Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.080
1.
Rapid Commun Mass Spectrom ; 38(15): e9769, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38782757

RATIONALE: Succinic acid and lactic acid have been associated with diarrhea in weaned piglets. The level of succinic acid and lactic acid in serum, meat, and intestinal contents is important to elucidate the mechanism of diarrhea in weaned piglets. METHODS: A facile method was developed for the quantification of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS). The serum samples underwent protein precipitation with methanol. The meat and intestinal contents were freeze-dried and homogenized using a tissue grinding apparatus. Methanol-water mixture (80:20, v/v) was used for homogenizing the meat, while water was used for homogenizing the intestinal contents. An additional step of protein precipitation with acetonitrile was required for the intestinal contents. The resulting solution was diluted with water before being analyzed by UHPLC/MS/MS. Separation of succinic acid and lactic acid could be achieved within 3 min using a Kinetic XB-C18 column. RESULTS: The coefficients of variation for peak areas of succinic acid and lactic acid were less than 5.0%. The established method demonstrated good linearity as indicated by correlation coefficients exceeding 0.996. Additionally, satisfactory recoveries ranging from 88.58% to 108.8% were obtained. The detection limits (RS/N = 3) for succinic acid and lactic acid were determined to be 0.75 ng/mL and 0.02 µg/mL, respectively. CONCLUSION: This method exhibited high sensitivity, simplicity in operation, and small sample weight, making it suitable for quantitative determination of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat. The method developed will provide valuable technical support in studying the metabolic mechanisms of succinic acid and lactic acid in pigs.


Lactic Acid , Succinic Acid , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Lactic Acid/blood , Lactic Acid/analysis , Chromatography, High Pressure Liquid/methods , Swine , Succinic Acid/blood , Succinic Acid/analysis , Succinic Acid/chemistry , Meat/analysis , Reproducibility of Results , Limit of Detection , Linear Models
2.
Sci Rep ; 14(1): 12570, 2024 05 31.
Article En | MEDLINE | ID: mdl-38821996

Due to growing interest in the investigation of exercise induced sweat biomarkers to assess an individual's health and the increasing prevalence of tattoos in the world's population, investigators sought to determine whether local sweat concentrations and excretion rates of epidermal growth factor (EGF), interleukin (IL) -1α, IL-6, IL-8, cortisol, glucose, blood urea nitrogen (BUN), and lactate differ between tattooed and contralateral non-tattooed skin during exercise. Sixteen recreational exercisers [female (50%)] (age = 25-48 years) with ≥ 1 unilateral permanent tattoo [median tattoo age = 6 years, IQR = 5] on the arm/torso completed an outdoor group fitness session. There were no significant differences between tattooed and non-tattooed skin for sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, or lactate concentrations. There were no significant differences between tattooed and non-tattooed skin for sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, or lactate excretion rate. Findings suggest that permanent tattoos older than 1 year may not impact local sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, and lactate concentrations or excretion rates during exercise.Clinical trial identifier NCT04920266 was registered on June 9, 2021.


Blood Urea Nitrogen , Cytokines , Exercise , Hydrocortisone , Lactic Acid , Sweat , Tattooing , Adult , Female , Humans , Male , Middle Aged , Biomarkers/analysis , Cytokines/metabolism , Cytokines/analysis , Exercise/physiology , Glucose/metabolism , Glucose/analysis , Hydrocortisone/analysis , Hydrocortisone/blood , Hydrocortisone/metabolism , Lactic Acid/metabolism , Lactic Acid/analysis , Sweat/metabolism , Sweat/chemistry
3.
Anal Chem ; 96(22): 9159-9166, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38726669

Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.


Hydrogels , Lasers , Skin , Sweat , Wearable Electronic Devices , Humans , Skin/chemistry , Skin/metabolism , Hydrogels/chemistry , Sweat/chemistry , Sweat/metabolism , Glucose/analysis , Glucose/metabolism , Urea/chemistry , Urea/analysis , Lactic Acid/analysis , Lactic Acid/chemistry , Liquid Crystals/chemistry , Methylgalactosides
4.
Biosens Bioelectron ; 259: 116386, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38749285

