Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.075
Filter
1.
Hepatol Commun ; 8(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38967563

ABSTRACT

The liver is a vital organ that continuously adapts to a wide and dynamic diversity of self-antigens and xenobiotics. This involves the active contribution of immune cells, particularly by the liver-resident macrophages, the Kupffer cells (KCs), which exert a variety of central functions in liver homeostasis and disease. As such, KCs interact with their microenvironment to shape the hepatic cellular landscape, control gut-derived signal integration, and modulate metabolism. On injury, the rapid recruitment of bone marrow monocyte-derived macrophages alters this status quo and, when unrestrained, drastically compromises liver homeostasis, immune surveillance, and tissue organization. Several factors determine the functional roles of liver macrophages in these processes, such as their ontogeny, activation/polarization profile and, importantly, spatial distribution within the liver. Loss of tolerance and adaptability of the hepatic immune environment may result in persistent inflammation, hepatic fibrosis, cirrhosis, and a tumorigenic niche promoting liver cancer. In this review, we aim at providing the most recent breakthroughs in our understanding of liver macrophage biology, particularly their diversity and adaptability in the hepatic spatiotemporal context, as well as on potential therapeutic interventions that may hold the key to tackling remaining clinical challenges of varying etiologies in hepatology.


Subject(s)
Kupffer Cells , Liver , Humans , Liver/immunology , Liver/pathology , Kupffer Cells/immunology , Kupffer Cells/physiology , Animals , Macrophages/immunology , Macrophages/physiology , Homeostasis/immunology
2.
Stem Cell Res Ther ; 15(1): 48, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378583

ABSTRACT

BACKGROUND: Allogeneic hepatocyte transplantation is an emerging approach to treat acute liver defects. However, durable engraftment of the transplanted cells remains a daunting task, as they are actively cleared by the recipient's immune system. Therefore, a detailed understanding of the innate or adaptive immune cells-derived responses against allogeneic transplanted hepatic cells is the key to rationalize cell-based therapies. METHODS: Here, we induced an acute inflammatory regenerative niche (3-96 h) on the surface of the liver by the application of cryo-injury (CI) to systematically evaluate the innate immune response against transplanted allogeneic hepatic progenitors in a sustained micro-inflammatory environment. RESULTS: The resulting data highlighted that the injured site was significantly repopulated by alternating numbers of innate immune cells, including neutrophils, monocytes and Kupffer cells (KCs), from 3 to 96 h. The transplanted allo-HPs, engrafted 6 h post-injury, were collectively eliminated by the innate immune response within 24 h of transplantation. Selective depletion of the KCs demonstrated a delayed recruitment of monocytes from day 2 to day 6. In addition, the intrasplenic engraftment of the hepatic progenitors 54 h post-transplantation was dismantled by KCs, while a time-dependent better survival and translocation of the transplanted cells into the injured site could be observed in samples devoid of KCs. CONCLUSION: Overall, this study provides evidence that KCs ablation enables a better survival and integration of allo-HPs in a sustained liver inflammatory environment, having implications for rationalizing the cell-based therapeutic interventions against liver defects.


Subject(s)
Hematopoietic Stem Cell Transplantation , Kupffer Cells , Kupffer Cells/physiology , Liver , Hepatocytes/transplantation , Liver Regeneration/physiology
3.
Cell Stem Cell ; 30(3): 283-299.e9, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36787740

ABSTRACT

Stem cell-independent reprogramming of differentiated cells has recently been identified as an important paradigm for repairing injured tissues. Following periportal injury, mature hepatocytes re-activate reprogramming/progenitor-related genes (RRGs) and dedifferentiate into liver progenitor-like cells (LPLCs) in both mice and humans, which contribute remarkably to regeneration. However, it remains unknown which and how external factors trigger hepatocyte reprogramming. Here, by employing single-cell transcriptional profiling and lineage-specific deletion tools, we uncovered that periportal-specific LPLC formation was initiated by regionally activated Kupffer cells but not peripheral monocyte-derived macrophages. Unexpectedly, using in vivo screening, the proinflammatory factor IL-6 was identified as the niche signal repurposed for RRG induction via STAT3 activation, which drove RRG expression through binding to their pre-accessible enhancers. Notably, RRGs were activated through injury-specific rather than liver embryogenesis-related enhancers. Collectively, these findings depict an injury-specific niche signal and the inflammation-mediated transcription in driving the conversion of hepatocytes into a progenitor phenotype.


