Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.144
Filter
1.
Microb Cell Fact ; 23(1): 230, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152436

ABSTRACT

BACKGROUND: Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS: In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION: Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.


Subject(s)
Escherichia coli , Genetic Vectors , Kluyveromyces , Promoter Regions, Genetic , Yarrowia , Genetic Vectors/genetics , Yarrowia/genetics , Yarrowia/metabolism , Kluyveromyces/genetics , Kluyveromyces/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Red Fluorescent Protein , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Metabolic Engineering/methods , alpha-Amylases/genetics , alpha-Amylases/metabolism , Saccharomycetales
2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125891

ABSTRACT

This research cloned and expressed the sugar transporter gene KM_SUT5 from Kluyveromyces marxianus GX-UN120, which displayed remarkable sugar transportation capabilities, including pentose sugars. To investigate the impact of point mutations on xylose transport capacity, we selected four sites, predicted the suitable amino acid sites by molecular docking, and altered their codons to construct the corresponding mutants, Q74D, Y195K, S460H, and Q464F, respectively. Furthermore, we conducted site-directed truncation on six sites of KM_SUT5p. The molecular modification resulted in significant changes in mutant growth and the D-xylose transport rate. Specifically, the S460H mutant exhibited a higher growth rate and demonstrated excellent performance across 20 g L-1 xylose, achieving the highest xylose accumulation under xylose conditions (49.94 µmol h-1 gDCW-1, DCW mean dry cell weight). Notably, mutant delA554-, in which the transporter protein SUT5 is truncated at position delA554-, significantly increased growth rates in both D-xylose and D-glucose substrates. These findings offer valuable insights into potential modifications of other sugar transporters and contribute to a deeper understanding of the C-terminal function of sugar transporters.


Subject(s)
Fungal Proteins , Kluyveromyces , Xylose , Xylose/metabolism , Kluyveromyces/metabolism , Kluyveromyces/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Biological Transport , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/chemistry , Molecular Docking Simulation , Mutation , Glucose/metabolism
3.
Protein Expr Purif ; 223: 106540, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38971213

ABSTRACT

To harness the diverse industrial applications of cellulase, including its use in the food, pulp, textile, agriculture, and biofuel sectors, this study focused on the high-yield production of a bioactive insect-derived endoglucanase, Monochamus saltuarius glycoside hydrolase family 5 (MsGHF5). MsGHF5 was introduced into the genome of Kluyveromyces lactis to maintain expression stability, and mass production of the enzyme was induced using fed-batch fermentation. After 40 h of cultivation, recombinant MsGHF5 was successfully produced in the culture broth, with a yield of 29,000 U/L, upon galactose induction. The optimal conditions for the activity of purified MsGHF5 were determined to be a pH of 5 and a temperature of 35 °C, with the presence of ferrous ions enhancing the enzymatic activity by up to 1.5-fold. Notably, the activity of MsGHF5 produced in K. lactis was significantly higher than that produced in Escherichia coli, suggesting that glycosylation is crucial for the functional performance of the enzyme. This study highlights the potential use of K. lactis as a host for the production of bioactive MsGHF5, thus paving the way for its application in various industrial sectors.


Subject(s)
Cellulase , Kluyveromyces , Recombinant Proteins , Animals , Kluyveromyces/genetics , Kluyveromyces/enzymology , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Cellulase/genetics , Cellulase/chemistry , Cellulase/biosynthesis , Cellulase/isolation & purification , Cellulase/metabolism , Coleoptera/enzymology , Coleoptera/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Fermentation , Insect Proteins/genetics , Insect Proteins/chemistry , Insect Proteins/biosynthesis , Insect Proteins/metabolism , Insect Proteins/isolation & purification , Hydrogen-Ion Concentration
4.
Commun Biol ; 7(1): 797, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956406

