Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23.274
2.
Front Endocrinol (Lausanne) ; 15: 1372824, 2024.
Article En | MEDLINE | ID: mdl-38808109

Background: IgA nephropathy (IgAN), the most common type of glomerulonephritis, has great individual differences in prognosis. Many studies showed the relationship between thyroid hormones and chronic kidney disease. However, the relationship between free thyroxine (FT4), as a thyroid hormone, and IgAN is still unclear. This study aimed to evaluate the impact of FT4 on IgAN prognosis. Methods: This retrospective study involved 223 patients with biopsy-proven IgAN. The renal composite outcomes were defined as: (1) ESRD, defined as eGFR < 15 ml/(min·1.73 m2) or initiation of renal replacement therapy (hemodialysis, peritoneal dialysis, renal transplantation); (2) serum creatinine doubled from baseline; (3) eGFR decreased by more than 50% from baseline. The predictive value was determined by the area under the curve (AUC). Kaplan-Meier and Cox proportional hazards analyses assessed renal progression and prognosis. Results: After 38 (26-54) months of follow-up, 23 patients (10.3%) experienced renal composite outcomes. Kaplan-Meier survival curve analysis showed that the renal survival rate of the IgAN patients with FT4<15.18pmol/L was lower than that with FT4≥15.18pmol/L (P < 0. 001). Multivariate Cox regression model analysis showed that FT4 was a protective factor for poor prognosis of IgAN patients, whether as a continuous variable or a categorical variable (HR 0.68, 95%CI 0.51-0.90, P =0.007; HR 0.04, 95%CI 0.01-0.20, P <0.001). ROC curve analysis showed that FT4 combined with t score had a high predictive value for poor prognosis of IgAN patients (AUC=0.881, P<0.001). Conclusion: FT4 was a protective factor for IgAN. In addition, FT4 combined with tubular atrophy/interstitial fibrosis had a high predictive value for poor prognosis of IgAN.


Atrophy , Fibrosis , Glomerulonephritis, IGA , Thyroxine , Humans , Glomerulonephritis, IGA/blood , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/mortality , Male , Female , Thyroxine/blood , Prognosis , Retrospective Studies , Adult , Middle Aged , Fibrosis/blood , Atrophy/blood , Predictive Value of Tests , Kidney Tubules/pathology , Glomerular Filtration Rate , Follow-Up Studies
3.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38697845

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ergocalciferols , Membrane Proteins , Mice, Knockout , Mitophagy , Protein Kinases , Receptors, Calcitriol , Streptozocin , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Mitophagy/genetics , Mitophagy/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Male , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Fibrosis , Kidney Tubules/metabolism , Kidney Tubules/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice, Inbred C57BL , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Line , Gene Expression Regulation/drug effects
4.
Nat Commun ; 15(1): 4383, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782909

Macrophages (Mφ) autophagy is a pivotal contributor to inflammation-related diseases. However, the mechanistic details of its direct role in acute kidney injury (AKI) were unclear. Here, we show that Mφ promote AKI progression via crosstalk with tubular epithelial cells (TECs), and autophagy of Mφ was activated and then inhibited in cisplatin-induced AKI mice. Mφ-specific depletion of ATG7 (Atg7Δmye) aggravated kidney injury in AKI mice, which was associated with tubulointerstitial inflammation. Moreover, Mφ-derived exosomes from Atg7Δmye mice impaired TEC mitochondria in vitro, which may be attributable to miR-195a-5p enrichment in exosomes and its interaction with SIRT3 in TECs. Consistently, either miR-195a-5p inhibition or SIRT3 overexpression improved mitochondrial bioenergetics and renal function in vivo. Finally, adoptive transfer of Mφ from AKI mice to Mφ-depleted mice promotes the kidney injury response to cisplatin, which is alleviated when Mφ autophagy is activated with trehalose. We conclude that exosomal miR-195a-5p mediate the communication between autophagy-deficient Mφ and TECs, leading to impaired mitochondrial biogenetic in TECs and subsequent exacerbation of kidney injury in AKI mice via miR-195a-5p-SIRT3 axis.