Faced with the increasing prevalence of chronic kidney disease (CKD), portable monitoring of CKD-related biomarkers such as potassium ion (K+), creatinine (Cre), and lactic acid (Lac) levels in sweat has shown tremendous potential for early diagnosis. However, a rapidly manufacturable portable device integrating multiple CKD-related biomarker sensors for ease of sweat testing use has yet to be reported. Here, a portable electrochemical sensor integrated with multifunctional laser-induced graphene (LIG) circuits and laser-printed nanomaterials based working electrodes fabricated by fully automatic laser manufacturing is proposed for non-invasive human kidney function monitoring. The sensor comprises a two-electrode LIG circuit for K+ sensing, a three-electrode LIG circuit with a Kelvin compensating connection for Cre and Lac sensing, and a printed circuit board based portable electrochemical workstation. The working electrodes containing Cu and Cu2O nanoparticles fabricated by two-step laser printing show good sensitivity and selectivity toward Cre and Lac sensing. The sensor circuits are fabricated by generating a hydrophilic-hydrophobic interface on a patterned LIG through laser. This sensor recruited rapid laser manufacturing and integrated with multifunctional LIG circuits and laser-printed nanomaterials based working electrodes, which is a potential kidney function monitoring solution for healthy people and kidney disease patients.


Biosensing Techniques , Graphite , Lasers , Nanostructures , Renal Insufficiency, Chronic , Humans , Graphite/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Nanostructures/chemistry , Renal Insufficiency, Chronic/diagnosis , Kidney/chemistry , Creatinine/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Sweat/chemistry , Equipment Design , Lactic Acid/analysis , Electrodes , Kidney Function Tests/instrumentation , Biomarkers/analysis , Copper/chemistry
5.
PLoS One ; 19(5): e0301041, 2024.
Article En | MEDLINE | ID: mdl-38701088

OBJECTIVE: To evaluate the safety and performance of an implantable near-infrared (NIR) spectroscopy sensor for multi-metabolite monitoring of glucose, ketones, lactate, and ethanol. RESEARCH DESIGN AND METHODS: This is an early feasibility study (GLOW, NCT04782934) including 7 participants (4 with type 1 diabetes (T1D), 3 healthy volunteers) in whom the YANG NIR spectroscopy sensor (Indigo) was implanted for 28 days. Metabolic challenges were used to vary glucose levels (40-400 mg/dL, 2.2-22.2 mmol/L) and/or induce increases in ketones (ketone drink, up to 3.5 mM), lactate (exercise bike, up to 13 mM) and ethanol (4-8 alcoholic beverages, 40-80g). NIR spectra for glucose, ketones, lactate, and ethanol levels analyzed with partial least squares regression were compared with blood values for glucose (Biosen EKF), ketones and lactate (GlucoMen LX Plus), and breath ethanol levels (ACE II Breathalyzer). The effect of potential confounders on glucose measurements (paracetamol, aspartame, acetylsalicylic acid, ibuprofen, sorbitol, caffeine, fructose, vitamin C) was investigated in T1D participants. RESULTS: The implanted YANG sensor was safe and well tolerated and did not cause any infectious or wound healing complications. Six out 7 sensors remained fully operational over the entire study period. Glucose measurements were sufficiently accurate (overall mean absolute (relative) difference MARD of 7.4%, MAD 8.8 mg/dl) without significant impact of confounders. MAD values were 0.12 mM for ketones, 0.16 mM for lactate, and 0.18 mM for ethanol. CONCLUSIONS: The first implantable multi-biomarker sensor was shown to be well tolerated and produce accurate measurements of glucose, ketones, lactate, and ethanol. TRIAL REGISTRATION: Clinical trial identifier: NCT04782934.


Ethanol , Feasibility Studies , Ketones , Lactic Acid , Spectroscopy, Near-Infrared , Humans , Ketones/analysis , Male , Ethanol/analysis , Spectroscopy, Near-Infrared/methods , Adult , Female , Lactic Acid/analysis , Lactic Acid/blood , Blood Glucose/analysis , Middle Aged , Diabetes Mellitus, Type 1/blood , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Glucose/analysis
6.
An Acad Bras Cienc ; 96(2): e20231388, 2024.
Article En | MEDLINE | ID: mdl-38747802

This study is the first to apply training impulse (TRIMP) and Training Monotony (TM) methodologies, within the realm of sport science, in animal model studies. Rats were divided into Sedentary (SED, n=10) and Training (TR, n=13). TR performed a four-week moderate-intensity interval training with load progression. Lactate kinetics, lactate training impulse (TRIMPLac), maximal speed training impulse (TRIMPSmax) and TM were utilized to develop and monitor training protocol. TR showed an 11.9% increase in time to exhaustion at the second maximum incremental test and a 17.5% increase at the third test. External work was increased by 17.8% at the second test and 30.3% at the third. There was a 10.6% increase in external work at the third test compared to the second for TR. No difference in TRIMPLac between the 1st week (94±9 A.U) and 3rdweek (83±10 A.U) were seen. TRIMPSmax was 2400 A.U. in the 1st week, 2760 A.U. in the 2nd and 3rd weeks, and 3120 A.U. in the 4th week. The TM remained at 1.24 A.U throughout the protocol and there was no dropouts. TRIMPLac and TRIMPSmax contributed to the development and monitoring loads, demonstrating their potential to improve the accuracy of training protocols in animal model research.


