Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.512
1.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Article En | MEDLINE | ID: mdl-38718038

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Carbapenems , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Carbapenems/pharmacology , Humans , Gene Expression Regulation, Bacterial , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Small Untranslated/genetics , RNA, Bacterial/genetics , Microbial Sensitivity Tests
2.
Front Cell Infect Microbiol ; 14: 1297312, 2024.
Article En | MEDLINE | ID: mdl-38690325

Background: During the coronavirus disease 2019 (COVID-19) pandemic, in patients treated for SARS-CoV-2 infection, infections with the Klebsiella pneumoniae bacteria producing New Delhi metallo-B-lactamase (NDM) carbapenemase in the USA, Brazil, Mexico, and Italy were observed, especially in intensive care units (ICUs). This study aimed to assess the impact of Klebsiella pneumoniae NDM infection and other bacterial infections on mortality in patients treated in ICUs due to COVID-19. Methods: The 160 patients who qualified for the study were hospitalized in ICUs due to COVID-19. Three groups were distinguished: patients with COVID-19 infection only (N = 72), patients with COVID-19 infection and infection caused by Klebsiella pneumoniae NDM (N = 30), and patients with COVID-19 infection and infection of bacterial etiology other than Klebsiella pneumoniae NDM (N = 58). Mortality in the groups and chosen demographic data; biochemical parameters analyzed on days 1, 3, 5, and 7; comorbidities; and ICU scores were analyzed. Results: Bacterial infection, including with Klebsiella pneumoniae NDM type, did not elevate mortality rates. In the group of patients who survived the acute phase of COVID-19 the prolonged survival time was demonstrated: the median overall survival time was 13 days in the NDM bacterial infection group, 14 days in the other bacterial infection group, and 7 days in the COVID-19 only group. Comparing the COVID-19 with NDM infection and COVID-19 only groups, the adjusted model estimated a statistically significant hazard ratio of 0.28 (p = 0.002). Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups. Conclusion: In patients treated for SARS-CoV-2 infection acquiring a bacterial infection due to prolonged hospitalization associated with the treatment of COVID-19 did not elevate mortality rates. The data suggests that in severe COVID-19 patients who survived beyond the first week of hospitalization, bacterial infections, particularly Klebsiella pneumoniae NDM, do not significantly impact mortality. Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups.


COVID-19 , Drug Resistance, Multiple, Bacterial , Intensive Care Units , Klebsiella Infections , Klebsiella pneumoniae , SARS-CoV-2 , beta-Lactamases , Humans , COVID-19/mortality , COVID-19/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Male , Female , Klebsiella Infections/mortality , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Middle Aged , Aged , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Aged, 80 and over
3.
Virulence ; 15(1): 2348251, 2024 12.
Article En | MEDLINE | ID: mdl-38697754

OBJECTIVES: This study aimed at revealing the underlying mechanisms of the loss and gain of ceftazidime-avibactam susceptibility in a non-carbapenemase-producing hypervirulent Klebsiella pneumoniae (hvKp). METHODS: Here we longitudinally recovered 3 non-carbapenemase-producing K1-ST23 hvKp strains at a one-month interval (KP29105, KP29499 and KP30086) from an elderly male. Antimicrobial susceptibility testing, whole genome sequencing, transcriptomic sequencing, gene cloning, plasmid conjugation, quantitative real-time PCR (qRT-PCR), and SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) were conducted. RESULTS: Among the 3 hvKp strains, KP29105 was resistant to the third- and fourth-generation cephalosporins, KP29499 acquired resistance to both ceftazidime-avibactam and carbapenems, while KP30086 restored its susceptibility to ceftazidime-avibactam, imipenem and meropenem but retained low-level resistance to ertapenem. KP29105 and KP29499 carried plasmid-encoded genes blaCTX-M-15 and blaCTX-M-71, respectively, but KP30086 lost both. Cloning of gene blaCTX-M-71 and conjugation experiment of blaCTX-M-71-carrying plasmid showed that the transformant and transconjugant were susceptible to ceftazidime-avibactam but had a more than 8-fold increase in MICs. Supplementation with an outer membrane permeabilizer could reduce the MIC of ceftazidime-avibactam by 32 folds, indicating that porins play a key role in ceftazidime-avibactam resistance. The OmpK35 of the 3 isolates was not expressed, and the OmpK36 of KP29499 and KP30086 had a novel amino acid substitution (L359R). SDS-PAGE and qRT-PCR showed that the expression of porin OmpK36 of KP29499 and KP30086 was significantly down-regulated compared with KP29105. CONCLUSIONS: In summary, we reported the rare ceftazidime-avibactam resistance in a non-carbapenemase-producing hvKp strain. Resistance plasmid carrying blaCTX-M-71 and mutated OmpK36 had a synergetic effect on the resistance.


Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Ceftazidime/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/enzymology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Male , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Aged , Drug Resistance, Multiple, Bacterial/genetics , Virulence , Plasmids/genetics , Whole Genome Sequencing
5.
PLoS One ; 19(5): e0303353, 2024.
Article En | MEDLINE | ID: mdl-38743684

INTRODUCTION: The study of Klebsiella quasipneumoniae, Klebsiella variicola, and AmpC production in extended-spectrum ß-lactamase (ESBL)-producing Klebsiella in Japan is limited, and existing data are insufficient. This study aims to characterize Klebsiella species, determine AmpC production rates, and analyze antimicrobial resistance patterns in ESBL-producing Klebsiella isolates in Japan. METHODS: A total of 139 clinical isolates of ESBL-producing Klebsiella were collected in Japan, along with their corresponding antimicrobial susceptibility profiles. The isolates were identified using a web-based tool. ESBL genes within the isolates were identified using multiplex PCR. Screening for AmpC-producing isolates was performed using cefoxitin disks, followed by multiplex PCR to detect the presence of AmpC genes. Antimicrobial resistance patterns were analyzed across the predominant ESBL genotypes. RESULTS: The web-based tool identified 135 isolates (97.1%) as Klebsiella pneumoniae and 4 (2.9%) as K. quasipneumoniae subsp. similipneumoniae, with no instances of K. variicola detected. Among K. pneumoniae, the CTX-M-1 group emerged as the predominant genotype (83/135, 61.5%), followed by K. quasipneumoniae subsp. similipneumoniae (3/4, 75.0%). The CTX-M-9 group was the second most prevalent genotype in K. pneumoniae (45/135, 33.3%). The high resistance rates were observed for quinolones (ranging from 46.7% to 63.0%) and trimethoprim/sulfamethoxazole (78.5%). The CTX-M-1 group exhibited higher resistance to ciprofloxacin (66/83, 79.5%) compared to the CTX-M-9 group (18/45, 40.0%), a trend also observed for levofloxacin and trimethoprim/sulfamethoxazole. Among the 16 isolates that tested positive during AmpC screening, only one K. pneumoniae isolates (0.7%) were confirmed to carry the AmpC gene. CONCLUSION: Klebsiella pneumoniae with the CTX-M-1 group is the most common ESBL-producing Klebsiella in Japan and showed a low proportion of AmpC production. These isolates are resistant to quinolones and trimethoprim/sulfamethoxazole, highlighting the challenge of managing this pathogen. The findings underscore the importance of broader research and continuous monitoring to address the resistance patterns of ESBL-producing Klebsiella.


Anti-Bacterial Agents , Bacterial Proteins , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Klebsiella/genetics , Klebsiella/drug effects , Klebsiella/isolation & purification , Klebsiella/enzymology , Japan , Retrospective Studies , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Male , Female , East Asian People
6.
Nat Commun ; 15(1): 3981, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730266

Heteroresistance is a medically relevant phenotype where small antibiotic-resistant subpopulations coexist within predominantly susceptible bacterial populations. Heteroresistance reduces treatment efficacy across diverse bacterial species and antibiotic classes, yet its genetic and physiological mechanisms remain poorly understood. Here, we investigated a multi-resistant Klebsiella pneumoniae isolate and identified three primary drivers of gene dosage-dependent heteroresistance for several antibiotic classes: tandem amplification, increased plasmid copy number, and transposition of resistance genes onto cryptic plasmids. All three mechanisms imposed fitness costs and were genetically unstable, leading to fast reversion to susceptibility in the absence of antibiotics. We used a mouse gut colonization model to show that heteroresistance due to elevated resistance-gene dosage can result in antibiotic treatment failures. Importantly, we observed that the three mechanisms are prevalent among Escherichia coli bloodstream isolates. Our findings underscore the necessity for treatment strategies that address the complex interplay between plasmids, resistance cassettes, and transposons in bacterial populations.


