Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Reprod Biol Endocrinol ; 22(1): 106, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164703

ABSTRACT

Hormonal changes in pregnant and lactating women significantly affect bone metabolism and overall stress levels, positioning them as a unique group within the orthodontic population. Fluctuations in estrogen, progesterone, prolactin, and other hormones are closely linked to bone remodeling and the periodontal tissue's response to inflammation caused by dental plaque. Hormones such as thyrotropin, leptin, and melatonin also play crucial roles in pregnancy and bone remodeling, with potential implications for orthodontic tooth movement. Additionally, adverse personal behaviors and changes in dietary habits worsen periodontal conditions and complicate periodontal maintenance during orthodontic treatment. Notably, applying orthodontic force during pregnancy and lactation may trigger stress responses in the endocrine system, altering hormone levels. However, these changes do not appear to adversely affect the mother or fetus. This review comprehensively examines the interaction between hormone levels and orthodontic tooth movement in pregnant and lactating women, offering insights to guide clinical practice.


Subject(s)
Lactation , Humans , Female , Lactation/physiology , Lactation/metabolism , Pregnancy , Hormones/metabolism , Hormones/blood , Tooth Movement Techniques/methods , Bone Remodeling/physiology
2.
Anim Sci J ; 95(1): e13988, 2024.
Article in English | MEDLINE | ID: mdl-39165081

ABSTRACT

Short-chain fatty acids (SCFAs) produced in the rumen are key factors affecting dairy cows' energy balance (EB). This study aimed to quantitatively evaluate the effects of SCFAs production on EB in dairy cows. Primiparous dairy cows were divided into high non-esterified fatty acid (NEFA; group H) and low NEFA (group L) groups based on their blood NEFA levels at week 3 postpartum, which served as an indicator of EB. The amounts of SCFAs produced in the rumen, including acetate, propionate, and butyrate (SCFAsP), were calculated using the predicted rumen volume. Because there were no differences between the groups in SCFAsP/dry matter intake, whereas 4% fat-corrected milk (FCM)/SCFAsP was significantly higher in group H, it was suggested that more body fat was mobilized for milk production in group H. However, group L, which showed better EB, had propionate dominant and lower FCM/SCFAsP and milk energy/SCFAs energy at 3 and 7 weeks postpartum, indicating that group L had a better energy supply for milk production. These results suggest that SCFAsP produced by rumen fermentation and the composition of SCFAs in the rumen affect milk production and EB.


Subject(s)
Energy Metabolism , Fatty Acids, Nonesterified , Fatty Acids, Volatile , Fermentation , Lactation , Milk , Rumen , Animals , Rumen/metabolism , Cattle/metabolism , Cattle/physiology , Female , Fatty Acids, Volatile/metabolism , Lactation/metabolism , Lactation/physiology , Milk/metabolism , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/blood , Pregnancy , Parity , Postpartum Period/metabolism , Propionates/metabolism
3.
Glycobiology ; 34(9)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39115362

ABSTRACT

α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.


Subject(s)
Colostrum , Lactalbumin , Milk , Lactalbumin/metabolism , Lactalbumin/chemistry , Animals , Glycosylation , Colostrum/chemistry , Colostrum/metabolism , Cattle , Milk/chemistry , Milk/metabolism , Female , Lactation/metabolism , Amino Sugars/chemistry , Amino Sugars/metabolism , Glycopeptides/metabolism , Glycopeptides/chemistry , Glycopeptides/analysis , Lactose/metabolism , Lactose/chemistry
5.
Nutrients ; 16(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39064726