Lactic Acid , Physical Conditioning, Animal , Rats, Wistar , Animals , Physical Conditioning, Animal/physiology , Male , Lactic Acid/blood , Lactic Acid/analysis , Rats , Time Factors
7.
Acta Neurochir (Wien) ; 166(1): 190, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38653934

BACKGROUND: Cerebral perfusion pressure (CPP) management in the developing child with traumatic brain injury (TBI) is challenging. The pressure reactivity index (PRx) may serve as marker of cerebral pressure autoregulation (CPA) and optimal CPP (CPPopt) may be assessed by identifying the CPP level with best (lowest) PRx. To evaluate the potential of CPPopt guided management in children with severe TBI, cerebral microdialysis (CMD) monitoring levels of lactate and the lactate/pyruvate ratio (LPR) (indicators of ischemia) were related to actual CPP levels, autoregulatory state (PRx) and deviations from CPPopt (ΔCPPopt). METHODS: Retrospective study of 21 children ≤ 17 years with severe TBI who had both ICP and CMD monitoring were included. CPP, PRx, CPPopt and ΔCPPopt where calculated, dichotomized and compared with CMD lactate and lactate-pyruvate ratio. RESULTS: Median age was 16 years (range 8-17) and median Glasgow coma scale motor score 5 (range 2-5). Both lactate (p = 0.010) and LPR (p = < 0.001) were higher when CPP ≥ 70 mmHg than when CPP < 70. When PRx ≥ 0.1 both lactate and LPR were higher than when PRx < 0.1 (p = < 0.001). LPR was lower (p = 0.012) when CPPopt ≥ 70 mmHg than when CPPopt < 70, but there were no differences in lactate levels. When ΔCPPopt > 10 both lactate (p = 0.026) and LPR (p = 0.002) were higher than when ΔCPPopt < -10. CONCLUSIONS: Increased levels of CMD lactate and LPR in children with severe TBI appears to be related to disturbed CPA (PRx). Increased lactate and LPR also seems to be associated with actual CPP levels ≥ 70 mmHg. However, higher lactate and LPR values were also seen when actual CPP was above CPPopt. Higher CPP appears harmful when CPP is above the upper limit of pressure autoregulation. The findings indicate that CPPopt guided CPP management may have potential in pediatric TBI.


Brain Injuries, Traumatic , Cerebrovascular Circulation , Homeostasis , Intracranial Pressure , Lactic Acid , Humans , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/metabolism , Child , Adolescent , Homeostasis/physiology , Female , Male , Retrospective Studies , Intracranial Pressure/physiology , Cerebrovascular Circulation/physiology , Lactic Acid/metabolism , Lactic Acid/analysis , Microdialysis/methods , Pyruvic Acid/metabolism , Pyruvic Acid/analysis , Brain/metabolism , Brain/physiopathology
8.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38667180

A lactic acid (LA) monitoring system aimed at sweat monitoring was fabricated and tested. The sweat LA monitoring system uses a continuous flow of phosphate buffer saline, instead of chambers or cells, for collecting and storing sweat fluid excreted at the skin surface. To facilitate the use of the sweat LA monitoring system by subjects when exercising, the fluid control system, including the sweat sampling device, was designed to be unaffected by body movements or muscle deformation. An advantage of our system is that the skin surface condition is constantly refreshed by continuous flow. A real sample test was carried out during stationary bike exercise, which showed that LA secretion increased by approximately 10 µg/cm2/min compared to the baseline levels before exercise. The LA levels recovered to baseline levels after exercise due to the effect of continuous flow. This indicates that the wristwatch sweat LA monitor has the potential to enable a detailed understanding of the LA distribution at the skin surface.