Anti-Bacterial Agents , DNA Copy Number Variations , Escherichia coli , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Mice , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Gene Dosage , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , DNA Transposable Elements/genetics , Female
7.
Sci Rep ; 14(1): 11849, 2024 05 24.
Article En | MEDLINE | ID: mdl-38783019

The resistance to antibiotics in Gram-negative bacilli causing sepsis is a warning sign of failure of therapy. Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) represent major Gram-negative bacilli associated with sepsis. Quinolone resistance is an emerging resistance among E. coli and K. pneumoniae. Therefore, the present study aimed to study the presence of plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, and qnrS by polymerase chain reaction (PCR) in E. coli and K. pneumoniae isolated from pediatric patients with sepsis. This was a retrospective cross-sectional study that included pediatric patients with healthcare-associated sepsis. The E. coli and K. pneumoniae isolates were identified by microbiological methods. PMQR genes namely qnrA, qnrB, and qnrS were detected in E. coli and K. pneumoniae isolates by PCR. The results were analyzed by SPPS24, and the qualitative data was analyzed as numbers and percentages and comparison was performed by Chi-square test, P was significant if < 0.05. The most prevalent gene detected by PCR was qnrA (75%), followed by qnrB (28.1%), and qnrS (25%). The most frequently detected qnr gene in E coli and K. pneumoniae was qnrA (28.8%, and 16.3% respectively). The present study highlights the high prevalence of ciprofloxacin resistance among E. coli and K. pneumoniae isolated from pediatric patients with healthcare-associated sepsis. There was a high frequency of PMQR genes in E. coli and K. pneumoniae isolated from pediatric patients. Therefore, it is important to monitor the spread of PMQR genes in clinical isolates to ensure efficient antibiotic use in those children. The finding denotes the importance of an antibiotics surveillance program.


Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli , Klebsiella pneumoniae , Plasmids , Quinolones , Sepsis , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Child , Quinolones/pharmacology , Plasmids/genetics , Drug Resistance, Bacterial/genetics , Sepsis/microbiology , Sepsis/drug therapy , Retrospective Studies , Cross-Sectional Studies , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Female , Male , Child, Preschool , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Microbial Sensitivity Tests , Infant , Bacterial Proteins/genetics
8.
Microb Cell Fact ; 23(1): 152, 2024 May 24.
Article En | MEDLINE | ID: mdl-38790017

BACKGROUND: A novel plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 in Klebsiella pneumoniae tremendously threatens the use of convenient therapeutic options in the post-antibiotic era, including the "last-resort" antibiotic tigecycline. RESULTS: In this work, the natural alkaloid harmaline was found to potentiate tigecycline efficacy (4- to 32-fold) against tmexCD1-toprJ1-positive K. pneumoniae, which also thwarted the evolution of tigecycline resistance. Galleria mellonella and mouse infection models in vivo further revealed that harmaline is a promising candidate to reverse tigecycline resistance. Inspiringly, harmaline works synergistically with tigecycline by undermining tmexCD1-toprJ1-mediated multidrug resistance efflux pump function via interactions with TMexCD1-TOprJ1 active residues and dissipation of the proton motive force (PMF), and triggers a vicious cycle of disrupting cell membrane integrity and metabolic homeostasis imbalance. CONCLUSION: These results reveal the potential of harmaline as a novel tigecycline adjuvant to combat hypervirulent K. pneumoniae infections.


Anti-Bacterial Agents , Drug Repositioning , Harmaline , Klebsiella Infections , Klebsiella pneumoniae , Tigecycline , Klebsiella pneumoniae/drug effects , Tigecycline/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Animals , Mice , Anti-Bacterial Agents/pharmacology , Harmaline/pharmacology , Harmaline/analogs & derivatives , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Female
9.
Phytomedicine ; 129: 155706, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723528