Acute Kidney Injury , Autophagy , Cisplatin , Macrophages , MicroRNAs , Mitochondria , Sirtuin 3 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cisplatin/adverse effects , Sirtuin 3/metabolism , Sirtuin 3/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Autophagy/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Male , Exosomes/metabolism , Mice, Inbred C57BL , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Trehalose/pharmacology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Humans , Kidney/pathology , Kidney/metabolism , Disease Models, Animal
5.
FASEB J ; 38(10): e23703, 2024 May 31.
Article En | MEDLINE | ID: mdl-38805156

Renal tubules are featured with copious mitochondria and robust transport activity. Mutations in mitochondrial genes cause congenital renal tubulopathies, and changes in transport activity affect mitochondrial morphology, suggesting mitochondrial function and transport activity are tightly coupled. Current methods of using bulk kidney tissues or cultured cells to study mitochondrial bioenergetics are limited. Here, we optimized an extracellular flux analysis (EFA) to study mitochondrial respiration and energy metabolism using microdissected mouse renal tubule segments. EFA detects mitochondrial respiration and glycolysis by measuring oxygen consumption and extracellular acidification rates, respectively. We show that both measurements positively correlate with sample sizes of a few centimeter-length renal tubules. The thick ascending limbs (TALs) and distal convoluted tubules (DCTs) critically utilize glucose/pyruvate as energy substrates, whereas proximal tubules (PTs) are significantly much less so. Acute inhibition of TALs' transport activity by ouabain treatment reduces basal and ATP-linked mitochondrial respiration. Chronic inhibition of transport activity by 2-week furosemide treatment or deletion of with-no-lysine kinase 4 (Wnk4) decreases maximal mitochondrial capacity. In addition, chronic inhibition downregulates mitochondrial DNA mass and mitochondrial length/density in TALs and DCTs. Conversely, gain-of-function Wnk4 mutation increases maximal mitochondrial capacity and mitochondrial length/density without increasing mitochondrial DNA mass. In conclusion, EFA is a sensitive and reliable method to investigate mitochondrial functions in isolated renal tubules. Transport activity tightly regulates mitochondrial bioenergetics and biogenesis to meet the energy demand in renal tubules. The system allows future investigation into whether and how mitochondria contribute to tubular remodeling adapted to changes in transport activity.


Energy Metabolism , Kidney Tubules , Mitochondria , Animals , Mice , Mitochondria/metabolism , Kidney Tubules/metabolism , Male , Mice, Inbred C57BL , Oxygen Consumption , Organelle Biogenesis , Biological Transport , Glycolysis/physiology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics
6.
Ren Fail ; 46(1): 2347446, 2024 Dec.
Article En | MEDLINE | ID: mdl-38695335

This study is intended to explore the effect of hypoxia-inducible factor-1α (HIF-1α) activation on lipid accumulation in the diabetic kidney. A type 1 diabetic rat model was established by STZ intraperitoneal injection. Cobalt chloride (CoCl2) and YC-1 were used as the HIF-1α activator and antagonist, respectively. CoCl2 treatment significantly increased HIF-1α expression, accelerated lipid deposition, and accelerated tubular injury in diabetic kidneys. In vitro, CoCl2 effectively stabilized HIF-1α and increased its transportation from the cytoplasm to the nucleus, which was accompanied by significantly increased lipid accumulation in HK-2 cells. Furthermore, results obtained in vivo showed that HIF-1α protein expression in the renal tubules of diabetic rats was significantly downregulated by YC-1 treatment. Meanwhile, lipid accumulation in the tubules of the DM + YC-1 group was markedly decreased in comparison to the DM + DMSO group. Accordingly, PAS staining revealed that the pathological injury caused to the tubular epithelial cells was alleviated by YC-1 treatment. Furthermore, the blood glucose level, urine albumin creatinine ratio, and NAG creatinine ratio in the DM + YC-1 group were significantly decreased compared to the DM + DMSO group. Moreover, the protein expression levels of transforming growth factor ß1 (TGF-ß1) and connective tissue growth factor (CTGF) in diabetic kidneys were decreased by YC-1 treatment. Our findings demonstrate that the activation of HIF-1α contributed to interstitial injury in a rat model of diabetic nephropathy and that the underlying mechanism involved the induction of lipid accumulation.