Lactic Acid , Sweat , Humans , Sweat/chemistry , Lactic Acid/analysis , Monitoring, Physiologic , Wearable Electronic Devices , Biosensing Techniques , Exercise , Skin
9.
Biotechnol Bioeng ; 121(7): 2193-2204, 2024 Jul.
Article En | MEDLINE | ID: mdl-38639160

This study presents a novel approach for developing generic metabolic Raman calibration models for in-line cell culture analysis using glucose and lactate stock solution titration in an aqueous phase and data augmentation techniques. First, a successful set-up of the titration method was achieved by adding glucose or lactate solution at several different constant rates into the aqueous phase of a bench-top bioreactor. Subsequently, the in-line glucose and lactate concentration were calculated and interpolated based on the rate of glucose and lactate addition, enabling data augmentation and enhancing the robustness of the metabolic calibration model. Nine different combinations of spectra pretreatment, wavenumber range selection, and number of latent variables were evaluated and optimized using aqueous titration data as training set and a historical cell culture data set as validation and prediction set. Finally, Raman spectroscopy data collected from 11 historical cell culture batches (spanning four culture modes and scales ranging from 3 to 200 L) were utilized to predict the corresponding glucose and lactate values. The results demonstrated a high prediction accuracy, with an average root mean square errors of prediction of 0.65 g/L for glucose, and 0.48 g/L for lactate. This innovative method establishes a generic metabolic calibration model, and its applicability can be extended to other metabolites, reducing the cost of deploying real-time cell culture monitoring using Raman spectroscopy in bioprocesses.


Cell Culture Techniques , Glucose , Lactic Acid , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Glucose/metabolism , Lactic Acid/metabolism , Lactic Acid/analysis , Calibration , Cell Culture Techniques/methods , Bioreactors , Models, Biological , CHO Cells , Cricetulus , Culture Media/chemistry , Animals
10.
Se Pu ; 42(3): 275-281, 2024 Mar 08.
Article Zh | MEDLINE | ID: mdl-38503704

A non-invasive condensation collection-ion chromatography method was established for the determination of organic acids and anions including lactic acid, formic acid, acetic acid, pyruvic acid, chloride, nitrate, nitrite, and sulfate in the exhaled breath of humans. The breath exhaled was condensed and collected using a home-made exhaled breath condensation equipment. This equipment included a disposable mouthpiece as a blow-off port, one-way valve and flow meter, cold trap, disposable condensate collection tube placed in the cold trap, and gas outlet. A standard sampling procedure was used. Before collection, the collection temperature and sampling volume were set on the instrument control panel, and sampling was started when the cold-trap temperature dropped to the set value, while maintaining the balance. Subjects were required to gargle with pure water before sampling. During the sampling process, the subjects were required to inhale deeply until the lungs were full of gas and then exhale evenly through the air outlet. When the set volume was collected, the instrument made a prompt sound; then, the collection was immediately ended, the expiration time was recorded, and the average collection flow was calculated according to the expiration time and sampling volume. After collection, the disposable condensation collection tube was immediately taken out, sealed, and stored in the refrigerator at -20 ℃ away from light, and immediately used for further testing. The organic acids and anions in exhaled breath condensation (EBC) were filtered through a 0.22 µm membrane filter before injection and detected by ion chromatography with conductivity detection. Factors such as collection temperature and collection flow rate during condensation collection were optimized. The optimal cooling temperature was set at -15 ℃, and the optimal exhaled breath flow rate was set at 15 L/min. The mobile phase consisted of a mixture of sodium carbonate (1.5 mmol/L) and sodium bicarbonate (3 mmol/L). The flow rate was 0.8 mL/min, and the injection volume was 100 µL. An IC-SA3 column (250 mm×4.0 mm) was used, and the temperature was set at 45 ℃. An ICDS-40A electrodialysis suppressor was used, and the current was set at 150 mA. The linear ranges of the eight organic acids and anions were 0.1-10.0 mg/L; their correlation coefficients (r) were ≥0.9993. The limits of detection (LODs) for the eight organic acids and anions were 0.0017-0.0150 mg/L based on a signal-to-noise ratio of 3, and the limits of quantification (LOQs) were 0.0057-0.0500 mg/L based on a signal-to-noise ratio of 10. The intra-day precisions were 5.06%-6.33% (n=5), and the inter-day precisions were 5.37%-7.50% (n=5). This method was used to detect organic acids and anions in the exhaled breath of five healthy subjects. The contents of organic acids and anions in the exhaled breath were calculated. The content of lactic acid was relatively high, at 1.13-42.3 ng/L, and the contents of other seven organic acids and anions were 0.18-11.0 ng/L. During a 10 km-long run, the majority of organic acids and anions in the exhaled breath of five subjects first increased and then decreased. However, due to abnormal metabolism, the content changes of lactic acid, acetic acid, pyruvic acid and chloride in one subject were obviously different from others during exercise, showing a continuous rise. This method has the advantages of involving a simple sampling process and exhibiting good precision, few side effects, and no obvious discomfort or risk to the subjects. This study provides experimental ideas and a theoretical basis for future research on human metabolites.