ABSTRACT

The nonconventional yeast Kluyveromyces marxianus has potential for industrial production, but the lack of advanced synthetic biology tools for precise engineering hinders its rapid development. Here, we introduce a CRISPR-Cas9-mediated multilocus integration method for assembling multiple exogenous genes. Using SlugCas9-HF, a high-fidelity Cas9 nuclease, we enhance gene editing precision. Specific genomic loci predisposed to efficient integration and expression of heterologous genes are identified and combined with a set of paired CRISPR-Cas9 expression plasmids and donor plasmids to establish a CRISPR-based biosynthesis toolkit. This toolkit enables genome integration of large gene modules over 12 kb and achieves simultaneous quadruple-locus integration in a single step with 20% efficiency. As a proof-of-concept, we apply the toolkit to screen for gene combinations that promote heme production, revealing the importance of HEM4Km and HEM12Sc. This CRISPR-based toolkit simplifies the reconstruction of complex pathways in K. marxianus, broadening its application in synthetic biology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Kluyveromyces , Kluyveromyces/genetics , Gene Editing/methods , Plasmids/genetics , Synthetic Biology/methods , Heme/metabolism , Heme/genetics , Heme/biosynthesis
5.
Commun Biol ; 7(1): 825, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971878

ABSTRACT

Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.


Subject(s)
Kluyveromyces , Kluyveromyces/genetics , Kluyveromyces/physiology , Saccharomyces cerevisiae/genetics , Genome, Fungal , Mutation , Evolution, Molecular , Adaptation, Physiological/genetics , Selection, Genetic , Biological Evolution , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Genomics/methods
6.
Microb Cell Fact ; 23(1): 212, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061053

ABSTRACT

Being generally regarded as safe, Kluyveromyces lactis has been widely taken for food, feed, and pharmaceutical applications, owing to its ability to achieve high levels of protein secretion and hence being suitable for industrial production of heterologous proteins. Production platform strains can be created through genetic engineering; while prototrophic cells without chromosomally accumulated antibiotics resistance genes have been generally preferred, arising the need for dominant counterselection. We report here the establishment of a convenient counterselection system based on a Frs2 variant, Frs2v, which is a mutant of the alpha-subunit of phenylalanyl-tRNA synthase capable of preferentially incorporating a toxic analog of phenylalanine, r-chloro-phenylalanine (4-CP), into proteins to bring about cell growth inhibition. We demonstrated that expression of Frs2v from an episomal plasmid in K. lactis could make the host cells sensitive to 2 mM 4-CP, and a Frs2v-expressing plasmid could be efficiently removed from the cells immediately after a single round of cell culturing in a 4-CP-contianing YPD medium. This Frs2v-based counterselection helped us attain scarless gene replacement in K. lactis without any prior engineering of the host cells. More importantly, counterselection with this system was proven to be functionally efficient also in Saccharomyces cerevisiae and Komagataella phaffii, suggestive of a broader application scope of the system in various yeast hosts. Collectively, this work has developed a strategy to enable rapid, convenient, and high-efficiency construction of prototrophic strains of K. lactis and possibly many other yeast species, and provided an important reference for establishing similar methods in other industrially important eukaryotic microbes.


Subject(s)
Kluyveromyces , Plasmids , Kluyveromyces/genetics , Kluyveromyces/metabolism , Plasmids/genetics , Phenylalanine-tRNA Ligase/genetics , Phenylalanine-tRNA Ligase/metabolism , Genetic Engineering/methods , Phenylalanine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
ACS Synth Biol ; 13(7): 2105-2114, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38871652