Subject(s)
Interleukin-6 , Kupffer Cells , Animals , Humans , Mice , Cell Differentiation , Hepatocytes/metabolism , Interleukin-6/metabolism , Kupffer Cells/physiology , Liver , Liver Regeneration/physiology
5.
Cell Metab ; 34(7): 978-990.e4, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35700738

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a liver disease associated with significant morbidity. Kupffer cells (KCs) produce endogenous miR-690 and, via exosome secretion, shuttle this miRNA to other liver cells, such as hepatocytes, recruited hepatic macrophages (RHMs), and hepatic stellate cells (HSCs). miR-690 directly inhibits fibrogenesis in HSCs, inflammation in RHMs, and de novo lipogenesis in hepatocytes. When an miR-690 mimic is administered to NASH mice in vivo, all the features of the NASH phenotype are robustly inhibited. During the development of NASH, KCs become miR-690 deficient, and miR-690 levels are markedly lower in mouse and human NASH livers than in controls. KC-specific KO of miR-690 promotes NASH pathogenesis. A primary target of miR-690 is NADK mRNA, and NADK levels are inversely proportional to the cellular miR-690 content. These studies show that KCs play a central role in the etiology of NASH and raise the possibility that miR-690 could emerge as a therapeutic for this condition.


Subject(s)
Biomimetic Materials , MicroRNAs , Non-alcoholic Fatty Liver Disease , Animals , Biomimetic Materials/pharmacology , Fibrosis , Kupffer Cells/pathology , Kupffer Cells/physiology , Liver Cirrhosis/complications , Liver Cirrhosis/genetics , Liver Cirrhosis/therapy , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/therapy
6.
Int Rev Cell Mol Biol ; 368: 143-212, 2022.
Article in English | MEDLINE | ID: mdl-35636927

ABSTRACT

Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Humans , Kupffer Cells/pathology , Kupffer Cells/physiology , Macrophages
7.
Toxicology ; 468: 153101, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35065160

ABSTRACT

Monocrotaline (MCT), an unsaturated pyrrolizidine alkaloid (PA) in plants, is mainly toxic to the lung and liver of mammals. As a commonly used tool for liver injury model, the mechanism of MCT hepatoxicity has still not been fully clarified. Kupffer cells (KCs) are the liver-resident macrophages and have various responses to different toxicants and liver damage. However, the role of KCs in MCT-induced liver injury remains controversial. In current work, we investigated the effects of KCs on MCT-induced liver injury, especially on MCT-induced hepatocyte death. KCs were depleted in Balb/c mice by liposome-entrapped clodronate (Lip/Clo) (0.2 mL/mouse, i.p.) or GdCl3 (0.7 mg/kg, i.p.) before MCT administration (300 mg/kg, i.p.), we found that the Lip/Clo group showed higher efficiency in KCs depletion and stronger hepatoprotective effects against MCT. We also found TNF-α was remarkably decreased after KCs depletion, the experiment of administering anti-TNF-α antibody (20 µg/mouse, i.p.) to MCT-treated animals generated the similar results. To further elaborate the function of KCs, we compared the ALT levels released from co-culturing murine hepatic parenchymal cells (HPCs) and RAW264.7 cells with that from HPCs alone. After the treatment of MCT, the released ALT levels in co-culture system were shown to be dependent on the number of RAW264.7 cells, while the anti-TNF-α antibody could suppress it. Finally, we discovered RIPK3/MLKL pathway might be activated by TNF-α released from KCs, and subsequently induced hepatocyte necrosis. Noteworthy, the known mechanisms including ER stress and NF-κB pathways were also found to be involved in the activation of KCs. In conclusion, our study reveals a further mechanism to MCT-induced hepatoxicity mediated directly by KCs via producing TNF-α.