Chlorides , Pyruvic Acid , Humans , Anions , Lactic Acid/analysis , Chromatography , Acetates/analysis
11.
ACS Sens ; 9(3): 1565-1574, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38447101

Molecular recognition and sensing can be coupled to interfacial capacitance changes on graphene foam surfaces linked to double layer effects and coupled to enhanced quantum capacitance. 3D graphene foam film electrodes (Gii-Sens; thickness approximately 40 µm; roughness factor approximately 100) immersed in aqueous buffer media exhibit an order of magnitude jump in electrochemical capacitance upon adsorption of a charged molecular receptor based on pyrene-appended boronic acids (here, 4-borono-1-(pyren-2-ylmethyl)pyridin-1-ium bromide, or abbreviated T1). This pyrene-appended pyridinium boronic acid receptor is employed here as a molecular receptor for lactate. In the presence of lactate and at pH 4.0 (after pH optimization), the electrochemical capacitance (determined by impedance spectroscopy) doubles again. Lactic acid binding is expressed with a Hillian binding constant (Klactate = 75 mol-1 dm3 and α = 0.8 in aqueous buffer, Klactate = 460 mol-1 dm3 and α = 0.8 in artificial sweat, and Klactate = 340 mol-1 dm3 and α = 0.65 in human serum). The result is a selective molecular probe response for lactic acid with LoD = 1.3, 1.4, and 1.8 mM in aqueous buffer media (pH 4.0), in artificial sweat (adjusted to pH 4.7), and in human serum (pH adjusted to 4.0), respectively. The role of the pyrene-appended boronic acid is discussed based on the double layer structure and quantum capacitance changes. In the future, this new type of molecular capacitance sensor could provide selective enzyme-free analysis without analyte consumption for a wider range of analytes and complex environments.


Graphite , Lactic Acid , Humans , Lactic Acid/analysis , Graphite/chemistry , Boronic Acids/chemistry , Sweat/chemistry , Electrodes
12.
J Emerg Med ; 66(5): e619-e631, 2024 May.
Article En | MEDLINE | ID: mdl-38556374

BACKGROUND: Timely diagnosis of acute intestinal necrosis (AIN) is lifesaving, but challenging due to unclear clinical presentation. D-lactate has been proposed as an AIN biomarker. OBJECTIVES: We aimed to test the diagnostic performance in a clinical setting. METHODS: We performed a cross-sectional prospective study, including all adult patients with acute referral to a single tertiary gastrointestinal surgical department during 2015-2016 and supplemented by enrollment of high-risk in-hospital patients suspected of having AIN during 2016-2019. AIN was verified intraoperatively, and D-lactate was analyzed using an automatic spectrophotometric set-up. A D-lactate cut-off for AIN was estimated using the receiver operating characteristic curve. The performance according to patient subgroups was estimated using the area under the receiver operating characteristic curve (AUC). Given the exploratory nature of this study, a formal power calculation was not feasible. RESULTS: Forty-four AIN patients and 2914 controls were enrolled. The D-lactate cut-off was found to be 0.0925 mM. Due to lipemic interference, D-lactate could not be quantified in half of the patients, leaving 23 AIN patients and 1456 controls for analysis. The AUC for the diagnosis of AIN by D-lactate was 0.588 (95% confidence interval 0.475-0.712), with a sensitivity of 0.261 and specificity of 0.892. Analysis of high-risk patients showed similar results (AUC 0.579; 95% confidence interval 0.422-0.736). CONCLUSION: D-lactate showed low sensitivity for AIN in both average-risk and high-risk patients. Moreover, lipemic interference precluded valid spectrophotometric assessment of D-lactate in half of the patients, further disqualifying the clinical utility of D-lactate as a diagnostic marker for AIN.


Biomarkers , Lactic Acid , Necrosis , Humans , Cross-Sectional Studies , Prospective Studies , Male , Female , Biomarkers/blood , Biomarkers/analysis , Lactic Acid/blood , Lactic Acid/analysis , Middle Aged , Aged , Adult , ROC Curve , Acute Disease
13.
Nat Protoc ; 19(5): 1311-1347, 2024 May.
Article En | MEDLINE | ID: mdl-38307980

As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.