ABSTRACT

The mammary gland is an exocrine gland whose main function is to produce milk. Breast morphogenesis begins in the embryonic period; however, its greatest development takes place during the lactation period. Studies have found the expression of serum amyloid A protein (SAA) in both breast cells and breast milk, yet the function of this protein in these contexts remains unknown. Insufficient milk production is one of the most frequent reasons for early weaning, a problem that can be related to the mother, the newborn, or both. This study aims to investigate the relationship between lactogenesis II (the onset of milk secretion) and the role of SAA in the human breast. To this end, mammary epithelial cell cultures were evaluated for the expression of SAA and the influence of various cytokines. Additionally, we sought to assess the activation pathway through which SAA acts in the breast, its glucose uptake capacity, and the morphological changes induced by SAA treatment. SAA expression was observed in mammary epithelial cells; however, it was not possible to establish its activation pathway, as treatments with inhibitors of the ERK1/2, p38MAPK, and PI3K pathways did not alter its expression. This study demonstrated that SAA can stimulate IL-6 expression, inhibit glucose uptake, and cause morphological changes in the cells, indicative of cellular stress. These mechanisms could potentially contribute to early breastfeeding cessation due to reduced milk production and breast involution.


Subject(s)
Interleukin-6 , Mammary Glands, Human , Serum Amyloid A Protein , Serum Amyloid A Protein/metabolism , Humans , Female , Interleukin-6/metabolism , Mammary Glands, Human/metabolism , Milk, Human/metabolism , Epithelial Cells/metabolism , Lactation/metabolism , Breast/metabolism , Glucose/metabolism
6.
Nature ; 632(8024): 357-365, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987585

ABSTRACT

In lactating mothers, the high calcium (Ca2+) demand for milk production triggers significant bone loss1. Although oestrogen normally counteracts excessive bone resorption by promoting bone formation, this sex steroid drops precipitously during this postpartum period. Here we report that brain-derived cellular communication network factor 3 (CCN3) secreted from KISS1 neurons of the arcuate nucleus (ARCKISS1) fills this void and functions as a potent osteoanabolic factor to build bone in lactating females. We began by showing that our previously reported female-specific, dense bone phenotype2 originates from a humoral factor that promotes bone mass and acts on skeletal stem cells to increase their frequency and osteochondrogenic potential. This circulatory factor was then identified as CCN3, a brain-derived hormone from ARCKISS1 neurons that is able to stimulate mouse and human skeletal stem cell activity, increase bone remodelling and accelerate fracture repair in young and old mice of both sexes. The role of CCN3 in normal female physiology was revealed after detecting a burst of CCN3 expression in ARCKISS1 neurons coincident with lactation. After reducing CCN3 in ARCKISS1 neurons, lactating mothers lost bone and failed to sustain their progeny when challenged with a low-calcium diet. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone for both sexes and define a new maternal brain hormone for ensuring species survival in mammals.


Subject(s)
Bone Density , Bone and Bones , Brain , Hormones , Mothers , Nephroblastoma Overexpressed Protein , Osteogenesis , Adolescent , Animals , Female , Humans , Male , Mice , Aging , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , Bone and Bones/cytology , Bone and Bones/metabolism , Bone Remodeling , Bone Resorption/metabolism , Brain/cytology , Brain/metabolism , Calcium/administration & dosage , Calcium/metabolism , Lactation/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Nephroblastoma Overexpressed Protein/metabolism , Hormones/metabolism
7.
Biochem Biophys Res Commun ; 728: 150346, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-38972085