ABSTRACT

The budding yeast Kluyveromyces lactis has emerged as a promising microbial chassis in industrial biotechnology. However, a lack of efficient molecular genetic manipulation tools and strategies has hindered the development of K. lactis as a biomanufacturing platform. In this study, we developed and applied a CRISPR/Cas9-based genome editing method to K. lactis. Single-gene editing efficiency was increased to 80% by disrupting the nonhomologous end-joining-related gene KU80 and performing a series of process optimizations. Subsequently, the CRISPR/Cas9 system was explored based on different sgRNA delivery modes for simultaneous multigene editing. With the aid of the color indicator, the editing efficiencies of two and three genes reached 73.3 and 36%, respectively, in the KlΔKU80 strain. Furthermore, the CRISPR/Cas9 system was used for multisite integration to enhance lactase production and combinatorial knockout of TMED10 and HSP90 to characterize the extracellular secretion of lactase in K. lactis. Generally, genome editing is a powerful tool for constructing K. lactis cell factories for protein and chemical production.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Kluyveromyces , Kluyveromyces/genetics , Kluyveromyces/metabolism , CRISPR-Cas Systems/genetics , Gene Editing/methods , Fungal Proteins/genetics , Fungal Proteins/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics
8.
Commun Biol ; 7(1): 627, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789513

ABSTRACT

In recombinant protein-producing yeast strains, cells experience high production-related stresses similar to high temperatures. It is possible to increase recombinant protein production by enhancing thermotolerance, but few studies have focused on this topic. Here we aim to identify cellular regulators that can simultaneously activate thermotolerance and high yield of recombinant protein. Through screening at 46 °C, a heat-resistant Kluyveromyces marxianus (K. marxianus) strain FDHY23 is isolated. It also exhibits enhanced recombinant protein productivity at both 30 °C and high temperatures. The CYR1N1546K mutation is identified as responsible for FDHY23's improved phenotype, characterized by weakened adenylate cyclase activity and reduced cAMP production. Introducing this mutation into the wild-type strain greatly enhances both thermotolerance and recombinant protein yields. RNA-seq analysis reveals that under high temperature and recombinant protein production conditions, CYR1 mutation-induced reduction in cAMP levels can stimulate cells to improve its energy supply system and optimize material synthesis, meanwhile enhance stress resistance, based on the altered cAMP signaling cascades. Our study provides CYR1 mutation as a novel target to overcome the bottleneck in achieving high production of recombinant proteins under high temperature conditions, and also offers a convenient approach for high-throughput screening of recombinant proteins with high yields.


Subject(s)
Cyclic AMP , Kluyveromyces , Recombinant Proteins , Signal Transduction , Cyclic AMP/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Kluyveromyces/genetics , Kluyveromyces/metabolism , Thermotolerance/genetics , Mutation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hot Temperature
9.
Adv Appl Microbiol ; 126: 27-62, 2024.
Article in English | MEDLINE | ID: mdl-38637106

ABSTRACT

Kluyveromyces marxianus is a non-Saccharomyces yeast that has gained importance due to its great potential to be used in the food and biotechnology industries. In general, K. marxianus is a known yeast for its ability to assimilate hexoses and pentoses; even this yeast can grow in disaccharides such as sucrose and lactose and polysaccharides such as agave fructans. Otherwise, K. marxianus is an excellent microorganism to produce metabolites of biotechnological interest, such as enzymes, ethanol, aroma compounds, organic acids, and single-cell proteins. However, several studies highlighted the metabolic trait variations among the K. marxianus strains, suggesting genetic diversity within the species that determines its metabolic functions; this diversity can be attributed to its high adaptation capacity against stressful environments. The outstanding metabolic characteristics of K. marxianus have motivated this yeast to be a study model to evaluate its easy adaptability to several environments. This chapter will discuss overview characteristics and applications of K. marxianus and recent insights into the stress response and adaptation mechanisms used by this non-Saccharomyces yeast.


Subject(s)
Ethanol , Kluyveromyces , Biotechnology , Ethanol/metabolism , Fermentation , Kluyveromyces/genetics , Kluyveromyces/metabolism
10.
Appl Microbiol Biotechnol ; 108(1): 293, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592508

ABSTRACT

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.