Biosensing Techniques , Lactic Acid , Biosensing Techniques/methods , Animals , Humans , Lactic Acid/metabolism , Lactic Acid/analysis , Mice
14.
J Food Sci ; 89(2): 834-850, 2024 Feb.
Article En | MEDLINE | ID: mdl-38167751

Lactic acid fermentation is an effective method for improving the quality of black chokeberry. This study aimed to investigate the influence of lactic acid bacteria on the phenolic profile, antioxidant activities, and volatiles of black chokeberry juice. Initially, 107  cfu/mL of Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Lacticaseibacillus rhamnosus were inoculated into pasteurized black chokeberry juice and fermented for 48 h at 37°C. All these strains enhanced the total phenolic and total flavonoid contents, with La. acidophilus showing the highest total phenolic (1683.64 mg/L) and total flavonoid (659.27 mg/L) contents. Phenolic acids, flavonoids, and anthocyanins were identified using ultrahigh-performance liquid chromatography-tandem mass spectrometry. The prevalent phenolic acid, flavonoid, and anthocyanin in the lactic-acid-fermented black chokeberry juice were cinnamic acid, rutin, and cyanidin-3-O-rutinoside, respectively. Furthermore, following fermentation, the DPPH and ABTS scavenging capacity, as well as the reducing power capacity, increased from 59.98% to 92.70%, 83.06% to 94.95%, and 1.24 to 1.82, respectively. Pearson's correlation analysis revealed that the transformation of phenolic acids, flavonoids, and anthocyanins probably contributed to enhancing antioxidant activities and color conversation in black chokeberry juice. A total of 40 volatiles were detected in the fermented black chokeberry juice by gas chromatography-ion mobility spectrometry. The off-flavor odors, such as 1-penten-3-one and propanal in the black chokeberry juice, were weakened after fermentation. The content of 2-pentanone significantly increased in all fermented juice, imparting an ethereal flavor. Hence, lactic acid fermentation can effectively enhance black chokeberry products' flavor and prebiotic value, offering valuable insights into their production. PRACTICAL APPLICATION: The application of lactic acid bacteria in black chokeberry juice not only enhances its flavor but also improves its health benefits. This study has expanded the range of black chokeberry products and offers a new perspective for the development of the black chokeberry industry.


Lactobacillales , Photinia , Antioxidants/chemistry , Anthocyanins , Lactic Acid/analysis , Photinia/chemistry , Fermentation , Gas Chromatography-Mass Spectrometry , Phenols/analysis , Flavonoids , Lactobacillus acidophilus/metabolism , Lactobacillales/metabolism
15.
Talanta ; 270: 125582, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38176248

Despite substantial developments in minimally invasive lactate monitoring microneedle electrodes, most such electrode developments have focused on either sensitivity or invasiveness while ignoring a wide range of detection, which is the most important factor in measuring the normal range of lactate in interstitial fluid (ISF). Herein, we present a polymer-based planar microneedle electrode fabrication using microelectromechanical and femtosecond laser technology for the continuous monitoring of lactate in ISF. The microneedle is functionalized with two-dimensional reduced graphene oxide (rGO) and electrochemically synthesized platinum nanoparticles (PtNPs). A particular quantity of Nafion (1.25 wt%) is applied on top of the lactate enzyme to create a diffusion-controlled membrane. Due to the combined effects of the planar structure of the microneedle, rGO, and membrane, the biosensor exhibited excellent linearity up to 10 mM lactate with a limit of detection of 2.04 µM, high sensitivity of 43.96 µA mM-1cm-2, a reaction time of 8 s and outstanding stability, selectivity, and repeatability. The feasibility of the microneedle is evaluated by using it to measure lactate concentrations in artificial ISF and human serum. The results demonstrate that the microneedle described here has great potential for use in real-time lactate monitoring for use in sports medicine and treatment.


Biosensing Techniques , Graphite , Metal Nanoparticles , Humans , Lactic Acid/analysis , Polymers/analysis , Metal Nanoparticles/chemistry , Extracellular Fluid/chemistry , Platinum/chemistry , Biosensing Techniques/methods , Electrodes
16.
Anal Sci ; 40(5): 853-861, 2024 May.
Article En | MEDLINE | ID: mdl-38246930

To minimize background interference in electrochemical enzymatic biosensors employing electron mediators, it is essential for the electrochemical oxidation of electroactive interfering species (ISs), such as ascorbic acid (AA), to proceed slowly, and for the redox reactions between electron mediators and ISs to occur at a low rate. In this study, we introduce a novel combination of a working electrode and an electron mediator that effectively mitigates interference effects. Compared to commonly used electrodes such as Au, glassy carbon, and indium tin oxide (ITO), boron-doped diamond (BDD) electrodes demonstrate significantly lower anodic current (i.e., lower background levels) in the presence of AA. Additionally, menadione (MD) exhibits notably slower reactivity with AA compared to other electron mediators such as Ru(NH3)63+, 4-amino-1-naphthol, and 1,4-naphthoquinone, primarily due to the lower formal potential of MD compared to AA. This synergistic combination of BDD electrode and MD is effectively applied in three biosensors: (i) glucose detection using electrochemical-enzymatic (EN) redox cycling, (ii) glucose detection using electrochemical-enzymatic-enzymatic (ENN) redox cycling, and (iii) lactate detection using ENN redox cycling. Our developed approach significantly outperforms the combination of ITO electrode and MD in minimizing IS interference. Glucose in artificial serum can be detected with detection limits of ~ 20 µM and ~ 3 µM in EN and ENN redox cycling, respectively. Furthermore, lactate in human serum can be detected with a detection limit of ~ 30 µM. This study demonstrates sensitive glucose and lactate detection with minimal interference, eliminating the need for (bio)chemical agents to remove interfering species.