ABSTRACT

Tissue-specific deficiency of nicotinamide phosphoribosyl transferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD+)-salvage pathway, causes a decrease of NAD+ in the tissue, resulting in functional abnormalities. The NAD+-salvage pathway is drastically activated in the mammary gland during lactation, but the significance of this has not been established. To investigate the impact of NAD+ perturbation in the mammary gland, we generated two new lines of mammary gland epithelial-cell-specific Nampt-knockout mice (MGKO). LC-MS/MS analyses confirmed that the levels of NAD+ and its precursor nicotinamide mononucleotide (NMN) were significantly increased in lactating mammary glands. We found that murine milk contained a remarkably high level of NMN. MGKO exhibited a significant decrease in tissue NAD+ and milk NMN levels in the mammary gland during lactation periods. Despite the decline in NAD+ levels, the mammary glands of MGKO appeared to develop normally. Transcriptome analysis revealed that the gene profiles of MGKO were indistinguishable from those of their wild-type counterparts, except for Nampt. Although the NMN levels in milk from MGKO were decreased, the metabolomic profile of milk was otherwise unaltered. The mammary gland also contains adipocytes, but adipocyte-specific deficiency of Nampt did not affect mammary gland NAD+ metabolism or mammary gland development. These results demonstrate that the NAD+ -salvage pathway is activated in mammary epithelial cells during lactation and suggest that this activation is required for production of milk NMN rather than mammary gland development. Our MGKO mice could be a suitable model for exploring the potential roles of NMN in milk.


Subject(s)
Epithelial Cells , Lactation , Mammary Glands, Animal , Mice, Knockout , Milk , Nicotinamide Mononucleotide , Nicotinamide Phosphoribosyltransferase , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Mononucleotide/metabolism , Mammary Glands, Animal/metabolism , Female , Epithelial Cells/metabolism , Milk/metabolism , Mice , Lactation/metabolism , Cytokines/metabolism , NAD/metabolism , Mice, Inbred C57BL
8.
Adv Exp Med Biol ; 1445: 169-177, 2024.
Article in English | MEDLINE | ID: mdl-38967759

ABSTRACT

Over the past 20 years, increasing evidence has demonstrated that immunoglobulins (Igs) can be widely generated from non B cells, including normal and malignant mammary epithelial cells. In normal breast tissue, the expression of IgG and IgA has been identified in epithelial cells of mammary glands during pregnancy and lactation, which can be secreted into milk, and might participate in neonatal immunity. On the other hand, non B-IgG is highly expressed in breast cancer cells, correlating with the poor prognosis of patients with breast cancer. Importantly, a specific group of IgG, bearing a unique N-linked glycan on the Asn162 site and aberrant sialylation modification at the end of the novel glycan (referred to as sialylated IgG (SIA-IgG)), has been found in breast cancer stem/progenitor-like cells. SIA-IgG can significantly promote the capacity of migration, invasiveness, and metastasis, as well as enhance self-renewal and tumorigenicity in vitro and in vivo. These findings suggest that breast epithelial cells can produce Igs with different biological activities under physiological and pathological conditions. During lactation, these Igs could be the main source of milk Igs to protect newborns from pathogenic infections, while under pathological conditions, they display oncogenic activity and promote the occurrence and progression of breast cancer.


Subject(s)
Breast Neoplasms , Epithelial Cells , Mammary Glands, Human , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Epithelial Cells/metabolism , Animals , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Lactation/metabolism , Pregnancy , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Immunoglobulins/metabolism
9.
PLoS One ; 19(6): e0304910, 2024.
Article in English | MEDLINE | ID: mdl-38837989

ABSTRACT

During lactation, the murine mammary gland is responsible for a significant increase in circulating serotonin. However, the role of mammary-derived serotonin in energy homeostasis during lactation is unclear. To investigate this, we utilized C57/BL6J mice with a lactation and mammary-specific deletion of the gene coding for the rate-limiting enzyme in serotonin synthesis (TPH1, Wap-Cre x TPH1FL/FL) to understand the metabolic contributions of mammary-derived serotonin during lactation. Circulating serotonin was reduced by approximately 50% throughout lactation in Wap-Cre x TPH1FL/FL mice compared to wild-type mice (TPH1FL/FL), with mammary gland and liver serotonin content reduced on L21. The Wap-Cre x TPH1FL/FL mice had less serotonin and insulin immunostaining in the pancreatic islets on L21, resulting in reduced circulating insulin but no changes in glucose. The mammary glands of Wap-Cre x TPH1FL/FL mice had larger mammary alveolar areas, with fewer and smaller intra-lobular adipocytes, and increased expression of milk protein genes (e.g., WAP, CSN2, LALBA) compared to TPH1FL/FL mice. No changes in feed intake, body composition, or estimated milk yield were observed between groups. Taken together, mammary-derived serotonin appears to contribute to the pancreas-mammary cross-talk during lactation with potential implications in the regulation of insulin homeostasis.