BACKGROUND: The pathogenesis of lower respiratory tract infections (LRTIs) has been demonstrated to be strongly associated with dysbiosis of respiratory microbiota. Scutellaria baicalensis, a traditional Chinese medicine, is widely used to treat respiratory infections. However, whether the therapeutic effect of S. baicalensis on LRTIs depends upon respiratory microbiota regulation is largely unclear. PURPOSE: To investigate the potential effect and mechanism of S. baicalensis on the respiratory microbiota of LRTI mice. METHODS: A mouse model of LRTI was established using Klebsiella pneumoniae or Streptococcus pneumoniae. Antibiotic treatment was administered, and transplantation of respiratory microbiota was performed to deplete the respiratory microbiota of mice and recover the destroyed microbial community, respectively. High-performance liquid chromatography (HPLC) was used to determine and quantify the chemical components of S. baicalensis water decoction (SBWD). Pathological changes in lung tissues and the expressions of serum inflammatory cytokines, including interleukin-17A (IL-17A), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were determined by hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay (ELISA), respectively. Quantitative real-time PCR (qRT-PCR) analysis was performed to detect the mRNA expression of GM-CSF. Metagenomic sequencing was performed to evaluate the effect of SBWD on the composition and function of the respiratory microbiota in LRTI mice. RESULTS: Seven main components, including scutellarin, baicalin, oroxylin A-7-O-ß-d-glucuronide, wogonoside, baicalein, wogonin, and oroxylin A, were identified and their levels in SBWD were quantified. SBWD ameliorated pulmonary pathological injury and inflammatory responses in K. pneumoniae and S. pneumoniae-induced LRTI mice, as evidenced by the dose-dependent reductions in the levels of serum inflammatory cytokines, IL-6 and TNF-α. SBWD may exert a bidirectional regulatory effect on the host innate immune responses in LRTI mice and regulate the expressions of IL-17A and GM-CSF in a microbiota-dependent manner. K. pneumoniae infection but not S. pneumoniae infection led to dysbiosis in the respiratory microbiota, evident through disturbances in the taxonomic composition characterized by bacterial enrichment, including Proteobacteria, Enterobacteriaceae, and Klebsiella. K. pneumoniae and S. pneumoniae infection altered the bacterial functional profile of the respiratory microbiota, as indicated by increases in lipopolysaccharide biosynthesis, metabolic pathways, and carbohydrate metabolism. SBWD had a certain trend on the regulation of compositional disorders in the respiratory flora and modulated partial microbial functions embracing carbohydrate metabolism in K. pneumoniae-induced LRTI mice. CONCLUSION: SBWD may exert an anti-infection effect on LRTI by targeting IL-17A and GM-CSF through respiratory microbiota regulation. The mechanism of S. baicalensis action on respiratory microbiota in LRTI treatment merits further investigation.


Lung , Scutellaria baicalensis , Animals , Scutellaria baicalensis/chemistry , Lung/drug effects , Lung/microbiology , Mice , Klebsiella pneumoniae/drug effects , Microbiota/drug effects , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Plant Extracts/pharmacology , Male , Streptococcus pneumoniae/drug effects , Cytokines/metabolism , Cytokines/blood , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Mice, Inbred C57BL , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Flavonoids/pharmacology , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Apigenin/pharmacology , Dysbiosis/drug therapy , Dysbiosis/microbiology
10.
Ann Clin Microbiol Antimicrob ; 23(1): 42, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711045

BACKGROUND: Klebsiella aerogenes has been reclassified from Enterobacter to Klebsiella genus due to its phenotypic and genotypic similarities with Klebsiella pneumoniae. It is unclear if clinical outcomes are also more similar. This study aims to assess clinical outcomes of bloodstreams infections (BSI) caused by K. aerogenes, K. pneumoniae and Enterobacter cloacae, through secondary data analysis, nested in PRO-BAC cohort study. METHODS: Hospitalized patients between October 2016 and March 2017 with monomicrobial BSI due to K. aerogenes, K. pneumoniae or E. cloacae were included. Primary outcome was a composite clinical outcome including all-cause mortality or recurrence until 30 days follow-up. Secondary outcomes were fever ≥ 72 h, persistent bacteraemia, and secondary device infection. Multilevel mixed-effect Poisson regression was used to estimate the association between microorganisms and outcome. RESULTS: Overall, 29 K. aerogenes, 77 E. cloacae and 337 K. pneumoniae BSI episodes were included. Mortality or recurrence was less frequent in K. aerogenes (6.9%) than in E. cloacae (20.8%) or K. pneumoniae (19.0%), but statistical difference was not observed (rate ratio (RR) 0.35, 95% CI 0.08 to 1.55; RR 0.42, 95% CI 0.10 to 1.71, respectively). Fever ≥ 72 h and device infection were more common in K. aerogenes group. In the multivariate analysis, adjusted for confounders (age, sex, BSI source, hospital ward, Charlson score and active antibiotic therapy), the estimates and direction of effect were similar to crude results. CONCLUSIONS: Results suggest that BSI caused by K. aerogenes may have a better prognosis than E. cloacae or K. pneumoniae BSI.


Bacteremia , Enterobacter aerogenes , Enterobacter cloacae , Enterobacteriaceae Infections , Klebsiella Infections , Klebsiella pneumoniae , Humans , Enterobacter cloacae/isolation & purification , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Male , Female , Bacteremia/microbiology , Bacteremia/mortality , Aged , Middle Aged , Klebsiella Infections/mortality , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Enterobacter aerogenes/isolation & purification , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/mortality , Cohort Studies , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Recurrence , Treatment Outcome
11.
Clin Med (Lond) ; 24(2): 100036, 2024 Mar.
Article En | MEDLINE | ID: mdl-38588916

A 76-year-old Malay female presented with 2 days history of fever and vomiting. She was found to have Escherichia coli and Klebsiella pneumoniae bacteraemia with no clear intra-abdominal cause on the initial computed tomography of the abdomen and pelvis (CTAP). She clinically improved with 2 weeks duration of intravenous meropenem. She subsequently developed septic shock and a repeated CTAP demonstrated increased hepatic parenchymal density with extensive parenchymal calcifications. Curvilinear calcifications were seen in the paraspinal and pelvic musculature.