Boron , Diamond , Electrochemical Techniques , Electrodes , Glucose , Lactic Acid , Vitamin K 3 , Diamond/chemistry , Vitamin K 3/chemistry , Boron/chemistry , Glucose/analysis , Glucose/chemistry , Lactic Acid/analysis , Lactic Acid/chemistry , Biosensing Techniques , Electrons , Humans , Oxidation-Reduction
17.
Equine Vet J ; 56(3): 437-448, 2024 May.
Article En | MEDLINE | ID: mdl-37539736

BACKGROUND: Early identification of strangulating obstruction (SO) in horses with colic improves outcomes, yet early diagnosis of horses requiring surgery for SO often remains challenging. OBJECTIVES: To compare blood and peritoneal fluid l-lactate concentrations, peritoneal:blood l-lactate ratio, peritoneal minus blood (peritoneal-blood) l-lactate concentration and other clinical variables for predicting SO and SO in horses with small intestinal lesions (SO-SI) and then to develop a multivariable model to predict SO and SO-SI. STUDY DESIGN: Retrospective cohort. METHODS: A total of 197 equids admitted to a referral institution for colic between 2016 and 2019 that had peritoneal fluid analysis performed at admission were included. Twenty-three admission variables were evaluated individually for the prediction of a SO or SO-SI and then using multivariable logistic regression. Odds ratios (ORs) with 95% confidence intervals (CI) and area under the curve of the receiver operator characteristic (AUC ROC) were calculated. RESULTS: All variables performed better in the model than individually. The final multivariable model for predicting SO included marked abdominal pain (OR 5.31, CI 1.40-20.18), rectal temperature (OR 0.30, CI 0.14-0.64), serosanguineous peritoneal fluid (OR 35.34, CI 10.10-122.94), peritoneal-blood l-lactate (OR 1.77, CI 1.25-2.51), and peritoneal:blood l-lactate ratio (OR 0.36, CI 0.18-0.72). The AUC ROC was 0.91. The final multivariable model for predicting SO-SI included reflux volume (OR 0.69, CI 0.56-0.86), blood l-lactate concentration (OR 0.43, CI 0.22-0.87), serosanguineous peritoneal fluid (OR 4.99, CI 1.26-19.74), and peritoneal l-lactate concentration (OR 3.77, CI 1.82-7.81). MAIN LIMITATIONS: Retrospective, single-hospital study design. CONCLUSIONS: Blood and peritoneal fluid l-lactate concentrations should be interpreted in conjunction with other clinical variables. The relationship between peritoneal and blood l-lactate concentration for predicting SO or SO-SI was complex when included in a multivariable model. Models to predict SO probably vary based on lesion location.


Colic , Horse Diseases , Animals , Horses , Lactic Acid/analysis , Colic/veterinary , Colic/diagnosis , Retrospective Studies , Ascitic Fluid/chemistry , Intestine, Small , Horse Diseases/surgery
18.
Dent Mater ; 40(2): 179-189, 2024 Feb.
Article En | MEDLINE | ID: mdl-37951751