Cobalt , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Male , Rats, Sprague-Dawley , Kidney Tubules/pathology , Kidney Tubules/metabolism , Transforming Growth Factor beta1/metabolism , Indazoles/pharmacology , Humans , Connective Tissue Growth Factor/metabolism , Lipid Metabolism/drug effects , Cell Line
7.
Front Immunol ; 15: 1342350, 2024.
Article En | MEDLINE | ID: mdl-38720901

Dyslipidemia is the most prevalent independent risk factor for patients with chronic kidney disease (CKD). Lipid-induced NLRP3 inflammasome activation in kidney-resident cells exacerbates renal injury by causing sterile inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox balance; however, the exact role of Nrf2 signaling and its regulation of the NLRP3 inflammasome in hyperlipidemia-induced kidney injury are poorly understood. In this study, we demonstrated that activation of the mtROS-NLRP3 inflammasome pathway is a critical contributor to renal tubular epithelial cell (RTEC) apoptosis under hyperlipidemia. In addition, the Nrf2/ARE signaling pathway is activated in renal tubular epithelial cells under hyperlipidemia conditions both in vivo and in vitro, and Nrf2 silencing accelerated palmitic acid (PA)-induced mtROS production, mitochondrial injury, and NLRP3 inflammasome activation. However, the activation of Nrf2 with tBHQ ameliorated mtROS production, mitochondrial injury, NLRP3 inflammasome activation, and cell apoptosis in PA-induced HK-2 cells and in the kidneys of HFD-induced obese rats. Furthermore, mechanistic studies showed that the potential mechanism of Nrf2-induced NLRP3 inflammasome inhibition involved reducing mtROS generation. Taken together, our results demonstrate that the Nrf2/ARE signaling pathway attenuates hyperlipidemia-induced renal injury through its antioxidative and anti-inflammatory effects through the downregulation of mtROS-mediated NLRP3 inflammasome activation.


Epithelial Cells , Hyperlipidemias , Inflammasomes , Kidney Tubules , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , NF-E2-Related Factor 2/metabolism , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Hyperlipidemias/metabolism , Hyperlipidemias/complications , Hyperlipidemias/immunology , Epithelial Cells/metabolism , Rats , Humans , Kidney Tubules/pathology , Kidney Tubules/metabolism , Male , Cell Line , Apoptosis , Antioxidant Response Elements , Mitochondria/metabolism , Disease Models, Animal , Rats, Sprague-Dawley
8.
Nefrologia (Engl Ed) ; 44(2): 180-193, 2024.
Article En | MEDLINE | ID: mdl-38697696

BACKGROUND: Contrast agents can directly or indirectly induce renal tubular ischemia and hypoxic damage. Given that cobalt chloride (CoCl2) can protect renal tubules, the protective effect and potential mechanism of action of CoCl2 on contrast-induced nephropathy (CIN) warrant investigation. METHODS: A CIN mouse model was established to determine the protective effect of CoCl2 on renal injury in vivo. Then, TMT-based proteomics was performed to determine the differentially expressed proteins (DEPs), following which, enrichment analyses of gene ontology and the KEGG pathway were performed. In vitro, a CIN model was constructed with renal tubular epithelial cells (HK-2) to determine the effect of CoCl2 on potential targets and the role of the key protein identified from the in vivo experiments. RESULTS: CoCl2 treatment decreased the levels of BUN and serum creatinine (sCr), while increasing the levels of urea and creatinine (Cr) in the urine of mice after CIN injury. Damage to the renal tubules in the CoCl2 treatment group was significantly less than in the CIN model group. We identified 79 DEPs after treating the in vivo model with CoCl2, and frequently observed ferroptosis-related GO and KEGG pathway terms. Of these, Hp (haptoglobin) was selected and found to have a strong renoprotective effect, even though its expression level in kidney tissue decreased after CoCl2 treatment. In HK-2 cells, overexpression of Hp reduced the ferroptosis caused by erastin, while knocking down Hp negated the attenuation effect of CoCl2 on HK-2 cell ferroptosis. CONCLUSION: CoCl2 attenuated kidney damage in the CIN model, and this effect was associated with the decrease in ferroptosis mediated by Hp.


Cobalt , Contrast Media , Ferroptosis , Ferroptosis/drug effects , Animals , Mice , Contrast Media/adverse effects , Male , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Mice, Inbred C57BL , Disease Models, Animal , Humans , Kidney Tubules/drug effects , Kidney Tubules/pathology
9.
Article En | MEDLINE | ID: mdl-38780272

Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.