Calcinosis , Humans , Female , Aged , Calcinosis/diagnostic imaging , Sepsis/microbiology , Tomography, X-Ray Computed , Liver Diseases/diagnostic imaging , Klebsiella pneumoniae/isolation & purification , Klebsiella Infections/diagnosis , Klebsiella Infections/complications , Klebsiella Infections/drug therapy , Escherichia coli Infections/complications , Escherichia coli Infections/diagnosis , Escherichia coli Infections/drug therapy , Muscular Diseases/diagnostic imaging , Anti-Bacterial Agents/therapeutic use , Meropenem/therapeutic use , Meropenem/administration & dosage
12.
J Ethnopharmacol ; 330: 118067, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38636574

ETHNOPHARMACOLOGICAL RELEVANCE: Jingfang Baidu Powder (JFBDP) is a classic traditional Chinese medicine prescription. Although Jingfang Baidu powder obtained a general consensus on clinical efficacy in treating pneumonia, there were many Chinese herbal drugs in formula, complex components, and large oral dosage, which brings certain obstacles to clinical application. AIM OF THE STUDY: Therefore, screening of the active fraction that exerts anti-pneumonia helps improve the pharmaceutical preparation, improve the treatment compliance of patients, and further contribute to the clinical application, and the screening of the new active ingredients with anti-pneumonia. The histopathological observation, real-time quantitative PCR, western blotting, and immunofluorescence were applied to evaluate the anti-pneumonia efficacy of active fractions from JFBDP. RESULTS: Three fractions from JFBDP inhibit the gene expression of IL-1ß, IL-10, CCL3, CCL5, and CCL22 in lung tissue infected by Klebsiella at various degrees, and presented a good dose-response relationship. JF50 showed stronger anti-inflammatory effects among three fractions including JF30, JF50, and JF75. Besides, JF50 significantly reduced the protein expression of TLR4 and Myd88 in lung tissue infected with Klebsiella, and it also significantly inhibited p-ERK and p-NF-κB p65. JF50 significantly inhibits the protein expression of Caspase 3, Caspase 8, and Caspase 9 in lung tissue infected with Klebsiella at the dose of 25 mg/kg and 50 mg/kg. CONCLUSION: JF50 improves lung pathological damage in Klebsiella pneumonia mice by inhibiting the TLR4/Myd88/NF-κB-ERK signaling pathway, and inhibiting apoptosis of lung tissue cells. These findings provide a reference for further exploring the active substance basis of Jingfang Baidu Powder in treating bacterial pneumonia.


Drugs, Chinese Herbal , Klebsiella Infections , Myeloid Differentiation Factor 88 , Powders , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Myeloid Differentiation Factor 88/metabolism , Mice , Male , Klebsiella Infections/drug therapy , MAP Kinase Signaling System/drug effects , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Lung/drug effects , Lung/pathology , Lung/metabolism , Klebsiella pneumoniae/drug effects , Signal Transduction/drug effects , Mice, Inbred C57BL
13.
J Ethnopharmacol ; 330: 118202, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38641078