Subject(s)
Lactation , Liver , Mammary Glands, Animal , Mice, Inbred C57BL , Serotonin , Tryptophan Hydroxylase , Animals , Lactation/metabolism , Serotonin/metabolism , Female , Mammary Glands, Animal/metabolism , Mice , Liver/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Pancreas/metabolism , Insulin/metabolism , Insulin/blood
10.
Mol Metab ; 86: 101975, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925247

ABSTRACT

OBJECTIVE: The lactational period is associated with profound hyperphagia to accommodate the energy demands of nursing. These changes are important for the long-term metabolic health of the mother and children as altered feeding during lactation increases the risk of mothers and offspring developing metabolic disorders later in life. However, the specific behavioral mechanisms and neural circuitry mediating the hyperphagia of lactation are incompletely understood. METHODS: Here, we utilized home cage feeding devices to characterize the dynamics of feeding behavior in lactating mice. A combination of pharmacological and behavioral assays were utilized to determine how lactation alters meal structure, circadian aspects of feeding, hedonic feeding, and sensitivity to hunger and satiety signals in lactating mice. Finally, we utilized chemogenetic, immunohistochemical, and in vivo imaging approaches to characterize the role of hypothalamic agouti-related peptide (AgRP) neurons in lactational-hyperphagia. RESULTS: The lactational period is associated with increased meal size, altered circadian patterns of feeding, reduced sensitivity to gut-brain satiety signals, and enhanced sensitivity to negative energy balance. Hypothalamic AgRP neurons display increased sensitivity to negative energy balance and altered in vivo activity during the lactational state. Further, using in vivo imaging approaches we demonstrate that AgRP neurons are directly activated by lactation. Chemogenetic inhibition of AgRP neurons acutely reduces feeding in lactating mice, demonstrating an important role for these neurons in lactational-hyperphagia. CONCLUSIONS: Together, these results show that lactation collectively alters multiple components of feeding behavior and position AgRP neurons as an important cellular substrate mediating the hyperphagia of lactation.


Subject(s)
Agouti-Related Protein , Feeding Behavior , Hyperphagia , Hypothalamus , Lactation , Neurons , Animals , Agouti-Related Protein/metabolism , Lactation/metabolism , Hyperphagia/metabolism , Female , Mice , Neurons/metabolism , Hypothalamus/metabolism , Feeding Behavior/physiology , Energy Metabolism , Mice, Inbred C57BL
11.
J Nutr ; 154(7): 2006-2013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718924

ABSTRACT

BACKGROUND: In lactating women, iodine metabolism is regulated and maintained by the kidneys and mammary glands. Limited research exists on how iodine absorbed by lactating women is distributed between the kidneys and breasts. OBJECTIVES: This study aimed to accurately evaluate the total iodine intake (TII), urinary iodine excretion (UIE), and breast milk iodine excretion (BMIE) in lactating women and explore the relationship between TII and total iodine excretion (TIE). METHODS: A 7-d iodine metabolism study was conducted on 41 lactating women with a mean age of 30 y in Yuncheng and Gaoqing, China, from December 2021 to August 2023. TII and TIE were calculated by measuring the iodine content in food, water, 24-h urine, feces, and breast milk. The urinary iodine excretion rate (UIER), breast milk iodine excretion rate (BMIER), and partitioning of iodine excretion between urine and breast milk were determined. RESULTS: Iodine metabolism studies were performed for 285 d. The median TII and TIE values were 255 and 263 µg/d, respectively. With an increase in TII, UIER, and BMIER, the UIE and BMIE to TII ratio exhibited a downward trend. The median UIER, BMIER, and proportion of iodine excreted in urine and breast milk were 51.5%, 38.5%, 52%, and 37%, respectively. When the TII was <120 µg/d, the BMIER decreased with the increase of the TII (ß: -0.90; 95% confidence interval: -1.08, -0.72). CONCLUSIONS: When maternal iodine intake is low, the proportion in breast milk increases, ensuring sufficient iodine nutrition for infants. In addition, the UIE of lactating women with adequate iodine concentrations is higher than their BMIE. This study was registered at clinicaltrials.gov as NCT04492657.