Subject(s)
Kluyveromyces , Succinic Acid , Kluyveromyces/genetics , Gene Expression Profiling , Transcriptome
11.
World J Microbiol Biotechnol ; 40(4): 121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441729

ABSTRACT

Mezcal is a traditional Mexican distilled beverage, known for its marked organoleptic profile, which is influenced by several factors, such as the fermentation process, where a wide variety of microorganisms are present. Kluyveromyces marxianus is one of the main yeasts isolated from mezcal fermentations and has been associated with ester synthesis, contributing to the flavors and aromas of the beverage. In this study, we employed CRISPR interference (CRISPRi) technology, using dCas9 fused to the Mxi1 repressor factor domain, to down-regulate the expression of the IAH1 gene, encoding for an isoamyl acetate-hydrolyzing esterase, in K. marxianus strain DU3. The constructed CRISPRi plasmid successfully targeted the IAH1 gene, allowing for specific gene expression modulation. Through gene expression analysis, we assessed the impact of IAH1 down-regulation on the metabolic profile of volatile compounds. We also measured the expression of other genes involved in volatile compound biosynthesis, including ATF1, EAT1, ADH1, and ZWF1 by RT-qPCR. Results demonstrated successful down-regulation of IAH1 expression in K. marxianus strain DU3 using the CRISPRi system. The modulation of IAH1 gene expression resulted in alterations in the production of volatile compounds, specifically ethyl acetate, which are important contributors to the beverage's aroma. Changes in the expression levels of other genes involved in ester biosynthesis, suggesting that the knockdown of IAH1 may generate intracellular alterations in the balance of these metabolites, triggering a regulatory response. The application of CRISPRi technology in K. marxianus opens the possibility of targeted modulation of gene expression, metabolic engineering strategies, and synthetic biology in this yeast strain.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Kluyveromyces , Gene Expression Regulation , Kluyveromyces/genetics , Esters
12.
Bioresour Technol ; 399: 130627, 2024 May.
Article in English | MEDLINE | ID: mdl-38522677

ABSTRACT

Overexpression of a gene with unknown function in Kluyveromyces marxianus markedly improved tolerance to lignocellulosic biomass-derived inhibitors. This overexpression also enhanced tolerance to elevated temperatures, ethanol, and high concentrations of NaCl and glucose. Inhibitor degradation and transcriptome analyses related this K. marxianusMultiple Stress Resistance (KmMSR) gene to the robustness of yeast cells. Nuclear localization and DNA-binding domain analyses indicate that KmMsr is a putative transcriptional regulator. Overexpression of a mutant protein with deletion in the flexible region between amino acids 100 and 150 further enhanced tolerance to multiple inhibitors during fermentation, with ethanol production and productivity increasing by 36.31 % and 80.22 %, respectively. In simultaneous saccharification co-fermentation of corncob without detoxification, expression of KmMSR with the deleted flexible region improved ethanol production by 5-fold at 42 °C and 2-fold at 37 °C. Overexpression of the KmMSR mutant provides a strategy for constructing robust lignocellulosic biomass using strains.


Subject(s)
Kluyveromyces , Zea mays , Zea mays/metabolism , Fermentation , Kluyveromyces/genetics , Kluyveromyces/metabolism , Ethanol/metabolism
13.
Metab Eng ; 83: 102-109, 2024 May.
Article in English | MEDLINE | ID: mdl-38554744

ABSTRACT

Precise control of gene expression is critical for optimizing cellular metabolism and improving the production of valuable biochemicals. However, hard-wired approaches to pathway engineering, such as optimizing promoters, can take time and effort. Moreover, limited tools exist for controlling gene regulation in non-conventional hosts. Here, we develop a two-channel chemically-regulated gene expression system for the multi-stress tolerant yeast Kluyveromyces marxianus and use it to tune ethyl acetate production, a native metabolite produced at high titers in this yeast. To achieve this, we repurposed the plant hormone sensing modules (PYR1ABA/HAB1 and PYR1*MANDI/HAB1*) for high dynamic-range gene activation and repression controlled by either abscisic acid (ABA) or mandipropamid (mandi). To redirect metabolic flux towards ethyl acetate biosynthesis, we simultaneously repress pyruvate dehydrogenase (PDA1) and activate pyruvate decarboxylase (PDC1) to enhance ethyl acetate titers. Thus, we have developed new tools for chemically tuning gene expression in K. marxianus and S. cerevisiae that should be deployable across many non-conventional eukaryotic hosts.