ETHNOPHARMACOLOGICAL RELEVANCE: Members of Plectranthus genus such as Plectranthus amboinicus (Lour.) Spreng is a well-known folkloric medicine around the globe in treating several human ailments such as cardiovascular, respiratory, digestive, urinary tract, skin and infective diseases. Its therapeutic value is primarily attributed to its essential oil. Although several properties of Plectranthus amboinicus essential oil have been documented, its mechanism of action and safety has not been completely elucidated. AIM OF THE STUDY: To investigate the anti-infective potential of Plectranthus amboinicus essential oil against Klebsiella pneumoniae using in vitro and in vivo bioassays and identify its mode of action. The study was conducted to scientifically validate the traditional usage of Plectranthus amboinicus oil and propose it as a complementary and alternative medication to combat Klebsiella pneumoniae infections due to emerging antibiotic resistance problem. MATERIALS AND METHODS: Plectranthus amboinicus essential oil was extracted through steam distillation and was chemically characterized using Gas Chromatography Mass Spectrometry (GC-MS). The antibacterial activity was assessed using microbroth dilution assay, metabolic viability assay and growth curve analysis. The mode of action was elucidated by the proteomics approach using Nano-LC-MS/MS followed by in silico analysis. The results of proteomic analysis were further validated through several in vitro assays. The cytotoxic nature of the essential oil was also confirmed using adenocarcinomic human alveolar basal epithelial (A549) cells. Furthermore, the safety and in vivo anti-infective efficacy of Plectranthus amboinicus essential oil was evaluated through survival assay, CFU assay and histopathological analysis of vital organs using zebrafish as a model organism. RESULTS: The chemical characterization of Plectranthus amboinicus essential oil revealed that it is predominantly composed of thymol. Thymol rich P. amboinicus essential oil demonstrated potent inhibitory effects on Klebsiella pneumoniae growth, achieving a significant reduction at a concentration of 400 µg/mL within 4 h of treatment The nano-LC-MS/MS approach unveiled that the essential oil exerted its impact by disrupting the antioxidant defense system and efflux pump system of the bacterium, resulting in elevated cellular oxidative stress and affect the biosynthesis of biofilm. The same was validated through several in vitro assays. Furthermore, the toxicity of Plectranthus amboinicus essential oil determined using A549 cells and zebrafish survival assay established a non-toxic concentration of 400 µg/mL and 12.5 µg/mL respectively. The results of anti-infective potential of the essential oil using Zebrafish as a model organism demonstrated significantly improved survival rates, reduced bacterial load, alleviated visible signs of inflammation and mitigated the adverse effects of infection on various organs, as evidenced by histopathological analysis ensuring its safety for potential therapeutic application. CONCLUSION: The executed in vitro and in vivo assays established the effectiveness of essential oil in inhibiting bacterial growth by targeting key proteins associated with the bacterial antioxidant defense system and disrupted the integrity of the cell membrane, highlighting its critical role in addressing the challenge posed by antibiotic-resistant Klebsiella pneumoniae.


Klebsiella pneumoniae , Oils, Volatile , Plant Leaves , Plectranthus , Proteomics , Klebsiella pneumoniae/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Plectranthus/chemistry , Humans , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Zebrafish , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
14.
BMC Infect Dis ; 24(1): 433, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654215

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, necessitating the administration of polymyxin E (colistin) as a last-line antibiotic. Meanwhile, the mortality rate associated with colistin-resistant K. pneumoniae infections is seriously increasing. On the other hand, importance of administration of carbapenems in promoting colistin resistance in K. pneumoniae is unknown. CASE PRESENTATION: We report a case of K. pneumoniae-related pyogenic liver abscess in which susceptible K. pneumoniae transformed into carbapenem- and colistin-resistant K. pneumoniae during treatment with imipenem. The case of pyogenic liver abscess was a 50-year-old man with diabetes and liver transplant who was admitted to Abu Ali Sina Hospital in Shiraz. The K. pneumoniae isolate responsible for community-acquired pyogenic liver abscess was isolated and identified. The K. pneumoniae isolate was sensitive to all tested antibiotics except ampicillin in the antimicrobial susceptibility test and was identified as a non-K1/K2 classical K. pneumoniae (cKp) strain. Multilocus sequence typing (MLST) identified the isolate as sequence type 54 (ST54). Based on the patient's request, he was discharged to continue treatment at another center. After two months, he was readmitted due to fever and progressive constitutional symptoms. During treatment with imipenem, the strain acquired blaOXA-48 and showed resistance to carbapenems and was identified as a multidrug resistant (MDR) strain. The minimum inhibitory concentration (MIC) test for colistin was performed by broth microdilution method and the strain was sensitive to colistin (MIC < 2 µg/mL). Meanwhile, on blood agar, the colonies had a sticky consistency and adhered to the culture medium (sticky mucoviscous colonies). Quantitative real-time PCR and biofilm formation assay revealed that the CRKP strain increased capsule wzi gene expression and produced slime in response to imipenem. Finally, K. pneumoniae-related pyogenic liver abscess with resistance to a wide range of antibiotics, including the last-line antibiotics colistin and tigecycline, led to sepsis and death. CONCLUSIONS: Based on this information, can we have a theoretical hypothesis that imipenem is a promoter of resistance to carbapenems and colistin in K. pneumoniae? This needs more attention.