Subject(s)
Iodine , Lactation , Milk, Human , Adult , Female , Humans , China , Iodine/urine , Iodine/metabolism , Lactation/metabolism , Milk, Human/chemistry , Milk, Human/metabolism , Cohort Studies
12.
J Clin Psychopharmacol ; 44(4): 337-344, 2024.
Article in English | MEDLINE | ID: mdl-38739007

ABSTRACT

PURPOSE/BACKGROUND: Zuranolone is a positive allosteric modulator of both synaptic and extrasynaptic γ-aminobutyric acid type A receptors and a neuroactive steroid approved as an oral, once-daily, 14-day treatment course for adults with postpartum depression in the United States. This study assessed zuranolone transfer into breast milk. METHODS/PROCEDURES: Healthy, nonpregnant, lactating adult female participants received once-daily 30 mg zuranolone from day (D)1 through D5 in this phase 1 open-label study. The relative infant dose (RID; weight-adjusted proportion of the maternal dose in breast milk over 24 hours) for 30 mg zuranolone was assessed at D5. An RID for 50 mg zuranolone was estimated using a simulation approach across a range of infant ages and weights. FINDINGS/RESULTS: Of 15 enrolled participants (mean age, 30.1 years), 14 completed the study. The mean RID for 30 mg zuranolone at D5 was 0.357%; the mean steady-state milk volume over D3 to D5 decreased from baseline by 8.3%. Overall unbound zuranolone in plasma was low (≤0.49%). Plasma concentrations peaked at D5 before decreasing in a biexponential manner. There was strong concordance between the temporal profiles of zuranolone concentrations in plasma and breast milk. The estimated mean RID for 50 mg zuranolone based on a milk intake of 200 mL/kg per day was 0.984%. All treatment-emergent adverse events reported by participants were mild, the most common being dizziness (n = 3). IMPLICATIONS/CONCLUSIONS: Zuranolone transfer into the breast milk of healthy, nonpregnant, lactating adult female participants was low; the estimated RID for 50 mg zuranolone was <1%, well below the <10% threshold generally considered compatible with breastfeeding.


Subject(s)
Lactation , Milk, Human , Humans , Female , Adult , Milk, Human/metabolism , Lactation/drug effects , Lactation/metabolism , Young Adult , Healthy Volunteers , Pregnanolone , Pyrazoles
13.
Anim Sci J ; 95(1): e13965, 2024.
Article in English | MEDLINE | ID: mdl-38816230

ABSTRACT

To improve sustainability, dairy farms can reduce protein-rich concentrate in the cows' diet providing fresh herbage produced on-farm. This study aimed to quantify effects of increasing the percentage of fresh herbage (0%, 25%, 50%, and 75%, on a dry matter [DM] basis) in a partial mixed ration-based diet on cow N use efficiency and excretion. The study was performed with five lactating cows, in a 4 × 4 Latin square design for four 3 week periods. Individual DM intake, milk yield, feces and urine excretions, and their N concentrations were measured daily. Dietary crude protein concentrations varied little among treatments (127 to 134 g/kg DM). DM intake and milk yield decreased linearly by 5.2 and 3.7 kg/day, respectively, while N use efficiency increased by 4.1 percentage points from 0% to 75% DM of fresh herbage in the diet. Urinary N was not influenced by the treatments, while fecal N decreased as the percentage of fresh herbage increased. This study highlights that replacing partial mixed ration with an increasing percentage of fresh herbage with slight changes in dietary N concentration increases N use efficiency and the percentage of urinary N in excreted N.