Subject(s)
Chemical and Drug Induced Liver Injury/immunology , Kupffer Cells/physiology , Monocrotaline/toxicity , Tumor Necrosis Factor-alpha/biosynthesis , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/pathology , Hemagglutinins/blood , Male , Mice , Mice, Inbred BALB C
8.
Surg Today ; 52(2): 344-353, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34568969

ABSTRACT

AIM: To investigate the relationship between the intrahepatic expression of podoplanin (PDPN) and Kupffer cells (KCs) in ischemia-reperfusion (I/R) liver damage. METHODS: C57Bl/6 mice were injected with 200 µl of clodronate liposomes (macrophage depletion; MDP group) to deplete KCs or control liposomes (control group) via the ophthalmic vein plexus 24 h prior to ischemia. Animals were subjected to 90 min of partial hepatic ischemia (70%), followed by reperfusion, and were then killed at designated time points. Serum and liver tissues were harvested for further analyses. RESULTS: Serum ALT levels, mortality rates, and the percentage of necrotic area in liver sections were significantly higher in the MDP group than in the control group. PDPN was expressed in the lymphatic epithelium, interlobular bile duct epithelium, and in some hepatocytes in each group. Its expression in hepatocytes was down-regulated in the MDP group. The accumulation of platelets in the sinusoid was reduced 6 h after I/R in the MDP group. Tissue HGF and IGF-1 levels decreased in the MDP group. CONCLUSIONS: These results suggest that KCs play a key role in the activation of platelets through direct contact with PDPN-positive hepatocytes in I/R livers.


Subject(s)
Ischemia/complications , Kupffer Cells/physiology , Liver Diseases/etiology , Liver/blood supply , Liver/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/physiology , Reperfusion Injury/etiology , Alanine Transaminase/blood , Animals , Disease Models, Animal , Hepatocytes/metabolism , Hepatocytes/physiology , Male , Mice, Inbred C57BL , Platelet Activation
9.
Cell Rep ; 37(7): 110026, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34788631

ABSTRACT

Liver-resident macrophages Kupffer cells (KCs) and infiltrating Ly6Chi monocytes both contribute to liver tissue regeneration in various pathologies but also to disease progression upon disruption of orderly consecutive regeneration cascades. Little is known about molecular pathways that regulate their differentiation, maintenance, or inflammatory behavior during injury. Here, we show that copper metabolism MURR1 domain (COMMD)10-deficient KCs adopt liver-specific identity. Strikingly, COMMD10 deficiency in KCs and in other tissue-resident macrophages impedes their homeostatic survival, leading to their continuous replacement by Ly6Chi monocytes. While COMMD10 deficiency in KCs mildly worsens acetaminophen-induced liver injury (AILI), its deficiency in Ly6Chi monocytes results in exacerbated and sustained hepatic damage. Monocytes display unleashed inflammasome activation and a reduced type I interferon response and acquire "neutrophil-like" and lipid-associated macrophage differentiation fates. Collectively, COMMD10 appears indispensable for KC and other tissue-resident macrophage survival and is an important regulator of Ly6Chi monocyte fate decisions and reparative behavior in the diseased liver.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Kupffer Cells/metabolism , Animals , Antigens, Ly/immunology , Antigens, Ly/metabolism , Cell Differentiation/genetics , Cell Survival , Hematopoiesis , Inflammasomes/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/genetics , Kupffer Cells/physiology , Liver/cytology , Liver/injuries , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism
10.
Genes (Basel) ; 12(9)2021 08 30.
Article in English | MEDLINE | ID: mdl-34573346

ABSTRACT

The production of around 2.5 million red blood cells (RBCs) per second in erythropoiesis is one of the most intense activities in the body. It continuously consumes large amounts of iron, approximately 80% of which is recycled from aged erythrocytes. Therefore, similar to the "making", the "breaking" of red blood cells is also very rapid and represents one of the key processes in mammalian physiology. Under steady-state conditions, this important task is accomplished by specialized macrophages, mostly liver Kupffer cells (KCs) and splenic red pulp macrophages (RPMs). It relies to a large extent on the engulfment of red blood cells via so-called erythrophagocytosis. Surprisingly, we still understand little about the mechanistic details of the removal and processing of red blood cells by these specialized macrophages. We have only started to uncover the signaling pathways that imprint their identity, control their functions and enable their plasticity. Recent findings also identify other myeloid cell types capable of red blood cell removal and establish reciprocal cross-talk between the intensity of erythrophagocytosis and other cellular activities. Here, we aimed to review the multiple and emerging facets of iron recycling to illustrate how this exciting field of study is currently expanding.