Anti-Bacterial Agents , Carbapenems , Colistin , Klebsiella Infections , Klebsiella pneumoniae , Liver Abscess, Pyogenic , Microbial Sensitivity Tests , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Male , Liver Abscess, Pyogenic/microbiology , Liver Abscess, Pyogenic/drug therapy , Middle Aged , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Multilocus Sequence Typing , Imipenem/therapeutic use , Imipenem/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics
15.
Emerg Infect Dis ; 30(5): 974-983, 2024 May.
Article En | MEDLINE | ID: mdl-38666612

We investigated links between antimicrobial resistance in community-onset bacteremia and 1-year bacteremia recurrence by using the clinical data warehouse of Europe's largest university hospital group in France. We included adult patients hospitalized with an incident community-onset Staphylococcus aureus, Escherichia coli, or Klebsiella spp. bacteremia during 2017-2019. We assessed risk factors of 1-year recurrence using Fine-Gray regression models. Of the 3,617 patients included, 291 (8.0%) had >1 recurrence episode. Third-generation cephalosporin (3GC)-resistance was significantly associated with increased recurrence risk after incident Klebsiella spp. (hazard ratio 3.91 [95% CI 2.32-6.59]) or E. coli (hazard ratio 2.35 [95% CI 1.50-3.68]) bacteremia. Methicillin resistance in S. aureus bacteremia had no effect on recurrence risk. Although several underlying conditions and infection sources increased recurrence risk, 3GC-resistant Klebsiella spp. was associated with the greatest increase. These results demonstrate a new facet to illness induced by 3GC-resistant Klebsiella spp. and E. coli in the community setting.


Anti-Bacterial Agents , Bacteremia , Community-Acquired Infections , Escherichia coli Infections , Escherichia coli , Klebsiella , Recurrence , Staphylococcal Infections , Staphylococcus aureus , Humans , Bacteremia/microbiology , Bacteremia/epidemiology , Klebsiella/drug effects , Klebsiella/genetics , Male , Risk Factors , Escherichia coli/drug effects , Female , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Middle Aged , Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Drug Resistance, Bacterial , Adult , France/epidemiology
16.
Drug Resist Updat ; 74: 101083, 2024 May.
Article En | MEDLINE | ID: mdl-38593500

AIMS: Carbapenem-resistant Klebsiella pneumonia (CRKP) is a global threat that varies by region. The global distribution, evolution, and clinical implications of the ST11 CRKP clone remain obscure. METHODS: We conducted a multicenter molecular epidemiological survey using isolates obtained from 28 provinces and municipalities across China between 2011 and 2021. We integrated sequences from public databases and performed genetic epidemiology analysis of ST11 CRKP. RESULTS: Among ST11 CRKP, KL64 serotypes exhibited considerable expansion, increasing from 1.54% to 46.08% between 2011 and 2021. Combining our data with public databases, the phylogenetic and phylogeography analyses indicated that ST11 CRKP appeared in the Americas in 1996 and spread worldwide, with key clones progressing from China's southeastern coast to the inland by 2010. Global phylogenetic analysis showed that ST11 KL64 CRKP has evolved to a virulent, resistant clade with notable regional spread. Single-nucleotide polymorphism (SNP) analysis identified BMPPS (bmr3, mltC, pyrB, ppsC, and sdaC) as a key marker for this clade. The BMPPS SNP clade is associated with high mortality and has strong anti-phagocytic and competitive traits in vitro. CONCLUSIONS: The high-risk ST11 KL64 CRKP subclone showed strong expansion potential and survival advantages, probably owing to genetic factors.


Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Phylogeny , Humans , China/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/transmission , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Polymorphism, Single Nucleotide , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Molecular Epidemiology , Carbapenems/pharmacology , Microbial Sensitivity Tests , Phylogeography , Serogroup , Genomics/methods
17.
Euro Surveill ; 29(16)2024 Apr.
Article En | MEDLINE | ID: mdl-38639094

In 2023, an increase of OXA-48-producing Klebsiella pneumoniae was noticed by the Lithuanian National Public Health Surveillance Laboratory. Whole genome sequencing (WGS) of 106 OXA-48-producing K. pneumoniae isolates revealed three distinct clusters of carbapenemase-producing K. pneumoniae high-risk clones, including sequence type (ST) 45 (n = 35 isolates), ST392 (n = 32) and ST395 (n = 28), involving six, six and nine hospitals in different regions, respectively. These results enabled targeted investigation and control, and underscore the value of national WGS-based surveillance for antimicrobial resistance.


Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Lithuania/epidemiology , Multilocus Sequence Typing , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy , beta-Lactamases/genetics , Bacterial Proteins/genetics , Hospitals , Disease Outbreaks , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
18.
BMC Genomics ; 25(1): 408, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664636

BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, blaNDM, and blaOXA, respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.