Subject(s)
Animal Nutritional Physiological Phenomena , Diet , Feces , Glycine max , Lactation , Nitrogen , Silage , Zea mays , Animals , Cattle/metabolism , Female , Nitrogen/metabolism , Nitrogen/urine , Silage/analysis , Lactation/metabolism , Zea mays/metabolism , Glycine max/metabolism , Feces/chemistry , Diet/veterinary , Animal Nutritional Physiological Phenomena/physiology , Milk/metabolism , Milk/chemistry , Dairying , Animal Feed , Dietary Proteins/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/analysis
14.
Clin Pharmacokinet ; 63(5): 561-588, 2024 May.
Article in English | MEDLINE | ID: mdl-38748090

ABSTRACT

Human milk is a remarkable biofluid that provides essential nutrients and immune protection to newborns. Breastfeeding women consuming medications could pass the drug through their milk to neonates. Drugs can be transferred to human milk by passive diffusion or active transport. The physicochemical properties of the drug largely impact the extent of drug transfer into human milk. A comprehensive understanding of the physiology of human milk formation, composition of milk, mechanisms of drug transfer, and factors influencing drug transfer into human milk is critical for appropriate selection and use of medications in lactating women. Quantification of drugs in the milk is essential for assessing the safety of pharmacotherapy during lactation. This can be achieved by developing specific, sensitive, and reproducible analytical methods using techniques such as liquid chromatography coupled with mass spectrometry. The present review briefly discusses the physiology of human milk formation, composition of human milk, mechanisms of drug transfer into human milk, and factors influencing transfer of drugs from blood to milk. We further expand upon and critically evaluate the existing analytical approaches/assays used for the quantification of drugs in human milk.


Subject(s)
Milk, Human , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Pharmaceutical Preparations/metabolism , Female , Lactation/metabolism , Breast Feeding , Infant, Newborn , Chromatography, Liquid/methods , Mass Spectrometry/methods
15.
Exp Cell Res ; 439(1): 114090, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38740167

ABSTRACT

Dopamine D2 receptors (D2Rs) play crucial roles in regulating diverse physiological functions of the central nervous system and peripheral organs. D2Rs are also expressed in mammary glands. However, which cell types express D2Rs and whether they are involved in milk production remains unclear. The present findings revealed that D2Rs are expressed in the apical regions of the lateral membranes of mammary epithelial cells (MECs) in lactating mice. We also investigated the effects of the D2R agonist bromocriptine and/or antagonist domperidone on intracellular cAMP levels, milk protein production, and apoptosis in a lactation culture model of MECs that produce major milk components like lactating MECs in vivo. We found that bromocriptine decreased intracellular cAMP levels, whereas domperidone dose-dependently neutralized this effect. Bromocriptine also inhibited casein and lactoferrin production and suppressed activities of STAT5 and glucocorticoid receptors (GRs). Domperidone neutralized the inhibition of casein production as well as STAT5 and GR inactivation induced by bromocriptine. Furthermore, D2R activation by bromocriptine induced apoptosis and inactivated ERK, a signaling molecule responsible for promoting cell proliferation and survival. Domperidone attenuated ERK inactivation and apoptosis induced by bromocriptine. These findings suggest that D2Rs play regulatory roles in milk protein production and apoptosis in MECs.