Subject(s)
Kluyveromyces , Kluyveromyces/genetics , Kluyveromyces/metabolism , Acetates/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Metabolic Engineering , Gene Expression Regulation, Fungal , Abscisic Acid/metabolism
14.
Microb Cell Fact ; 23(1): 7, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172836

ABSTRACT

BACKGROUND: The 5´ untranslated region (5´ UTR) plays a key role in regulating translation efficiency and mRNA stability, making it a favored target in genetic engineering and synthetic biology. A common feature found in the 5´ UTR is the poly-adenine (poly(A)) tract. However, the effect of 5´ UTR poly(A) on protein production remains controversial. Machine-learning models are powerful tools for explaining the complex contributions of features, but models incorporating features of 5´ UTR poly(A) are currently lacking. Thus, our goal is to construct such a model, using natural 5´ UTRs from Kluyveromyces marxianus, a promising cell factory for producing heterologous proteins. RESULTS: We constructed a mini-library consisting of 207 5´ UTRs harboring poly(A) and 34 5´ UTRs without poly(A) from K. marxianus. The effects of each 5´ UTR on the production of a GFP reporter were evaluated individually in vivo, and the resulting protein abundance spanned an approximately 450-fold range throughout. The data were used to train a multi-layer perceptron neural network (MLP-NN) model that incorporated the length and position of poly(A) as features. The model exhibited good performance in predicting protein abundance (average R2 = 0.7290). The model suggests that the length of poly(A) is negatively correlated with protein production, whereas poly(A) located between 10 and 30 nt upstream of the start codon (AUG) exhibits a weak positive effect on protein abundance. Using the model as guidance, the deletion or reduction of poly(A) upstream of 30 nt preceding AUG tended to improve the production of GFP and a feruloyl esterase. Deletions of poly(A) showed inconsistent effects on mRNA levels, suggesting that poly(A) represses protein production either with or without reducing mRNA levels. CONCLUSION: The effects of poly(A) on protein production depend on its length and position. Integrating poly(A) features into machine-learning models improves simulation accuracy. Deleting or reducing poly(A) upstream of 30 nt preceding AUG tends to enhance protein production. This optimization strategy can be applied to enhance the yield of K. marxianus and other microbial cell factories.


Subject(s)
Kluyveromyces , 5' Untranslated Regions , Base Sequence , Kluyveromyces/genetics , Kluyveromyces/metabolism , RNA, Messenger/genetics
15.
Food Microbiol ; 116: 104369, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689420

ABSTRACT

In this study, two strains of lactic acid bacteria (Lacticaseibacillus paracasei GL1 and Lactobacillus helveticus SNA12) and one yeast strain of Kluyveromyces marxianus G-Y4 (G-Y4) isolated from Tibetan kefir grains were co-cultured. It was found that the addition of G-Y4 could not only promote the growth of lactic acid bacteria, but also increase the release of metabolites (lactic acid, ethanol, and amino nitrogen). Furthermore, the addition of live cells and cell-free fermentation supernatant (CFS) of G-Y4 could increase the ability of biofilm formation. Morever, the surface characteristics results showed that the addition of G-Y4 live cells could enhance the aggregation ability and hydrophobicity of LAB. Meanwhile, adding live cells and CFS of G-Y4 could promote the release of signaling molecule AI-2 and enhance the expression of the LuxS gene related to biofilm formation. In addition, Fourier-transform infrared spectroscopy and chemical composition analysis were used to investigate the composition of the biofilm, and the results indicated that the biofilm was mainly composed of a small amount of protein but it was rich in polysaccharides including glucose, galactose, and mannose with different ratios. Finally, the formation of biofilm could delay the decline of the number of viable bacteria in storage fermented milk.