Bacterial Proteins , Carbapenems , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Carbapenems/pharmacology , Humans , Whole Genome Sequencing , Genome, Bacterial , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Phylogeny , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Microbial Sensitivity Tests
19.
Front Cell Infect Microbiol ; 14: 1368450, 2024.
Article En | MEDLINE | ID: mdl-38638833

Objective: To evaluate the antibacterial effect of Tanreqing (TRQ) against K. pneumoniae and its inhibition activity on bacterial biofilm formation in vitro and in vivo, and to explore the mechanism of the inhibitory effects of TRQ on K. pneumoniae biofilm formation. Methods: An in vitro biofilm model of K. pneumoniae was established, and the impact of TRQ on biofilm formation was evaluated using crystal violet staining and scanning electron microscopy (SEM). Furthermore, the clearance effect of TRQ against K. pneumoniae in the biofilm was assessed using the viable plate counting method; q-RT PCR was used to evaluate the inhibitory effect of different concentrations of TRQ on the expression of biofilm-related genes in Klebsiella pneumoniae; The activity of quorum sensing signal molecule AI-2 was detected by Vibrio harveyi bioluminescence assay; Meanwhile, a guinea pig lung infection model of Klebsiella pneumoniae was constructed, and after treated with drugs, pathological analysis of lung tissue and determination of bacterial load in lung tissue were performed. The treatment groups included TRQ group, imipenem(IPM) group, TRQ+IPM group, and sterile saline group as the control. Results: The formation of K. pneumoniae biofilm was significantly inhibited by TRQ in vitro experiments. Furthermore, when combined with IPM, the clearance of K. pneumoniae in the biofilm was notably increased compared to the TRQ group and IPM group alone. q-RT PCR analysis revealed that TRQ down-regulated the expression of genes related to biofilm formation in K. pneumoniae, specifically luxS, wbbm, wzm, and lsrK, and also inhibited the activity of AI-2 molecules in the bacterium. In vivo experiments demonstrated that TRQ effectively treated guinea pig lung infections, resulting in reduced lung inflammation. Additionally, when combined with IPM, there was a significant reduction in the bacterial load in lung tissue. Conclusion: TRQ as a potential therapeutic agent plays a great role in the treatment of K. pneumoniae infections, particularly in combination with conventional antibiotics. And TRQ can enhanced the clearance effect on the bacterium by inhibiting the K. pneumoniae biofilm formation, which provided experimental evidence in support of clinical treatment of TRQ against K. pneumoniae infections.


Drugs, Chinese Herbal , Klebsiella Infections , Pneumonia , Animals , Guinea Pigs , Klebsiella pneumoniae/genetics , Quorum Sensing , Biofilms , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
20.
Surg Infect (Larchmt) ; 25(3): 247-252, 2024 Apr.
Article En | MEDLINE | ID: mdl-38588519

Background: The prevalence of community-onset infections of extended spectrum ß-lactamase (ESBL)-producing strains has increased globally, yet surveillance and resistance in patients with oral and maxillofacial surgery site infections is less investigated. Patients and Methods: A retrospective cohort study was performed to investigate risk factors and resistance of ESBL-producing Escherichia coli (ESBL-EC) and ESBL-producing Klebsiella pneumonia (ESBL-KP) among community-onset patients with oral and maxillofacial surgery during January 2010 to December 2016. Demographic features, predisposing factors, clinical outcomes, and antibiotic agent costs were analyzed. Antimicrobial susceptibility testing of nine antimicrobial agents against ESBL-KP and ESBL-EC were measured. Results: Among 2,183 cultures from infection sites in patients with oral and maxillofacial surgery site (45 cases [2.06%]) were confirmed with community-onset ESBL-KP (24; 1.10%) or ESBL-EC (21; 0.96%) infection. Multivariable analysis showed the independent risk factors for ESBL-producing bacterial infection were prior history of hospitalization (adjusted odds ratio [aOR], 10.984; 95% confidence interval [CI], 5.965-59.879; p = 0.025) and malignant condition (aOR, 3.373; 95% CI 2.947-7.634; p = 0.024). Based on antimicrobial susceptibility testing, 57.8% ESBL-KP and ESBL-EC were found receiving inappropriate antimicrobial therapy, and antibiotic agent costs were higher than non-ESBL-producing bacterial infections ($493.8 ± $367.3 vs. $304.1 ± $334.7; p = 0.031). Conclusions: Infections caused by ESBL-KP and ESBL-EC among patients in sites with oral and maxillofacial surgery are associated with prior history of hospitalization and malignant conditions. Prompt detection and appropriate antibiotic administration for community-onset infections of ESBLs are necessary for such populations.


Escherichia coli Infections , Klebsiella Infections , Pneumonia , Humans , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Retrospective Studies , beta-Lactamases , Escherichia coli , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Risk Factors , Klebsiella , Surgical Wound Infection/drug therapy , Surgical Wound Infection/epidemiology
...