Subject(s)
Apoptosis , Bromocriptine , Domperidone , Epithelial Cells , Lactation , Mammary Glands, Animal , Milk Proteins , Receptors, Dopamine D2 , Animals , Female , Mice , Apoptosis/drug effects , Bromocriptine/pharmacology , Cells, Cultured , Cyclic AMP/metabolism , Domperidone/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Lactation/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Milk Proteins/metabolism , Milk Proteins/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , STAT5 Transcription Factor/metabolism
16.
Anim Sci J ; 95(1): e13938, 2024.
Article in English | MEDLINE | ID: mdl-38567743

ABSTRACT

We compared the in situ dry matter degradability (ISDMD) and crude protein degradability (ISCPD) of high-moisture corn grain silage and dried corn grains produced in Japan (JHC and JDC, respectively) with corn grains imported from the United States (USC), Brazil (BRC), and South Africa (SAC). The ISDMD values of USC, BAC, and SAC were between those of JHC and JDC, but ISDMD did not differ significantly between USC and SAC. In contrast, ISDMD was lower for BAC than USC and SAC. Overall, our results indicate that ISDMD and ISCPD in the rumen differ between corn grains sources (domestic compared with imported and between production locations), primarily due to differences between the corn varieties represented. In particular, the ISDMD and ISCPD of JHC were greater than those of JDC, and this difference in degradability needs to be considered when using high-moisture corn grain silage as a substitute for dried corn grain as a feed for dairy cattle.


Subject(s)
Silage , Zea mays , Cattle , Female , Animals , Silage/analysis , Lactation/metabolism , Japan , Diet/veterinary , Rumen/metabolism , Animal Feed/analysis , Digestion , Milk/metabolism , Edible Grain/metabolism
17.
JPEN J Parenter Enteral Nutr ; 48(4): 479-485, 2024 May.
Article in English | MEDLINE | ID: mdl-38566550

ABSTRACT

BACKGROUND: Extracellular vesicles in human milk are critical in supporting newborn growth and development. Bioavailability of dietary extracellular vesicles may depend on the composition of membrane lipids. Single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase gene cluster impact the content of long-chain polyunsaturated fatty acids in human milk phospholipids. This study investigated the relation between variation in FADS1 and FADS2 with the content of polyunsaturated fatty acids in extracellular vesicles from human milk. METHODS: Milk was obtained from a cohort of mothers (N = 70) at 2-4 weeks of lactation. SNPs in the FADS gene locus were determined using pyrosequencing for rs174546 in FADS1 and rs174575 in FADS2. Quantitative lipidomic analysis of polyunsaturated fatty acids in human milk and extracellular vesicles from human milk was completed by gas chromatography-mass spectrometry. RESULTS: The rs174546 and rs174575 genotypes were independent predictors of the arachidonic acid content in extracellular vesicles. The rs174546 genotype also predicted eicosapentaenoic acid and docosahexaenoic acid in extracellular vesicles. The reduced content of long-chain polyunsaturated fatty acids in extracellular vesicles in human milk may be due to lower fatty acid desaturase activity in mothers who are carriers of the A allele in rs174546 or the G allele in rs174575. CONCLUSION: The polyunsaturated fatty acid composition of milk extracellular vesicles is predicted by the FADS genotype. These findings yield novel insights regarding extracellular vesicle content and composition that can inform the design of future research to explore how lipid metabolites impact the bioavailability of human milk extracellular vesicles.


Subject(s)
Delta-5 Fatty Acid Desaturase , Extracellular Vesicles , Fatty Acid Desaturases , Fatty Acids, Unsaturated , Genotype , Milk, Human , Polymorphism, Single Nucleotide , Humans , Milk, Human/chemistry , Milk, Human/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Female , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/metabolism , Adult , Genetic Association Studies , Cohort Studies , Lactation/genetics , Lactation/metabolism , Docosahexaenoic Acids/analysis , Docosahexaenoic Acids/metabolism
18.
Int J Biol Macromol ; 267(Pt 2): 131613, 2024 May.
Article in English | MEDLINE | ID: mdl-38642686