Epithelial Cells , Fatty Acid-Binding Proteins , Ferroptosis , Janus Kinase 2 , Kidney Tubules , Lipopolysaccharides , STAT3 Transcription Factor , Signal Transduction , Humans , Lipopolysaccharides/toxicity , Ferroptosis/drug effects , Janus Kinase 2/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Signal Transduction/drug effects , Cell Line , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/chemically induced
10.
Tunis Med ; 102(4): 241-244, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38746965

INTRODUCTION: Toll-like- receptors (TLR) control important aspects of innate and adaptive immune responses. Renal cells are among the non-immune cells that express (TLR). Therefore, their activation might be implicated in renal tubulo-interstitial injury. AIM: The study aimed to compare TLR9 expression in patients with primary membranous nephropathy (MN) to patients with lupus membranous nephropathy. METHODS: Kidney sections from 10 Lupus nephritis (LN) patients and ten patients with primary MN were analyzed by immunohistochemistry using anti-human TLR9 antibody. RESULTS: Results showed that TLR9 expression was weak and exclusively tubular in primary MN patients' biopsies. There was a significant difference between LN patients' biopsies and primary MN patients' biopsies. TLR9 expression was more diffused in LN patients' specimen than in those with primary MN. CONCLUSION: This study focuses on molecular level pathogenesis of MN. The data suggest that the receptors TLR9 may play role in tubulointerstitial injury in the pathogenesis of LN but not primary membranous nephropathy.


Glomerulonephritis, Membranous , Lupus Nephritis , Toll-Like Receptor 9 , Humans , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/biosynthesis , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Glomerulonephritis, Membranous/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Lupus Nephritis/immunology , Female , Adult , Male , Middle Aged , Kidney Tubules/pathology , Kidney Tubules/metabolism , Biopsy , Immunohistochemistry , Young Adult
11.
Int Immunopharmacol ; 133: 111955, 2024 May 30.
Article En | MEDLINE | ID: mdl-38626544

Renal tubular injury is an important pathological change associated with diabetic nephropathy (DN), in which ferroptosis of renal tubular epithelial cells is critical to its pathogenesis. Inhibition of the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis is the most important mechanism in DN tubular epithelial cell ferroptosis, but the underlying reason for this is unclear. Our biogenic analysis showed that a zinc-dependent metalloproteinase, dipeptidase 1 (DPEP1), is associated with DN ferroptosis. Here, we investigated the role and mechanism of DPEP1 in DN tubular epithelial cell ferroptosis. DPEP1 upregulation was observed in the renal tubular epithelial cells of DN patients and model mice, as well as in HK-2 cells stimulated with high glucose. Furthermore, the level of DPEP1 upregulation was associated with the degree of tubular injury in DN patients and HK-2 cell ferroptosis. Mechanistically, knocking down DPEP1 expression could alleviate the inhibition of GSH/GPX4 axis and reduce HK-2 cell ferroptosis levels in a high glucose environment. HK-2 cells with stable DPEP1 overexpression also showed GSH/GPX4 axis inhibition and ferroptosis, but blocking the GSH/GPX4 axis could mitigate these effects. Additionally, treatment with cilastatin, a DPEP1 inhibitor, could ameliorate GSH/GPX4 axis inhibition and relieve ferroptosis and DN progression in DN mice. These results revealed that DPEP1 can promote ferroptosis in DN renal tubular epithelial cells via inhibition of the GSH/GPX4 axis.


Diabetic Nephropathies , Dipeptidases , Epithelial Cells , Ferroptosis , Glutathione , Kidney Tubules , Mice, Inbred C57BL , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Humans , Dipeptidases/metabolism , Dipeptidases/genetics , Epithelial Cells/metabolism , Kidney Tubules/pathology , Mice , Male , Cell Line , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Glutathione/metabolism , Diabetes Mellitus, Experimental/metabolism , Glucose/metabolism , GPI-Linked Proteins
12.
PeerJ ; 12: e17260, 2024.
Article En | MEDLINE | ID: mdl-38680884