Subject(s)
Erythrocytes/physiology , Hemolysis/physiology , Iron/metabolism , Macrophages/physiology , Phagocytosis/physiology , Animals , Erythrocytes/pathology , Humans , Kupffer Cells/physiology , Liver/cytology , Liver/physiology , Macrophages/immunology
11.
Hepatology ; 74(4): 2118-2132, 2021 10.
Article in English | MEDLINE | ID: mdl-33999437

ABSTRACT

BACKGROUND AND AIMS: Liver ischemia reperfusion injury (IRI) remains an unresolved clinical problem. This study dissected roles of liver-resident macrophage Kupffer cells (KCs), with a functional focus on efferocytosis receptor T-cell immunoglobulin and mucin domain-containing protein-4 (TIM-4), in both the activation and resolution of IRI in a murine liver partial warm ischemia model. APPROACH AND RESULTS: Fluorescence-activated cell sorting results showed that TIM-4 was expressed exclusively by KCs, but not infiltrating macrophages (iMФs), in IR livers. Anti-TIM-4 antibody depleted TIM-4+ macrophages in vivo, resulting in either alleviation or deterioration of liver IRI, which was determined by the repopulation kinetics of the KC niche with CD11b+ macrophages. To determine the KC-specific function of TIM-4, we reconstituted clodronate-liposome-treated mice with exogenous wild-type or TIM-4-deficient KCs at either 0 hour or 24 hours postreperfusion. TIM-4 deficiency in KCs resulted in not only increases in the severity of liver IRI (at 6 hours postreperfusion), but also impairment of the inflammation resolution (at 7 days postreperfusion). In vitro analysis revealed that TIM-4 promoted KC efferocytosis to regulate their Toll-like receptor response by up-regulating IL-10 and down-regulating TNF-α productions. CONCLUSIONS: TIM-4 is critical for KC homeostatic function in both the activation and resolution of liver IRI by efferocytosis.


Subject(s)
Interleukin-10/metabolism , Kupffer Cells/physiology , Liver Diseases/immunology , Membrane Proteins/metabolism , Reperfusion Injury/immunology , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Homeostasis/physiology , Inflammation/metabolism , Mice , Signal Transduction
12.
Int J Cancer ; 148(5): 1276-1288, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33038274

ABSTRACT

The liver ischemia-reperfusion (IR) injury that occurs consequently to hepatic resection performed in patients with metastases can lead to tumor relapse for not fully understood reasons. We assessed the effects of liver IR on tumor growth and the innate immune response in a mouse model of colorectal (CR) liver metastasis. Mice subjected to liver ischemia 2 days after intrasplenic injection of CR carcinoma cells displayed a higher metastatic load in the liver, correlating with Kupffer cells (KC) death through the activation of receptor-interating protein 3 kinase (RIPK3) and caspase-1 and a recruitment of monocytes. Interestingly, the immunoregulatory mediators, tumor necrosis factor-α (TNF-α) and heme oxygenase-1 (HO-1) were strongly upregulated in recruited monocytes and were also expressed in the surviving KC following IR. Using TNFflox/flox LysMcre/wt mice, we showed that TNF deficiency in macrophages and monocytes favors tumor progression after IR. The antitumor effect of myeloid cell-derived TNF involved direct tumor cell apoptosis and a reduced expression of immunosuppressive molecules such as transforming growth factor-ß, interleukin (IL)-10, inducible nitric oxyde synthase (iNOS), IL-33 and HO-1. Conversely, a monocyte/macrophage-specific deficiency in HO-1 (HO-1flox/flox LysMcre/wt ) or the blockade of HO-1 function led to the control of tumor progression post-liver IR. Importantly, host cell RIPK3 deficiency maintains the KC number upon IR, inhibits the IR-induced innate cell recruitment, increases the TNF level, decreases the HO-1 level and suppresses the tumor outgrowth. In conclusion, tumor recurrence in host undergoing liver IR is associated with the death of antitumoral KC and the recruitment of monocytes endowed with immunosuppressive properties. In both of which HO-1 inhibition would reinforce their antitumoral activity.