Subject(s)
Kluyveromyces , Lacticaseibacillus paracasei , Lactobacillus helveticus , Lacticaseibacillus , Lactobacillus helveticus/genetics , Kluyveromyces/genetics , Biofilms
16.
Appl Microbiol Biotechnol ; 107(16): 5095-5105, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405435

ABSTRACT

Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.


Subject(s)
Kluyveromyces , Lactic Acid , Saccharomyces cerevisiae/metabolism , Kluyveromyces/genetics , Kluyveromyces/metabolism , L-Lactate Dehydrogenase/metabolism , Glucose , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Hydrogen-Ion Concentration , Fermentation
17.
Enzyme Microb Technol ; 169: 110263, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37311284

ABSTRACT

Galacto-oligosaccharides (GOS) are used as prebiotic ingredients in various food and pharmaceutical industry. At present, production of GOS involves the enzymatic transformation of lactose by transgalactosylation using ß-galactosidase. The yeast Kluyveromyces lactis can utilize lactose as its carbon and energy source. In this species lactose is hydrolyzed by an intracellular ß-galactosidase (EC 3.2.1.23) which is induced by its substrate and related compounds like galactose. The molecular details of gene regulation in kluyveromyces lactis, we have used multiple knockout approaches to study the constitutive expression by which galactose induces ß-galactosidase. The present study involved carrying out to a method of enhancing the constitutive expression of ß-galactosidase through galactose induction and its trans-galactosylation reaction for the production of galacto-oligosaccharides (GOS) in Kluyveromyces lactis (K. Lactis) by applying a knockout based approach on Leloir pathway genes based on fusion-overlap extension polymerase chain reaction and transformation into its genome. The k.lactis strain subjected to Leloir pathway genes knockout, resulted in the accumulation of galactose intracellularly and this internal galactose acts as an inducer of galactose regulon for constitutive expression of ß-galactosidase at early stationary phase was due to the positive regulatory function of mutant gal1p, gal7p and both. These resulted strains used for trans-galactosylation of lactose by ß - galactosidase is characterized for the production of galacto-oligosaccharides. Galactose-induced constitutive expression of ß-galactosidase during the early stationary phase of knockout strains was analysed qualitatively & quantitatively. The activity of ß-galactosidase of wild type, gal1z, gal7k and gal1z & gal7k strains were 7, 8, 9 and 11 U/ml respectively using high cell density cultivation medium. Based on these expression differences in ß-galactosidase, the trans-galactosylation reaction for GOS production and percentage yield of GOS were compared at 25% w/v of lactose. The percentage yield of GOS production of wild type, Δgal1z Lac4+, Δgal7k Lac4++ and Δgal1z Δgal7k Lac4+++mutants strains were 6.3, 13, 17 and 22 U/ml, respectively. Therefore, we propose that the availability of galactose can be used for constitutive over expression of ß - galactosidase in Leloir pathway engineering applications and also for GOS production. Further, increased expression of ß - galactosidases can be used in dairy industry by-products like whey to produce added value products such as galacto-oligosaccharides.