Chronic kidney disease (CKD) represents a significant global health concern, with renal fibrosis emerging as a prevalent and ultimate manifestation of this condition. The absence of targeted therapies presents an ongoing and substantial challenge. Accumulating evidence suggests that the integrity and functionality of mitochondria within renal tubular epithelial cells (RTECs) often become compromised during CKD development, playing a pivotal role in the progression of renal fibrosis. Mitophagy, a specific form of autophagy, assumes responsibility for eliminating damaged mitochondria to uphold mitochondrial equilibrium. Dysregulated mitophagy not only correlates with disrupted mitochondrial dynamics but also contributes to the advancement of renal fibrosis in CKD. While numerous studies have examined mitochondrial metabolism, ROS (reactive oxygen species) production, inflammation, and apoptosis in kidney diseases, the precise pathogenic mechanisms underlying mitophagy in CKD remain elusive. The exact mechanisms through which modulating mitophagy mitigates renal fibrosis, as well as its influence on CKD progression and prognosis, have not undergone systematic investigation. The role of mitophagy in AKI has been relatively clear, but the role of mitophagy in CKD is still rare. This article presents a comprehensive review of the current state of research on regulating mitophagy as a potential treatment for CKD. The objective is to provide fresh perspectives, viable strategies, and practical insights into CKD therapy, thereby contributing to the enhancement of human living conditions and patient well-being.


Mitophagy , Renal Insufficiency, Chronic , Animals , Humans , Disease Progression , Fibrosis/pathology , Fibrosis/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism
13.
Sci Total Environ ; 929: 172392, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38608885

Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.


Cadmium , Epithelial Cells , Pyroptosis , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Pyroptosis/drug effects , Cadmium/toxicity , Rats , Epithelial Cells/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney Tubules , Transcription Factor RelA/metabolism , Acetylation , Inflammasomes/metabolism , Kidney Tubules, Proximal
14.
Biochem Pharmacol ; 224: 116203, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615919

Acute kidney injury (AKI) is common in hospitalized patients and increases short-term and long-term mortality. Treatment options for AKI are limited. Gut microbiota products such as the short-chain fatty acid butyrate have anti-inflammatory actions that may protect tissues, including the kidney, from injury. However, the molecular mechanisms of tissue protection by butyrate are poorly understood. Treatment with oral butyrate for two weeks prior to folic acid-induced AKI and during AKI improved kidney function and decreased tubular injury and kidney inflammation while stopping butyrate before AKI was not protective. Continuous butyrate preserved the expression of kidney protective factors such as Klotho, PGC-1α and Nlrp6 which were otherwise downregulated. In cultured tubular cells, butyrate blunted the maladaptive tubular cell response to a proinflammatory milieu, preserving the expression of kidney protective factors. Kidney protection afforded by this continuous butyrate schedule was confirmed in a second model of nephrotoxic AKI, cisplatin nephrotoxicity, where the expression of kidney protective factors was also preserved. To assess the contribution of preservation of kidney protective factors to kidney resilience, recombinant Klotho was administered to mice with cisplatin-AKI and shown to preserve the expression of PGC-1α and Nlrp6, decrease kidney inflammation and protect from AKI. In conclusion, butyrate promotes kidney resilience to AKI and decreases inflammation by preventing the downregulation of kidney protective genes such as Klotho. This information may be relevant to optimize antibiotic management during hospitalization.


Acute Kidney Injury , Butyrates , Mice, Inbred C57BL , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Mice , Butyrates/pharmacology , Male , Humans , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Cisplatin/toxicity , Cisplatin/adverse effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Klotho Proteins
16.
Chem Biol Interact ; 394: 110990, 2024 May 01.
Article En | MEDLINE | ID: mdl-38579922

Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.


Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Epithelial Cells , Kidney Tubules , Lysosomes , Swainsonine , Trehalose , Animals , Autophagy/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Kidney Tubules/drug effects , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/cytology , Lysosomes/metabolism , Lysosomes/drug effects , Swainsonine/toxicity , Trehalose/pharmacology
17.
Mech Ageing Dev ; 219: 111932, 2024 Jun.
Article En | MEDLINE | ID: mdl-38580082

Renal tubular epithelial cells are vulnerable to stress-induced damage, including excessive lipid accumulation and aging, with ANGPTL4 potentially playing a crucial bridging role between these factors. In this study, RNA-sequencing was used to identify a marked increase in ANGPTL4 expression in kidneys of diet-induced obese and aging mice. Overexpression and knockout of ANGPTL4 in renal tubular epithelial cells (HK-2) was used to investigate the underlying mechanism. Subsequently, ANGPTL4 expression in plasma and kidney tissues of normal young controls and elderly individuals was analyzed using ELISA and immunohistochemical techniques. RNA sequencing results showed that ANGPTL4 expression was significantly upregulated in the kidney tissue of diet-induced obesity and aging mice. In vitro experiments demonstrated that overexpression of ANGPTL4 in HK-2 cells led to increased lipid deposition and senescence. Conversely, the absence of ANGPTL4 appears to alleviate the impact of free fatty acids (FFA) on aging in HK-2 cells. Additionally, aging HK-2 cells exhibited elevated ANGPTL4 expression, and stress response markers associated with cell cycle arrest. Furthermore, our clinical evidence revealed dysregulation of ANGPTL4 expression in serum and kidney tissue samples obtained from elderly individuals compared to young subjects. Our study findings indicate a potential association between ANGPTL4 and age-related metabolic disorders, as well as injury to renal tubular epithelial cells. This suggests that targeting ANGPTL4 could be a viable strategy for the clinical treatment of renal aging.


Aging , Angiopoietin-Like Protein 4 , Kidney Tubules , Lipid Metabolism , Angiopoietin-Like Protein 4/metabolism , Animals , Mice , Humans , Aging/metabolism , Male , Lipid Metabolism/physiology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Cell Line , Aged , Cellular Senescence/physiology , Epithelial Cells/metabolism , Female , Mice, Knockout , Obesity/metabolism , Obesity/pathology
18.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167180, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653356

The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component ß-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.


Calcium Signaling , Disease Models, Animal , Epithelial-Mesenchymal Transition , Fibrosis , Gene Knock-In Techniques , Wnt4 Protein , Animals , Mice , Epithelial-Mesenchymal Transition/genetics , Wnt4 Protein/metabolism , Wnt4 Protein/genetics , Calcium Signaling/genetics , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Wnt Signaling Pathway , Epithelial Cells/metabolism , Epithelial Cells/pathology , Kidney/pathology , Kidney/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , beta Catenin/metabolism , beta Catenin/genetics
19.
Curr Opin Nephrol Hypertens ; 33(4): 405-413, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38573234

PURPOSE OF REVIEW: Renal tubules have robust active transport and mitochondrial metabolism, which are functionally coupled to maintain energy homeostasis. Here, I review the current literature and our recent efforts to examine mitochondrial adaptation to different transport activities in renal tubules. RECENT FINDINGS: The advance of extracellular flux analysis (EFA) allows real-time assessments of mitochondrial respiration, glycolysis, and oxidation of energy substrates. We applied EFA assays to freshly isolated mouse proximal tubules, thick ascending limbs (TALs), and distal convoluted tubules (DCTs) and successfully differentiated their unique metabolic features. We found that TALs and DCTs adjusted their mitochondrial bioenergetics and biogenesis in response to acute and chronic alterations of transport activity. Based on the literature and our recent findings, I discuss working models and mechanisms underlying acute and chronic tubular adaptations to transport activity. The potential roles of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), AMP-activated protein kinase (AMPK), and uncoupling protein 2 (UCP2) are discussed. SUMMARY: Mitochondria in renal tubules are highly plastic to accommodate different transport activities. Understanding the mechanisms may improve the treatment of renal tubulopathies.


Energy Metabolism , Kidney Tubules , Mitochondria , Animals , Mitochondria/metabolism , Humans , Kidney Tubules/metabolism , AMP-Activated Protein Kinases/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Biological Transport
20.
J Immunol ; 212(11): 1807-1818, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38639584

Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.


Acute Kidney Injury , Anti-Bacterial Agents , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Mice , Inflammasomes/metabolism , Macrophages/immunology , Macrophages/metabolism , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Polymyxin B/pharmacology , Mice, Inbred C57BL , Colistin/adverse effects , Colistin/pharmacology , Peptides/pharmacology , Kidney Tubules/pathology , Kidney Tubules/metabolism , Kidney Tubules/drug effects , Male , NF-kappa B/metabolism
...