Subject(s)
Colorectal Neoplasms/pathology , Heme Oxygenase-1/physiology , Liver Neoplasms/etiology , Liver Neoplasms/secondary , Liver/blood supply , Neoplasm Recurrence, Local/etiology , Reperfusion Injury/complications , Tumor Necrosis Factor-alpha/physiology , Animals , Disease Progression , Kupffer Cells/physiology , Male , Mice , Mice, Inbred C57BL , Monocytes/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/physiology
13.
Hepatology ; 73(5): 1967-1984, 2021 05.
Article in English | MEDLINE | ID: mdl-32761929

ABSTRACT

BACKGROUND AND AIMS: Kupffer cells (KCs) are the resident intravascular phagocyte population of the liver and critical to the capture and killing of bacteria. Calcineurin/nuclear factor of activated T cells (NFAT) inhibitors (CNIs) such as tacrolimus are used to prevent rejection in solid organ transplant recipients. Although their effect on lymphocytes has been studied extensively, there are limited experimental data about if and how CNIs shape innate immunity, and whether this contributes to the higher rates of infection observed in patients taking CNIs. APPROACH AND RESULTS: Here, we investigated the impact of tacrolimus treatment on innate immunity and, more specifically, on the capability of Kupffer cells (KCs) to fight infections. Retrospective analysis of data of >2,700 liver transplant recipients showed that taking calcineurin inhibitors such as tacrolimus significantly increased the likelihood of Staphylococcus aureus infection. Using a mouse model of acute methicillin-resistant S. aureus (MRSA) bacteremia, most bacteria were sequestered in the liver and we found that bacteria were more likely to disseminate and kill the host in tacrolimus-treated mice. Using imaging, we unveiled the mechanism underlying this observation: the reduced capability of KCs to capture, phagocytose, and destroy bacteria in tacrolimus-treated animals. Furthermore, in a gene expression analysis of infected KCs, the triggering receptor expressed on myeloid cells 1 (TREM1) pathway was the one with the most significant down-regulation after tacrolimus treatment. TREM1 inhibition likewise inhibited KC bacteria capture. TREM1 levels on neutrophils as well as the overall neutrophil response after infection were unaffected by tacrolimus treatment. CONCLUSIONS: Our results indicate that tacrolimus treatment has a significant impact directly on KCs and on TREM1, thereby compromising their capacity to fend off infections.


Subject(s)
Bacteremia/etiology , Immunosuppressive Agents/adverse effects , Kupffer Cells/drug effects , Organ Transplantation/adverse effects , Staphylococcal Infections/etiology , Tacrolimus/adverse effects , Animals , Female , Flow Cytometry , Humans , Immunosuppressive Agents/therapeutic use , Kupffer Cells/physiology , Male , Methicillin-Resistant Staphylococcus aureus , Mice , Middle Aged , Organ Transplantation/methods , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism , Retrospective Studies , Tacrolimus/therapeutic use
14.
Cells ; 9(10)2020 10 08.
Article in English | MEDLINE | ID: mdl-33050035

ABSTRACT

A high fat Western-style diet leads to hepatic steatosis that can progress to steatohepatitis and ultimately cirrhosis or liver cancer. The mechanism that leads to the development of steatosis upon nutritional overload is complex and only partially understood. Using click chemistry-based metabolic tracing and microscopy, we study the interaction between Kupffer cells and hepatocytes ex vivo. In the early phase of steatosis, hepatocytes alone do not display significant deviations in fatty acid metabolism. However, in co-cultures or supernatant transfer experiments, we show that tumor necrosis factor (TNF) secretion by Kupffer cells is necessary and sufficient to induce steatosis in hepatocytes, independent of the challenge of hepatocytes with elevated fatty acid levels. We further show that free fatty acid (FFA) or lipopolysaccharide are both able to trigger release of TNF from Kupffer cells. We conclude that Kupffer cells act as the primary sensor for both FFA overload and bacterial lipopolysaccharide, integrate these signals and transmit the information to the hepatocyte via TNF secretion. Hepatocytes react by alteration in lipid metabolism prominently leading to the accumulation of triacylglycerols (TAGs) in lipid droplets, a hallmark of steatosis.


Subject(s)
Fatty Acids, Nonesterified/metabolism , Hepatocytes/metabolism , Kupffer Cells/metabolism , Animals , Click Chemistry/methods , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/physiology , Fatty Liver/etiology , Fatty Liver/metabolism , Hepatocytes/physiology , Inflammation/metabolism , Kupffer Cells/physiology , Lipid Metabolism/physiology , Lipids/physiology , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Tumor Necrosis Factor-alpha
15.
Biomed Pharmacother ; 131: 110693, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32882586

ABSTRACT

Macrophages play a crucial role in the pathogenesis of pancreatitis that is a common gastrointestinal disease. Particularly, macrophages differentiate into different phenotypes and exert diverse functions in acute pancreatitis (AP) and chronic pancreatitis (CP), respectively. In AP, macrophages in the pancreas and other related organs are mainly activated and differentiated into a pro-inflammatory M1 phenotype, and furthermore secrete inflammatory cytokines and mediators, causing local inflammation of the pancreas, and even intractable systemic inflammatory response or multiple organ failure. In CP, macrophages often exhibit a M2 polarisation and interact with pancreatic stellate cells (PSCs) in an autocrine and paracrine cytokine-dependent manner to promote the progression of pancreatic fibrosis. As the severity of pancreatic fibrosis aggravates, the proportion of M2/M1 macrophage cytokines in the pancreas increases. The discovery of macrophages in the pathogenesis of pancreatitis has promoted the research of targeted drugs, which provides great potential for the effective treatment of pancreatitis. This paper provides an overview of the roles of various macrophages in the pathogenesis of pancreatitis and the current research status of pancreatitis immunotherapy targeting macrophages. The findings addressed in this review are of considerable significance for understanding the pivotal role of macrophages in pancreatitis.


Subject(s)
Macrophages/physiology , Pancreatitis/etiology , Animals , Humans , Immunotherapy , Kupffer Cells/physiology , Pancreatitis/drug therapy , Pancreatitis, Chronic/drug therapy , Pancreatitis, Chronic/etiology
16.
J Zhejiang Univ Sci B ; 21(9): 727-739, 2020.
Article in English | MEDLINE | ID: mdl-32893529

ABSTRACT

BACKGROUND AND OBJECTIVE: Acute liver failure (ALF) is a type of disease with high mortality and rapid progression with no specific treatment methods currently available. Glucocorticoids exert beneficial clinical effects on therapy for ALF. However, the mechanism of this effect remains unclear and when to use glucocorticoids in patients with ALF is difficult to determine. The purpose of this study was to investigate the specific immunological mechanism of dexamethasone (Dex) on treatment of ALF induced by lipopolysaccharide (LPS)/D-galactosamine (D-GaIN) in mice. METHODS: Male C57BL/6 mice were given LPS and D-GaIN by intraperitoneal injection to establish an animal model of ALF. Dex was administrated to these mice and its therapeutic effect was observed. Hematoxylin and eosin (H&E) staining was used to determine liver pathology. Multicolor flow cytometry, cytometric bead array (CBA) method, and next-generation sequencing were performed to detect changes of messenger RNA (mRNA) in immune cells, cytokines, and Kupffer cells, respectively. RESULTS: A mouse model of ALF can be constructed successfully using LPS/D-GaIN, which causes a cytokine storm in early disease progression. Innate immune cells change markedly with progression of liver failure. Earlier use of Dex, at 0 h rather than 1 h, could significantly improve the progression of ALF induced by LPS/D-GaIN in mice. Numbers of innate immune cells, especially Kupffer cells and neutrophils, increased significantly in the Dex-treated group. In vivo experiments indicated that the therapeutic effect of Dex is exerted mainly via the glucocorticoid receptor (Gr). Sequencing of Kupffer cells revealed that Dex could increase mRNA transcription level of nuclear receptor subfamily 4 group A member 1 (Nr4a1), and that this effect disappeared after Gr inhibition. CONCLUSIONS: In LPS/D-GaIN-induced ALF mice, early administration of Dex improved ALF by increasing the numbers of innate immune cells, especially Kupffer cells and neutrophils. Gr-dependent Nr4a1 upregulation in Kupffer cells may be an important ALF effect regulated by Dex in this process.


Subject(s)
Dexamethasone/pharmacology , Kupffer Cells/drug effects , Liver Failure, Acute/drug therapy , Nuclear Receptor Subfamily 4, Group A, Member 1/physiology , Receptors, Glucocorticoid/physiology , Animals , Dexamethasone/therapeutic use , Disease Models, Animal , Kupffer Cells/physiology , Liver Failure, Acute/immunology , Liver Failure, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 4, Group A, Member 1/analysis
17.
Int J Biol Sci ; 16(13): 2367-2378, 2020.
Article in English | MEDLINE | ID: mdl-32760204

ABSTRACT

The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing all around the world and it may become the primary cause of terminal liver disease in adults and children in the next few decades. However, the pathogenesis of NAFLD is complex, and the Food and Drug Administration (FDA) has not approved any drugs for its treatment. Kupffer cells are the key cells regulating immunity in the liver, and the effect of their unique polarization on NAFLD has received increasing attention. Kupffer cells mainly reside in the lumen of hepatic sinusoids and account for 80% to 90% of colonized macrophages in the human body. They are phagocytic cells with the capacity for self-renewal that rarely migrate from their niche in the liver, and play a crucial role in regulating and maintaining homeostasis. Upon liver damage, Kupffer cells will be activated, releasing a good deal of inflammatory cytokines and chemokines. This review summarizes the multiple roles of Kupffer cells in the pathogenesis of NAFLD, the role of infiltrating macrophages in the pathogenesis of NAFLD is also briefly discussed, and aims to provide a theoretical basis for designing an NAFLD treatment strategy with Kupffer cells as the therapeutic target.


Subject(s)
Kupffer Cells/physiology , Non-alcoholic Fatty Liver Disease/pathology , Animals , Humans , Liver/cytology , Non-alcoholic Fatty Liver Disease/immunology , Signal Transduction
18.
Methods Mol Biol ; 2164: 65-73, 2020.
Article in English | MEDLINE | ID: mdl-32607884

ABSTRACT

Here, we describe a protocol to prepare and administer glucan-encapsulated RNAi particles (GeRPs), for specific delivery of siRNA and subsequent gene silencing in Kupffer cells (KCs) in mice. This technology is based on baker's yeast and allows gene manipulation in macrophages in a tissue-specific manner depending on the route of administration and the model that is used. GeRP administered by intravenous injection in mice are delivered to KCs. Therefore, using the GeRP technology to silence genes provides a unique method to study the function of factors expressed by KCs in the regulation of liver function.


Subject(s)
Gene Silencing/physiology , Glucans/genetics , Kupffer Cells/physiology , Liver/physiology , RNA, Small Interfering/genetics , Animals , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , RNA Interference/physiology
19.
Immunity ; 53(3): 627-640.e5, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32562600

ABSTRACT

Kupffer cells (KCs) are liver-resident macrophages that self-renew by proliferation in the adult independently from monocytes. However, how they are maintained during non-alcoholic steatohepatitis (NASH) remains ill defined. We found that a fraction of KCs derived from Ly-6C+ monocytes during NASH, underlying impaired KC self-renewal. Monocyte-derived KCs (MoKCs) gradually seeded the KC pool as disease progressed in a response to embryo-derived KC (EmKC) death. Those MoKCs were partly immature and exhibited a pro-inflammatory status compared to EmKCs. Yet, they engrafted the KC pool for the long term as they remained following disease regression while acquiring mature EmKC markers. While KCs as a whole favored hepatic triglyceride storage during NASH, EmKCs promoted it more efficiently than MoKCs, and the latter exacerbated liver damage, highlighting functional differences among KCs with different origins. Overall, our data reveal that KC homeostasis is impaired during NASH, altering the liver response to lipids, as well as KC ontogeny.


Subject(s)
Cell Self Renewal/physiology , Kupffer Cells/physiology , Lipid Metabolism/physiology , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Animals , Cell Proliferation/physiology , Lipids/analysis , Liver/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism
20.
Front Immunol ; 11: 322, 2020.
Article in English | MEDLINE | ID: mdl-32362892

ABSTRACT

Ample evidence suggests that hepatic macrophages play key roles in the injury and repair mechanisms during liver disease progression. There are two major populations of hepatic macrophages: the liver resident Kupffer cells and the monocyte-derived macrophages, which rapidly infiltrate the liver during injury. Under different disease conditions, the tissue microenvironmental cues of the liver critically influence the phenotypes and functions of hepatic macrophages. Furthermore, hepatic macrophages interact with multiple cells types in the liver, such as hepatocytes, neutrophils, endothelial cells, and platelets. These crosstalk interactions are of paramount importance in regulating the extents of liver injury, repair, and ultimately liver disease progression. In this review, we summarize the novel findings highlighting the impact of injury-induced microenvironmental signals that determine the phenotype and function of hepatic macrophages. Moreover, we discuss the role of hepatic macrophages in homeostasis and pathological conditions through crosstalk interactions with other cells of the liver.


Subject(s)
Cell Communication , Kupffer Cells/physiology , Liver/pathology , Macrophages/physiology , Hepatocytes/physiology , Homeostasis , Humans , Natural Killer T-Cells/physiology , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...