclusion, high expression of KRT17 predicted favorable prognosis in BC patients with higher HER2 expression. This result may indicate that KRT17 plays a different role depending on the level of HER2 expression and could serve as a promising and sensitive biomarker for the diagnosis and prognostication of HER2high BC.


Breast Neoplasms , Keratin-17 , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Humans , Interleukin-17/genetics , Keratin-17/genetics , RNA, Messenger
20.
Br J Dermatol ; 187(5): 773-777, 2022 11.
Article En | MEDLINE | ID: mdl-35822506

The phenotypic spectrum of genodermatoses is continuously expanding. Three siblings were referred because of a highly unusual phenotype comprising alopecia, dystrophic nails, palmoplantar keratoderma and trauma-induced skin blistering. Whole-exome sequencing analysis identified a heterozygous large genomic alteration of around 116 0000 bp resulting in the deletion of the KRT9, KRT14, KRT15, KRT16 and KRT19 genes, as well as part of KRT17. This genomic change leads to the generation of a truncated keratin 17 (KRT17) protein encoded by the first three exons of the gene and part of intron 3. The three patients were found to carry the heterozygous genomic deletion while their healthy parents did not, indicative of germline mosaicism. The genomic alteration was found to result in reduced KRT17 expression in patient skin. More importantly, the abnormal truncated KRT17 was found to exert a deleterious effect on keratinocyte cytoskeleton formation, leading to keratin aggregation. Coexpression of wildtype and truncated KRT17 proteins also caused keratin aggregation, demonstrating that the deletion exerts a dominant negative effect. In conclusion, we are reporting on a novel clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning six keratin genes, thus expanding the spectrum of clinical manifestations associated with keratin disorders. What is already known about this topic? Various conditions known as keratinopathies have been shown over recent years to be associated with dominant or recessive variants in several individual keratin genes. What does this study add? We report three patients presenting with a unique clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning six keratin genes. The genomic variant is predicted to result in a truncated form of keratin 17, which was found in an in vitro assay to disrupt keratinocyte cell cytoskeleton formation.


Keratin-17 , Keratins , Keratin-17/genetics , Heterozygote , Phenotype , Cytoskeleton , Mutation , Keratin-6/genetics , Keratin-14/genetics , Keratin-16
...