Subject(s)
Kluyveromyces , Lactose , Lactose/metabolism , Galactose/metabolism , Oligosaccharides/metabolism , Kluyveromyces/genetics , Kluyveromyces/metabolism , beta-Galactosidase/metabolism
18.
J Agric Food Chem ; 71(23): 9031-9039, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37261812

ABSTRACT

Lacto-N-biose (LNB) is a member of the human milk oligosaccharide (HMO) family and is synthesized via an enzymatic reaction in vitro with N-acetylglucosamine (GlcNAc) and cofactors. In this study, LNB was synthesized using a cell factory for the first time. First, three modules were constructed in Kluyveromyces lactis for producing LNB from lactose and GlcNAc without the addition of cofactors. Second, a de novo pathway was constructed in K. lactis for producing LNB from lactose without adding GlcNAc. Finally, a transcriptional switch was introduced into K. lactis to reprogram its metabolic network for improving the flux from GlcNAc-6-P to GlcNAc in the de novo pathway. Subsequently, a final LNB yield of 10.41 g/L, similar to the salvage pathway yield, was achieved through the de novo pathway. The engineered K. lactis provides a promising technology platform for the industrial scale production of LNB.


Subject(s)
Kluyveromyces , Lactose , Humans , Oligosaccharides/metabolism , Metabolic Networks and Pathways , Kluyveromyces/genetics , Kluyveromyces/metabolism
19.
World J Microbiol Biotechnol ; 39(8): 216, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37269405

ABSTRACT

Kluyveromyces marxianus yeasts represent a valuable industry alternative due to their biotechnological potential to produce aromatic compounds. 2-phenylethanol and 2-phenylethylacetate are significant aromatic compounds widely used in food and cosmetics due to their pleasant odor. Natural obtention of these compounds increases their value, and because of this, bioprocesses such as de novo synthesis has become of great significance. However, the relationship between aromatic compound production and yeast's genetic diversity has yet to be studied. In the present study, the analysis of the genetic diversity in K. marxianus isolated from the natural fermentation of Agave duranguensis for Mezcal elaboration is presented. The results of strains in a haploid and diploid state added to the direct relationship between the mating type locus MAT with metabolic characteristics are studied. Growth rate, assimilate carbohydrates (glucose, lactose, and chicory inulin), and the production of aromatic compounds such as ethyl acetate, isoamyl acetate, isoamyl alcohol, 2-phenylethyl butyrate and phenylethyl propionate and the diversity in terms of the output of 2-phenylethanol and 2-phenylethylacetate by de novo synthesis were determinate, obtaining maximum concentrations of 51.30 and 60.39 mg/L by ITD0049 and ITD 0136 yeasts respectively.


Subject(s)
Kluyveromyces , Phenylethyl Alcohol , Phenylethyl Alcohol/metabolism , Odorants , Kluyveromyces/genetics , Yeasts/genetics , Yeasts/metabolism , Fermentation , Lactose/metabolism
20.
Int J Biol Macromol ; 242(Pt 1): 124734, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37150366

ABSTRACT

The Inulinase from Kluyveromyces marxianus ISO3 (Inu-ISO3) is an enzyme able to hydrolyze linear fructans such as chicory inulin as well as branched fructans like agavin. This enzyme was cloned and expressed in Komagataella pastoris to study the role of selected aromatic and polar residues in the catalytic pocket by Alanine scanning. Molecular dynamics (MD) simulations and enzyme kinetics analysis were performed to study the functional consequences of these amino acid substitutions. Site-directed mutagenesis was used to construct the mutants of the enzyme after carrying out the MD simulations between Inu-ISO3 and its substrates. Mutation Trp79:Ala resulted in the total loss of activity when fructans were used as substrates, while with sucrose, the activity decreased by 98 %. In contrast, the mutations Phe113:Ala and Gln236:Ala increased the invertase activity when sucrose was used as a substrate. Although these amino acids are not part of the conserved motifs where the catalytic triad is located, they are essential for the enzyme's activity. In silico and experimental approaches corroborate the relevance of these residues for substrate binding and their influence on enzymatic activity.


Subject(s)
Kluyveromyces , Molecular Dynamics Simulation , Glycoside Hydrolases/chemistry , Kluyveromyces/genetics , Fructans/metabolism , Amino Acids/metabolism , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL