Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Transl Med ; 22(1): 668, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026250

ABSTRACT

BACKGROUND: The heightened risk of cardiovascular and cerebrovascular events is associated with the increased instability of atherosclerotic plaques. However, the lack of effective diagnostic biomarkers has impeded the assessment of plaque instability currently. This study was aimed to investigate and identify hub genes associated with unstable plaques through the integration of various bioinformatics tools, providing novel insights into the detection and treatment of this condition. METHODS: Weighted Gene Co-expression Network Analysis (WGCNA) combined with two machine learning methods were used to identify hub genes strongly associated with plaque instability. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method was utilized to assess immune cell infiltration patterns in atherosclerosis patients. Additionally, Gene Set Variation Analysis (GSVA) was conducted to investigate the potential biological functions, pathways, and mechanisms of hub genes associated with unstable plaques. To further validate the diagnostic efficiency and expression of the hub genes, immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) were performed on collected human carotid plaque and blood samples. Immunofluorescence co-staining was also utilized to confirm the association between hub genes and immune cells, as well as their colocalization with mitochondria. RESULTS: The CIBERSORT analysis demonstrated a significant decrease in the infiltration of CD8 T cells and an obvious increase in the infiltration of M0 macrophages in patients with atherosclerosis. Subsequently, two highly relevant modules (blue and green) strongly associated with atherosclerotic plaque instability were identified. Through intersection with mitochondria-related genes, 50 crucial genes were identified. Further analysis employing least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) algorithms revealed six hub genes significantly associated with plaque instability. Among them, NT5DC3, ACADL, SLC25A4, ALDH1B1, and MAOB exhibited positive correlations with CD8 T cells and negative correlations with M0 macrophages, while kynurenine 3-monooxygenas (KMO) demonstrated a positive correlation with M0 macrophages and a negative correlation with CD8 T cells. IHC and RT-qPCR analyses of human carotid plaque samples, as well as ELISA analyses of blood samples, revealed significant upregulation of KMO and MAOB expression, along with decreased ALDH1B1 expression, in both stable and unstable samples compared to the control samples. However, among the three key genes mentioned above, only KMO showed a significant increase in expression in unstable plaque samples compared to stable plaque samples. Furthermore, the expression patterns of KMO in human carotid unstable plaque tissues and cultured mouse macrophage cell lines were assessed using immunofluorescence co-staining techniques. Finally, lentivirus-mediated KMO silencing was successfully transduced into the aortas of high-fat-fed ApoE-/- mice, with results indicating that KMO silencing attenuated plaque formation and promoted plaque stability in ApoE-/- mice. CONCLUSIONS: The results suggest that KMO, a mitochondria-targeted gene associated with macrophage cells, holds promise as a valuable diagnostic biomarker for assessing the instability of atherosclerotic plaques.


Subject(s)
Plaque, Atherosclerotic , Female , Humans , Male , Middle Aged , Computational Biology/methods , Gene Expression Profiling , Gene Regulatory Networks , Genes, Mitochondrial/genetics , Macrophages/metabolism , Macrophages/pathology , Mitochondria/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Reproducibility of Results , Kynurenine 3-Monooxygenase/genetics , Kynurenine 3-Monooxygenase/metabolism
2.
Am J Physiol Cell Physiol ; 326(5): C1423-C1436, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497113

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a pivotal coenzyme, essential for cellular reactions, metabolism, and mitochondrial function. Depletion of kidney NAD+ levels and reduced de novo NAD+ synthesis through the tryptophan-kynurenine pathway are linked to acute kidney injury (AKI), whereas augmenting NAD+ shows promise in reducing AKI. We investigated de novo NAD+ biosynthesis using in vitro, ex vivo, and in vivo models to understand its role in AKI. Two-dimensional (2-D) cultures of human primary renal proximal tubule epithelial cells (RPTECs) and HK-2 cells showed limited de novo NAD+ synthesis, likely due to low pathway enzyme gene expression. Using three-dimensional (3-D) spheroid culture model improved the expression of tubular-specific markers and enzymes involved in de novo NAD+ synthesis. However, de novo NAD+ synthesis remained elusive in the 3-D spheroid culture, regardless of injury conditions. Further investigation revealed that 3-D cultured cells could not metabolize tryptophan (Trp) beyond kynurenine (KYN). Intriguingly, supplementation of 3-hydroxyanthranilic acid into RPTEC spheroids was readily incorporated into NAD+. In a human precision-cut kidney slice (PCKS) ex vivo model, de novo NAD+ synthesis was limited due to substantially downregulated kynurenine 3-monooxygenase (KMO), which is responsible for KYN to 3-hydroxykynurenine conversion. KMO overexpression in RPTEC 3-D spheroids successfully reinstated de novo NAD+ synthesis from Trp. In addition, in vivo study demonstrated that de novo NAD+ synthesis is intact in the kidney of the healthy adult mice. Our findings highlight disrupted tryptophan-kynurenine NAD+ synthesis in in vitro cellular models and an ex vivo kidney model, primarily attributed to KMO downregulation.NEW & NOTEWORTHY Nicotinamide adenine dinucleotide (NAD+) is essential in regulating mitochondrial function. Reduced NAD+ synthesis through the de novo pathway is associated with acute kidney injury (AKI). Our study reveals a disruption in de novo NAD+ synthesis in proximal tubular models, but not in vivo, attributed to downregulation of enzyme kynurenine 3-monooxygenase (KMO). These findings highlight a crucial role of KMO in governing de novo NAD+ biosynthesis within the kidney, shedding light on potential AKI interventions.


Subject(s)
Epithelial Cells , Kidney Tubules, Proximal , Kynurenine 3-Monooxygenase , NAD , Tryptophan , Animals , Humans , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/enzymology , Cell Line , Cells, Cultured , Epithelial Cells/metabolism , Kidney Tubules, Proximal/metabolism , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/metabolism , Kynurenine 3-Monooxygenase/genetics , Mice, Inbred C57BL , NAD/metabolism , NAD/biosynthesis , Tryptophan/metabolism
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166929, 2024 02.
Article in English | MEDLINE | ID: mdl-37918679

ABSTRACT

The kynurenine pathway (KP) is the principal metabolic route for the essential amino acid tryptophan (TRP). Recent advances have highlighted a pivotal role for several KP metabolites in inflammatory diseases, including ulcerative colitis (UC). However, the alterations of KP enzymes and their functional impact in UC remain poorly defined. Here, we focused on kynurenine 3-monooxygenase (KMO) and kynureninase (KYNU), which serve as critical branching enzymes in the KP. We observed that dextran sodium sulfate (DSS)-induced colitis mice exhibited disturbed TRP metabolism along with KMO and KYNU upregulated. In patients with active UC, both the expression of KMO and KYNU were positively correlated with inflammatory factors TNF-α and IL-1ß. Pharmacological blockade of KMO or genetic silencing of KYNU suppressed IL-1ß-triggered proinflammatory cytokines expression in intestinal epithelial cells. Furthermore, blockage of KMO by selective inhibitor Ro 61-8048 alleviated the symptoms of DSS-induced colitis in mice, accompanied by an expanded NAD+ pool and redox balance restoration. The protective role of Ro 61-8048 may be partly due to its effect on KP regulation, particularly in enhancing kynurenic acid production. In summary, our study provides new evidence for the proinflammatory property of KMO and KYNU in intestinal inflammation, hinting at a promising therapeutic approach in UC through targeting these enzymes.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Animals , Mice , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/genetics , Kynurenine 3-Monooxygenase/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/genetics , Up-Regulation , Colitis/chemically induced , Colitis/genetics , Inflammation/genetics
4.
Cell Rep ; 42(8): 112763, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37478012

ABSTRACT

Kynurenine monooxygenase (KMO) blockade protects against multiple organ failure caused by acute pancreatitis (AP), but the link between KMO and systemic inflammation has eluded discovery until now. Here, we show that the KMO product 3-hydroxykynurenine primes innate immune signaling to exacerbate systemic inflammation during experimental AP. We find a tissue-specific role for KMO, where mice lacking Kmo solely in hepatocytes have elevated plasma 3-hydroxykynurenine levels that prime inflammatory gene transcription. 3-Hydroxykynurenine synergizes with interleukin-1ß to cause cellular apoptosis. Critically, mice with elevated 3-hydroxykynurenine succumb fatally earlier and more readily to experimental AP. Therapeutically, blockade with the highly selective KMO inhibitor GSK898 rescues the phenotype, reducing 3-hydroxykynurenine and protecting against critical illness and death. Together, our findings establish KMO and 3-hydroxykynurenine as regulators of inflammation and the innate immune response to sterile inflammation. During critical illness, excess morbidity and death from multiple organ failure can be rescued by systemic KMO blockade.


Subject(s)
Kynurenine , Pancreatitis , Mice , Animals , Critical Illness , Multiple Organ Failure , Acute Disease , Mice, Knockout , Inflammation , Kynurenine 3-Monooxygenase/genetics
5.
J Cell Mol Med ; 27(16): 2290-2307, 2023 08.
Article in English | MEDLINE | ID: mdl-37482908

ABSTRACT

Protocatechuic acid (3,4-dihydroxybenzoic acid) prevents oxidative stress, inflammation and cardiac hypertrophy. This study aimed to investigate the therapeutic effects of protocatechuic acid in an isoproterenol-induced heart failure mouse model and to identify the underlying mechanisms. To establish the heart failure model, C57BL/6NTac mice were given high-dose isoproterenol (80 mg/kg body weight) for 14 days. Echocardiography revealed that protocatechuic acid reversed the isoproterenol-induced downregulation of fractional shortening and ejection fraction. Protocatechuic acid attenuated cardiac hypertrophy as evidenced by the decreased heart-weight-to-body-weight ratio and the expression of Nppb. RNA sequencing analysis identified kynurenine-3-monooxygenase (Kmo) as a potential target of protocatechuic acid. Protocatechuic acid treatment or transfection with short-interfering RNA against Kmo ameliorated transforming growth factor ß1-induced upregulation of Kmo, Col1a1, Col1a2 and Fn1 in vivo or in neonatal rat cardiac fibroblasts. Kmo knockdown attenuated the isoproterenol-induced increase in cardiomyocyte size, as well as Nppb and Col1a1 expression in H9c2 cells or primary neonatal rat cardiomyocytes. Moreover, protocatechuic acid attenuated Kmo overexpression-induced increases in Nppb mRNA levels. Protocatechuic acid or Kmo knockdown decreased isoproterenol-induced ROS generation in vivo and in vitro. Thus, protocatechuic acid prevents heart failure by downregulating Kmo. Therefore, protocatechuic acid and Kmo constitute a potential novel therapeutic agent and target, respectively, against heart failure.


Subject(s)
Heart Failure , Kynurenine 3-Monooxygenase , Mice , Rats , Animals , Isoproterenol/toxicity , Kynurenine 3-Monooxygenase/genetics , Kynurenine 3-Monooxygenase/metabolism , Kynurenine 3-Monooxygenase/pharmacology , Kynurenine/metabolism , Kynurenine/pharmacology , Kynurenine/therapeutic use , Mice, Inbred C57BL , Heart Failure/chemically induced , Heart Failure/drug therapy , Heart Failure/prevention & control , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/prevention & control , Myocytes, Cardiac/metabolism
6.
Pancreatology ; 23(6): 589-600, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37438173

ABSTRACT

INTRODUCTION: Infected pancreatic necrosis (IPN) is a major cause of mortality in acute pancreatitis (AP). Currently, no specific strategies are available to predict the development of IPN. Earlier we reported that persistent down-regulation of HLA-DR increases risk of developing IPN. Altered kynurenine pathway (KP) metabolites showed poor prognosis in sepsis. Here we evaluated the role of HLA-DR and KP in IPN. METHODS: Patients with ANP and healthy controls were enrolled. Demographic and clinical parameters were recorded. Circulating interleukin (IL)-8, 6, 1ß, 10, Tumor necrosis factor-α were quantified using flowcytometry. Plasma procalcitonin, endotoxin, and KP (tryptophan, kynurenine) concentrations were estimated using ELISA. qRT-PCR was conducted to evaluate mRNA expression of HLA-DR, IL-10, Toll like receptor-4 (TLR-4), and kynurenine-3-monooxygenase (KMO) genes on peripheral blood mononuclear cells. Plasma metabolites were quantified using gas chromatography mass spectrometry (GC-MS/MS). Standard statistical methods were used to compare study groups. Metaboanalyst was used to analyse/visualize the metabolomics data. RESULTS: We recruited 56 patients in Cohort-1 (IPN:26,Non-IPN:30), 78 in Cohort-2 (IPN:57,Non-IPN:21), 26 healthy controls. Increased cytokines, endotoxin, and procalcitonin were observed in patients with IPN compared to Non-IPN. HLA-DR and KMO gene expressions were significantly down-regulated in IPN groups, showed positive correlation with one another but negatively correlated with IL-6 and endotoxin concentrations. Increased IDO and decreased plasma tryptophan were observed in IPN patients. Metabolome analysis showed significant reduction in several essential amino acids including tryptophan in IPN patients. Tryptophan, at a concentration of 9 mg/ml showed an AUC of 91.9 (95%CI 86.5-97.4) in discriminating IPN. CONCLUSION: HLA-DR downregulation and KP alteration are related to IPN. The KP metabolite plasma tryptophan can act as a potential biomarker for IPN.


Subject(s)
Kynurenine , Pancreatitis, Acute Necrotizing , Humans , Kynurenine/metabolism , Tryptophan/metabolism , Procalcitonin , Tandem Mass Spectrometry , Acute Disease , Leukocytes, Mononuclear , Biomarkers , HLA-DR Antigens/genetics , Kynurenine 3-Monooxygenase/genetics , Kynurenine 3-Monooxygenase/metabolism , Necrosis , Endotoxins
7.
Biochem Biophys Res Commun ; 629: 142-151, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36116377

ABSTRACT

Phencyclidine (PCP) causes mental symptoms that closely resemble schizophrenia through the inhibition of the glutamatergic system. The kynurenine (KYN) pathway (KP) generates metabolites that modulate glutamatergic systems such as kynurenic acid (KA), quinolinic acid (QA), and xanthurenic acid (XA). Kynurenine 3-monooxygenase (KMO) metabolizes KYN to 3-hydroxykynurenine (3-HK), an upstream metabolite of QA and XA. Clinical studies have reported lower KMO mRNA and higher KA levels in the postmortem brains of patients with schizophrenia and exacerbation of symptoms in schizophrenia by PCP. However, the association between KMO deficiency and PCP remains elusive. Here, we demonstrated that a non-effective dose of PCP induced impairment of prepulse inhibition (PPI) in KMO KO mice. KA levels were increased in the prefrontal cortex (PFC) and hippocampus (HIP) of KMO KO mice, but 3-HK levels were decreased. In wild-type C57BL/6 N mice, the PPI impairment induced by PCP is exacerbated by KA, while attenuated by 3-HK, QA and XA. Taken together, KMO KO mice were vulnerable to the PPI impairment induced by PCP through an increase in KA and a decrease in 3-HK, suggesting that an increase in the ratio of KA to 3-HK (QA and XA) may play an important role in the pathophysiology of schizophrenia.


Subject(s)
Kynurenine 3-Monooxygenase , Kynurenine , Animals , Kynurenic Acid/metabolism , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/genetics , Kynurenine 3-Monooxygenase/metabolism , Mice , Mice, Inbred C57BL , Phencyclidine , Prepulse Inhibition , Quinolinic Acid/metabolism , RNA, Messenger
8.
Mar Biotechnol (NY) ; 24(5): 942-955, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36030481

ABSTRACT

The "Wanlihong" Meretrix meretrix (WLH-M) clam is a new variety of this species that has a red shell and stronger Vibrio tolerance than ordinary M. meretrix (ORI-M). To investigate the molecular mechanisms responsible for the WLH-M strain's tolerance to Vibrio, we challenged clams with Vibrio parahaemolyticus and then assessed physiological indexes and conducted transcriptome analysis and RNA interference experiments. The mortality, tissue bacterial load, and hemocyte reactive oxygen species level of ORI-M were significantly higher than those of WLH-M, whereas the content and activity of lysozyme were significantly lower. Gene Ontology functional annotation analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that immune and metabolic pathways were enriched in Vibrio-challenged clams. The expressions of the heat shock protein 70 (Hsp70) and serine protease (SP) genes, which are involved in antibacterial immunity, were significantly upregulated in WLH-M but not in ORI-M, while the expression of the kynurenine 3-monooxygenase gene, a proinflammatory factor, was significantly downregulated in WLH-M. RNA interference experiments confirmed that Hsp70 and SP downregulation could result in increased mortality of WLH-M. Therefore, we speculate that Hsp70 and SP may be involved in the antibacterial immunity of WLH-M in vivo. Our data provided a valuable resource for further studies of the antibacterial mechanism of WLH-M and provided a foundation for the breeding of pathogen-resistant strains.


Subject(s)
Bivalvia , Vibrio parahaemolyticus , Animals , Anti-Bacterial Agents , Bivalvia/genetics , HSP70 Heat-Shock Proteins/genetics , Immunity, Innate/genetics , Kynurenine 3-Monooxygenase/genetics , Muramidase/genetics , RNA Interference , RNA-Seq , Reactive Oxygen Species , Serine Proteases/genetics , Vibrio parahaemolyticus/genetics
9.
Cell Rep Med ; 2(10): 100409, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34755129

ABSTRACT

Fibrosing chronic graft-versus-host disease (cGVHD) is a debilitating complication of allogeneic stem cell transplantation (alloSCT). A driver of fibrosis is the kynurenine (Kyn) pathway, and Kyn metabolism patterns and cytokines may influence cGVHD severity and manifestation (fibrosing versus gastrointestinal [GI] cGVHD). Using a liquid chromatography-tandem mass spectrometry approach on sera obtained from 425 patients with allografts, we identified high CXCL9, high indoleamine-2,3-dioxygenase (IDO) activity, and an activated Kyn pathway as common characteristics in all cGVHD subtypes. Specific Kyn metabolism patterns could be identified for non-severe cGVHD, severe GI cGVHD, and fibrosing cGVHD, respectively. Specifically, fibrosing cGVHD was associated with a distinct pathway shift toward anthranilic and kynurenic acid, correlating with reduced activity of the vitamin-B2-dependent kynurenine monooxygenase, low vitamin B6, and increased interleukin-18. The Kyn metabolite signature is a candidate biomarker for severe fibrosing cGVHD and provides a rationale for translational trials on prophylactic vitamin B2/B6 supplementation for cGVHD prevention.


Subject(s)
Graft vs Host Disease/blood , Kynurenic Acid/blood , Kynurenine/blood , Riboflavin/blood , Stem Cell Transplantation , Vitamin B 6/blood , Adolescent , Adult , Aged , Chemokine CXCL9/blood , Chemokine CXCL9/genetics , Female , Fibrosis , Gene Expression Regulation , Graft vs Host Disease/genetics , Graft vs Host Disease/pathology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/blood , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Interleukin-18/blood , Interleukin-18/genetics , Kynurenine 3-Monooxygenase/blood , Kynurenine 3-Monooxygenase/genetics , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Leukemia/therapy , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/pathology , Lymphoma/therapy , Male , Metabolic Networks and Pathways/genetics , Middle Aged , Retrospective Studies , Severity of Illness Index , Signal Transduction , Transplantation, Homologous , Tryptophan/blood , ortho-Aminobenzoates/blood
10.
Cells ; 10(8)2021 08 08.
Article in English | MEDLINE | ID: mdl-34440798

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. The enzyme indoleamine-2,3-dioxygenase (IDO), which participates in the rate-limiting step of tryptophan catabolism through the kynurenine pathway (KP), is associated with poor prognosis in patients with GBM. The metabolites produced after tryptophan oxidation have immunomodulatory properties that can support the immunosuppressor environment. In this study, mRNA expression, protein expression, and activity of the enzyme kynurenine monooxygenase (KMO) were analyzed in GBM cell lines (A172, LN-18, U87, U373) and patient-derived astrocytoma samples. KMO mRNA expression was assessed by real-time RT-qPCR, KMO protein expression was evaluated by flow cytometry and immunofluorescence, and KMO activity was determined by quantifying 3-hydroxykynurenine by HPLC. Heterogenous patterns of both KMO expression and activity were observed among the GBM cell lines, with the A172 cell line showing the highest KMO expression and activity. Higher KMO mRNA expression was observed in glioma samples than in patients diagnosed with only a neurological disease; high KMO mRNA expression was also observed when using samples from patients with GBM in the TCGA program. The KMO protein expression was localized in GFAP+ cells in tumor tissue. These results suggest that KMO is a relevant target to be explored in glioma since it might play a role in supporting tumor metabolism and immune suppression.


Subject(s)
Astrocytoma/genetics , Brain Neoplasms/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Kynurenine 3-Monooxygenase/genetics , Adult , Astrocytoma/enzymology , Brain Neoplasms/enzymology , Cell Line, Tumor , Female , Glioma/enzymology , Glioma/genetics , Humans , Kaplan-Meier Estimate , Kynurenine/analogs & derivatives , Kynurenine/metabolism , Kynurenine 3-Monooxygenase/metabolism , Male , Middle Aged , Mutation , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Young Adult
11.
Front Immunol ; 12: 671025, 2021.
Article in English | MEDLINE | ID: mdl-34305900

ABSTRACT

Renal tubular epithelial cells (TECs) are the primary targets of ischemia-reperfusion injury (IRI) and rejection by the recipient's immune response in kidney transplantation (KTx). However, the molecular mechanism of rejection and IRI remains to be identified. Our previous study demonstrated that kynurenine 3-monooxygenase (KMO) and kynureninase were reduced in ischemia-reperfusion procedure and further decreased in rejection allografts among mismatched pig KTx. Herein, we reveal that TEC injury in acutely rejection allografts is associated with alterations of Bcl2 family proteins, reduction of tight junction protein 1 (TJP1), and TEC-specific KMO. Three cytokines, IFN γ , TNFα, and IL1ß, reported in our previous investigation were identified as triggers of TEC injury by altering the expression of Bcl2, BID, and TJP1. Allograft rejection and TEC injury were always associated with a dramatic reduction of KMO. 3HK and 3HAA, as direct and downstream products of KMO, effectively protected TEC from injury via increasing expression of Bcl-xL and TJP1. Both 3HK and 3HAA further prevented allograft rejection by inhibiting T cell proliferation and up-regulating aryl hydrocarbon receptor expression. Pig KTx with the administration of DNA nanoparticles (DNP) that induce expression of indoleamine 2,3-dioxygenase (IDO) and KMO to increase 3HK/3HAA showed an improvement of allograft rejection as well as murine skin transplant in IDO knockout mice with the injection of 3HK indicated a dramatic reduction of allograft rejection. Taken together, our data provide strong evidence that reduction of KMO in the graft is a key mediator of allograft rejection and loss. KMO can effectively improve allograft outcome by attenuating allograft rejection and maintaining graft barrier function.


Subject(s)
Allografts/immunology , Epithelial Cells/physiology , Graft Rejection/prevention & control , Kidney/pathology , Kynurenine 3-Monooxygenase/metabolism , Reperfusion Injury/prevention & control , Skin Transplantation , Animals , Cells, Cultured , Cytokines , Female , Humans , Inflammation Mediators/metabolism , Kynurenine 3-Monooxygenase/genetics , Mice, Inbred BALB C , Mice, Inbred C57BL , Porcine Reproductive and Respiratory Syndrome , Proto-Oncogene Proteins c-bcl-2/metabolism , Swine , Zonula Occludens-1 Protein/metabolism
12.
Sci Rep ; 11(1): 14964, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294769

ABSTRACT

Culex quinquefasciatus Say is a mosquito distributed in both tropical and subtropical regions of the world. It is a night-active, opportunistic blood-feeder and vectors many animal and human diseases, including West Nile Virus and avian malaria. Current vector control methods (e.g. physical/chemical) are increasingly ineffective; use of insecticides also imposes hazards to both human and ecosystem health. Advances in genome editing have allowed the development of genetic insect control methods, which are species-specific and, theoretically, highly effective. CRISPR/Cas9 is a bacteria-derived programmable gene editing tool that is functional in a range of species. We describe the first successful germline gene knock-in by homology dependent repair in C. quinquefasciatus. Using CRISPR/Cas9, we integrated an sgRNA expression cassette and marker gene encoding a fluorescent protein fluorophore (Hr5/IE1-DsRed, Cq7SK-sgRNA) into the kynurenine 3-monooxygenase (kmo) gene. We achieved a minimum transformation rate of 2.8%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed. Insertion homozygotes displayed a white eye phenotype in early-mid larvae and a recessive lethal phenotype by pupation. This work provides an efficient method for engineering C. quinquefasciatus, providing a new tool for developing genetic control tools for this vector.


Subject(s)
Culex/growth & development , Gene Knock-In Techniques/veterinary , Kynurenine 3-Monooxygenase/genetics , RNA Polymerase III/genetics , Animals , CRISPR-Cas Systems , Culex/genetics , Culex/virology , DNA Repair , Disease Vectors , Female , Genes, Recessive , Germ Cells/growth & development , Germ Cells/metabolism , Insect Proteins/genetics , Male , Pest Control, Biological , Promoter Regions, Genetic , West Nile virus/pathogenicity
13.
Immunohorizons ; 5(6): 523-534, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183381

ABSTRACT

Despite advances in our understanding of endotoxic shock, novel therapeutic interventions that can reduce the burden of sepsis remain elusive. Current treatment options are limited, and it is only through refinements in the ways that we deliver supportive care that mortality has fallen over the years. In this study, the role of kynurenine 3-monooxygenase (KMO) in immune regulation was examined in LPS-induced endotoxemia using KMO-/- and KMO+/+ mice treated with the KMO inhibitor Ro61-8048. We showed that LPS-induced or cecal ligation and puncture-induced mortality and hepatic IL-6 production increased in the absence of KMO, possibly involving increased activating transcription factor 4 (ATF4) signaling in hepatic macrophages. Moreover, treatment of septic mice with 3-hydroxykynurenine reduced mortality rates and inflammatory responses regardless of the presence or absence of KMO. According to our results, the administration of 3-hydroxykynurenine as part of the treatment approach for sepsis or as an adjuvant therapy might reduce the overproduction of IL-6, which is responsible for severe endotoxemia, and ultimately improve the survival rates of patients with sepsis.


Subject(s)
Interleukin-6/metabolism , Kynurenine 3-Monooxygenase/metabolism , Kynurenine/analogs & derivatives , Shock, Septic/drug therapy , Activating Transcription Factor 4/metabolism , Animals , Disease Models, Animal , Humans , Kynurenine/metabolism , Kynurenine/therapeutic use , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Kynurenine 3-Monooxygenase/genetics , Lipopolysaccharides/immunology , Liver/cytology , Liver/immunology , Liver/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Knockout , Shock, Septic/immunology , Shock, Septic/pathology , Signal Transduction/genetics , Sulfonamides/pharmacology , Thiazoles/pharmacology
14.
Sci Rep ; 11(1): 5484, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750843

ABSTRACT

Kynurenine 3-monooxygenase (KMO) regulates the levels of neuroactive metabolites in the kynurenine pathway (KP), dysregulation of which is associated with Huntington's disease (HD) pathogenesis. KMO inhibition leads to increased levels of neuroprotective relative to neurotoxic metabolites, and has been found to ameliorate disease-relevant phenotypes in several HD models. Here, we crossed KMO knockout mice to R6/2 HD mice to examine the effect of KMO depletion in the brain and periphery. KP genes were dysregulated in peripheral tissues from R6/2 mice and KMO ablation normalised levels of a subset of these. KP metabolites were also assessed, and KMO depletion led to increased levels of neuroprotective kynurenic acid in brain and periphery, and dramatically reduced neurotoxic 3-hydroxykunurenine levels in striatum and cortex. Notably, the increased levels of pro-inflammatory cytokines TNFa, IL1ß, IL4 and IL6 found in R6/2 plasma were normalised upon KMO deletion. Despite these improvements in KP dysregulation and peripheral inflammation, KMO ablation had no effect upon several behavioural phenotypes. Therefore, although genetic inhibition of KMO in R6/2 mice modulates several metabolic and inflammatory parameters, these do not translate to improvements in primary disease indicators-observations which will likely be relevant for other interventions targeted at peripheral inflammation in HD.


Subject(s)
Cytokines/blood , Huntington Disease/genetics , Inflammation/blood , Kynurenine 3-Monooxygenase/genetics , Animals , Disease Models, Animal , Female , Gene Deletion , Huntington Disease/blood , Inflammation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
15.
Commun Biol ; 4(1): 159, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542467

ABSTRACT

The structural mechanisms of single-pass transmembrane enzymes remain elusive. Kynurenine 3-monooxygenase (KMO) is a mitochondrial protein involved in the eukaryotic tryptophan catabolic pathway and is linked to various diseases. Here, we report the mammalian full-length structure of KMO in its membrane-embedded form, complexed with compound 3 (identified internally) and compound 4 (identified via DNA-encoded chemical library screening) at 3.0 Å resolution. Despite predictions suggesting that KMO has two transmembrane domains, we show that KMO is actually a single-pass transmembrane protein, with the other transmembrane domain lying laterally along the membrane, where it forms part of the ligand-binding pocket. Further exploration of compound 3 led to identification of the brain-penetrant compound, 5. We show that KMO is dimeric, and that mutations at the dimeric interface abolish its activity. These results will provide insight for the drug discovery of additional blood-brain-barrier molecules, and help illuminate the complex biology behind single-pass transmembrane enzymes.


Subject(s)
Cell Membrane/enzymology , Drug Discovery , Enzyme Inhibitors/pharmacology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Kynurenine 3-Monooxygenase/metabolism , Animals , Binding Sites , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Kynurenine 3-Monooxygenase/chemistry , Kynurenine 3-Monooxygenase/genetics , Ligands , Molecular Docking Simulation , Mutation , Protein Binding , Protein Domains , Rats , Structure-Activity Relationship
16.
Vet Comp Oncol ; 19(1): 79-91, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32720434

ABSTRACT

Canine melanoma is a malignant tumour that exhibits aggressive behaviour, and frequently metastasizes to regional lymph nodes and distant sites. Currently, there are no effective treatments or practical prognostic biomarkers for canine melanoma. The enzyme kynurenine 3-monooxygenase (KMO), which plays a central role in the tryptophan metabolism, has previously been identified as the main pathogenic factor in neurodegenerative diseases; however, it has recently been found to be positively associated with tumour malignancy in human hepatocellular carcinoma and canine mammary tumours. Signal transducer and activator of transcription 3 (STAT3) is a well-known oncoprotein contributing to the proliferation, survival, invasiveness and metastasis of a variety of cancers. Although whether STAT3 and KMO collaborate in tumorigenesis needs to be further verified, our previous findings showed that inhibition of KMO activity reduced activation of STAT3. This study investigated the expressions of KMO and STAT3/phosphorylated (pSTAT3) by immunohistochemical analysis in 85 cases of canine melanoma, showing their expression levels were high within highly mitotic melanoma cells. KMO Overexpression was significantly associated with increased STAT3 and pSTAT3 expressions. Melanoma tissues with higher KMO, STAT3 and pSTAT3 protein expressions were correlated with reduced survival rates of the canine patients. Moreover, inhibition of KMO activity in canine melanoma cells resulted in reduced cell viability, in addition to decreased expressions of STAT3 and pSTAT3. Our results indicated the significance of KMO and the potential role of KMO/STAT3 interaction in enhancing tumour development. Additionally, KMO and STAT3/pSTAT3 may be viewed as useful biomarkers for the prediction of prognosis of canine melanoma.


Subject(s)
Dog Diseases/metabolism , Kynurenine 3-Monooxygenase/metabolism , Melanoma/veterinary , STAT3 Transcription Factor/metabolism , Animals , Cell Line , Cell Survival , Dog Diseases/genetics , Dog Diseases/pathology , Dogs , Down-Regulation , Female , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Kynurenine 3-Monooxygenase/genetics , Male , Melanoma/metabolism , Melanoma/pathology , STAT3 Transcription Factor/genetics , Signal Transduction , Sulfonamides/pharmacology , Survival , Thiazoles/pharmacology
17.
Nat Commun ; 11(1): 5553, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144570

ABSTRACT

Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.


Subject(s)
Anopheles/genetics , Malaria/parasitology , Alleles , Animals , CRISPR-Associated Protein 9/metabolism , Female , Genetics, Population , Green Fluorescent Proteins/metabolism , Heterozygote , Inheritance Patterns/genetics , Kynurenine 3-Monooxygenase/genetics , Male , Models, Genetic , Mosaicism , Phenotype , Phylogeny , RNA, Guide, Kinetoplastida/metabolism
18.
PLoS Genet ; 16(11): e1009129, 2020 11.
Article in English | MEDLINE | ID: mdl-33170836

ABSTRACT

The enzyme kynurenine 3-monooxygenase (KMO) operates at a critical branch-point in the kynurenine pathway (KP), the major route of tryptophan metabolism. As the KP has been implicated in the pathogenesis of several human diseases, KMO and other enzymes that control metabolic flux through the pathway are potential therapeutic targets for these disorders. While KMO is localized to the outer mitochondrial membrane in eukaryotic organisms, no mitochondrial role for KMO has been described. In this study, KMO deficient Drosophila melanogaster were investigated for mitochondrial phenotypes in vitro and in vivo. We find that a loss of function allele or RNAi knockdown of the Drosophila KMO ortholog (cinnabar) causes a range of morphological and functional alterations to mitochondria, which are independent of changes to levels of KP metabolites. Notably, cinnabar genetically interacts with the Parkinson's disease associated genes Pink1 and parkin, as well as the mitochondrial fission gene Drp1, implicating KMO in mitochondrial dynamics and mitophagy, mechanisms which govern the maintenance of a healthy mitochondrial network. Overexpression of human KMO in mammalian cells finds that KMO plays a role in the post-translational regulation of DRP1. These findings reveal a novel mitochondrial role for KMO, independent from its enzymatic role in the kynurenine pathway.


Subject(s)
Kynurenine 3-Monooxygenase/metabolism , Kynurenine/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Alleles , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Dynamins/metabolism , Epistasis, Genetic , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , HEK293 Cells , Humans , Kynurenine 3-Monooxygenase/genetics , Male , Mitophagy/genetics , Mutation , Phosphorylation , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Up-Regulation
19.
BMC Mol Cell Biol ; 21(1): 63, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32917146

ABSTRACT

BACKGROUND: Eye pigmentation genes have been utilized as visible markers for constructing genetic control prototypes in several insect vectors of human disease. Here, orthologs of two ommochrome pathway genes, kynurenine 3-hydroxylase (kmo) and cardinal, were investigated in Plutella xylostella, a globally distributed, economically important pest of Brassica crops. RESULTS: Both somatic mosaic and germline mutations were efficiently created using the CRISPR/Cas9 system, and null mutant strains of Pxkmo and Pxcardinal were obtained. A frame-shift mutation in Pxkmo caused yellow compound eyes at adult stage while an in-frame mutation lacking two amino acids resulted in a hypomorphic red eye phenotypes. In contrast, Pxcardinal-deficient moths with a frame-shift mutation exhibited yellow eye pigmentation in newly emerged adults which turned to red as the adults aged. Additionally, differences were observed in the coloration of larval ocelli, brains and testes in Pxkmo and Pxcardinal yellow-eye mutant lines. CONCLUSIONS: Our work identifies the important roles of Pxkmo and Pxcardinal in P. xylostella eye pigmentation and provides tools for future genetic manipulation of this important crop pest.


Subject(s)
Compound Eye, Arthropod/physiology , Insect Proteins/genetics , Kynurenine 3-Monooxygenase/genetics , Moths/genetics , Moths/metabolism , Phenothiazines/metabolism , Pigmentation/genetics , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Frameshift Mutation/genetics , Gene Knockout Techniques/methods , Larva/genetics
20.
Biotechnol Prog ; 36(6): e3054, 2020 11.
Article in English | MEDLINE | ID: mdl-32706513

ABSTRACT

Genome editing by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein (Cas)9, a third-generation gene scissors, and molecular breeding at the genome level are attracting considerable attention as future breeding techniques. In the present study, genetic and phenotypic analyses were conducted to examine the molecular breeding of Bombyx mori through CRISPR/Cas9-mediated editing of the kynurenine 3-monooxygenase (KMO) gene. The synthesized guide RNAs (gRNAs) were analyzed using T7 endonuclease I after introduction into the BM-N silkworm cell line. To edit the silkworm gene, K1P gRNA, and Cas9 complexes were microinjected into silkworm embryos. After microinjection, the hatching rate and the incidence of mutation were determined as 18.1% and 60%, respectively. Gene mutation was verified in the heterozygous G0 generation, but no phenotypic change was observed; however, certain embryos and moths produced through sib-mating had significant differences compared to the wild-type. In successive generations, a distinct phenotypic change was also observed by continuous mating. Thus, although there are limitations in the phenotypic expression in breeding through the induction of deletion mutations, as in the present study, the process is believed to yield successful results within a shorter period compared to traditional breeding and is safer than transgenic technology.


Subject(s)
Bombyx/genetics , DNA Shuffling/methods , Gene Editing/methods , Kynurenine 3-Monooxygenase/genetics , Animals , CRISPR-Cas Systems/genetics
SELECTION OF CITATIONS
SEARCH DETAIL