ABSTRACT

As glycosylations are difficult to analyze, their roles and effects are poorly understood. Glycosylations in human milk (HM) differ across lactation. Glycosylations can be involved in antimicrobial activities and may serve as food for beneficial microorganisms. This study aimed to identify and analyze O-linked glycans in HM by high-throughput mass spectrometry. 184 longitudinal HM samples from 66 donors from day 3 and months 1, 2, and 3 postpartum were subjected to a post-translational modification specific enrichment-based strategy using TiO2 and ZrO2 beads for O-linked glycopeptide enrichment. ß-CN was found to be a major O-linked glycoprotein, additionally, αS1-CN, κ-CN, lactotransferrin, and albumin also contained O-linked glycans. As glycosyltransferases and glycosidases are involved in assembling the glycans including O-linked glycosylations, these were further investigated. Some glycosyltransferases and glycosidases were found to be significantly decreasing through lactation, including two O-linked glycan initiator enzymes (GLNT1 and GLNT2). Despite their decrease, the overall level of O-linked glycans remained stable in HM over lactation. Three different motifs for O-linked glycosylation were enriched in HM proteins: Gly-Xxx-Xxx-Gly-Ser/Thr, Arg-Ser/Thr and Lys-Ser/Thr. Further O-linked glycan motifs on ß-CN were observed to differ between intact proteins and endogenous peptides in HM.


Subject(s)
Caseins , Lactation , Milk, Human , Whey Proteins , Humans , Milk, Human/chemistry , Glycosylation , Female , Caseins/metabolism , Caseins/chemistry , Lactation/metabolism , Whey Proteins/chemistry , Whey Proteins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Glycopeptides/metabolism , Glycopeptides/chemistry , Protein Processing, Post-Translational
19.
mSystems ; 9(4): e0002324, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501812

ABSTRACT

Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as ß-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.


Subject(s)
Gastrointestinal Microbiome , Insulins , Female , Humans , Pregnancy , Cattle , Animals , Lactation/metabolism , Glucose/metabolism , Lipolysis , Insulins/metabolism
20.
Eur J Pediatr ; 183(6): 2671-2682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38509232

ABSTRACT

To describe the variability in carotenoid content of human milk (HM) in mothers of very to extremely low birth weight preterm infants throughout lactation and to explore the relationship between lutein in HM and the occurrence of retinopathy of prematurity (ROP) in preterm infants. We recruited healthy mothers along with their preterm infants that were born at gestational age 24 + 2 to 29 + 6 weeks or with a birth weight under 1500 g and were exclusively breastfed HM. Each participant provided up to 7 HM samples (2-10 ml) on day 0-3 and once a week until 6 weeks. Additionally, when possible, a blood sample was collected from the infant at week 6. Concentrations of the major carotenoids (lutein, zeaxanthin, beta-carotene, and lycopene) in all HM and blood samples were assessed and compared. Thirty-nine mother-infant dyads were included and 184 HM samples and 21 plasma samples were provided. Mean lutein, zeaxanthin, beta-carotene, and lycopene concentration decreased as lactation progressed, being at their highest in colostrum samples (156.9 vs. 66.9 vs. 363.9 vs. 426.8 ng/ml, respectively). Lycopene (41%) and beta-carotene (36%) were the predominant carotenoids in colostrum and up to 2 weeks post-delivery. Inversely, the proportion of lutein and zeaxanthin increased with lactation duration to account for 45% of the carotenoids in mature HM. Lutein accounted for 58% of the carotenoids in infant plasma and only 28% in HM. Lutein content of transition and mature HM did not differ between mothers of ROP and non-ROP infants.Conclusion Carotenoid content of HM was dynamic and varied between mothers and as lactation progressed. Infant plasma displayed a distinct distribution of carotenoids from HM.


Subject(s)
Carotenoids , Milk, Human , Humans , Milk, Human/chemistry , Female , Carotenoids/analysis , Carotenoids/blood , Infant, Newborn , Adult , Longitudinal Studies , Retinopathy of Prematurity/blood , Infant, Premature , Male , Lactation/metabolism , Colostrum/chemistry , Breast Feeding , Lutein/analysis , Lutein/blood
SELECTION OF CITATIONS
SEARCH DETAIL