OBJECTIVES: Dental caries is caused by acids from biofilms. pH-sensitive nanoparticle carriers could achieve improved targeted effectiveness. The objectives of this study were to develop novel mesoporous silica nanoparticles carrying nanosilver and chlorhexidine (nMS-nAg-Chx), and investigate the inhibition of biofilms as well as the modulation of biofilm to suppress acidogenic and promote benign species for the first time. METHODS: nMS-nAg was synthesized via a modified sol-gel method. Carboxylate group functionalized nMS-nAg (COOH-nMS-nAg) was prepared and Chx was added via electrostatic interaction. Minimal inhibitory concentration (MIC), inhibition zone, and growth curves were evaluated. Streptococcus mutans (S. mutans), Streptococcus gordonii (S. gordonii), and Streptococcus sanguinis (S. sanguinis) formed multispecies biofilms. Metabolic activity, biofilm lactic acid, exopolysaccharides (EPS), and TaqMan real-time polymerase chain reaction (RT-PCR) were tested. Biofilm structures and biomass were observed by scanning electron microscopy (SEM) and live/dead bacteria staining. RESULTS: nMS-nAg-Chx possessed pH-responsive properties, where Chx release increased at lower pH. nMS-nAg-Chx showed good biocompatibility. nMS-nAg-Chx exhibited a strong antibacterial function, reducing biofilm metabolic activity and lactic acid as compared to control (p < 0.05, n = 6). Moreso, biofilm biomass was dramatically suppressed in nMS-nAg-Chx groups. In control group, there was an increasing trend of S. mutans proportion in the multispecies biofilm, with S. mutans reaching 89.1% at 72 h. In sharp contrast, in nMS-nAg-Chx group of 25 µg/mL, the ratio of S. mutans dropped to 43.7% and the proportion of S. gordonii and S. sanguinis increased from 19.8% and 10.9 to 69.8% and 56.3%, correspondingly. CONCLUSION: pH-sensitive nMS-nAg-Chx had potent antibacterial effects and modulated biofilm toward a non-cariogenic tendency, decreasing the cariogenic species nearly halved and increasing the benign species approximately twofold. nMS-nAg-Chx is promising for applications in mouth rinse and endodontic irrigants, and as fillers in resins to prevent caries.


Dental Caries , Nanoparticles , Silver , Humans , Chlorhexidine/pharmacology , Chlorhexidine/chemistry , Dental Caries/microbiology , Silicon Dioxide/pharmacology , Silicon Dioxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Streptococcus mutans , Nanoparticles/chemistry , Lactic Acid/analysis , Biofilms , Hydrogen-Ion Concentration
19.
J Agric Food Chem ; 71(49): 19694-19704, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38016698

Previous studies have demonstrated that thermal processing in the presence of lactate and amino acids can produce taste-active N-lactoyl amino acids. This study aimed to investigate the impact of lactate and thermal processing on the sensory characteristics of acid-hydrolyzed vegetable proteins (aHVP). The results showed that the processed aHVP exhibited enhanced kokumi, a milder umami taste, and reduced bitterness on treatment with 1% lactate at 110 °C for 3 h or 3% lactate at 120 °C for 2 h compared to the unprocessed samples. Partial or orthogonal least-squares discriminant analysis and variable importance in projection (VIP) analyses revealed the significant contributions of N-,l-Lac-l-hydrophobic AAs [-Met, -Ile, -Leu, -Val, and -Phe (VIP > 1.2)] to the observed differences between the processed and unprocessed samples. Electronic tongue analysis confirmed the sensory findings and indicated a decrease in the aftertaste of bitterness in the processed samples. Furthermore, the study identified the sensory characteristics of N-l-Lac-l-Met, -Ile, and -Leu, highlighting their potential to enhance salty, umami, and kokumi perception in simulated broth. Furthermore, the study incorporated the addition of bitter amino acids (Val, Ile, Leu, Tyr, Phe, Lys, His, and Arg) and the aforementioned N-l-Lac-l-AAs to aHVP, providing further evidence for their contributions to bitterness and aftertaste-B as well as the kokumi differences, respectively. This study provides valuable insights into the sensory effects of lactate and thermal processing on aHVP, facilitating the development of improved taste-enhancing strategies.


Lactic Acid , Taste , Lactic Acid/analysis , Vegetables , Amino Acids/analysis , Plant Proteins, Dietary/pharmacology
20.
Anal Chim Acta ; 1279: 341834, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37827649

Chiral analysis is of pivotal importance in a variety of fields due to the different biological activities and functions of enantiomers. Here, we develop a simple paper-based chiral biosensor that can perform sample-to-answer simultaneous analysis of lactate enantiomers in human serum samples. By modification of alginate hydrogel with "egg-box" three-dimensional network structure on a glass microfiber paper, reagents of enantiomer-selective enzymatic reactions are efficiently encapsulated forming the sensing regions for chiral analysis. Dual enzyme catalytic system (lactate dehydrogenase and glutamic pyruvic transaminase) is utilized to enhance the response of the biosensor. A smartphone with color analysis software is used to collect and analyze the fluorescence signal from the product nicotinamide adenine dinucleotide. The results show that the sensor has excellent selectivity toward lactate enantiomers with low limit-of-detection of (30.0 ± 0.7) µM for L-lactate and (3.0 ± 0.2) µM for D-lactate, and wide linear detection range of 0.1-3.0mM and 0.01-0.5 mM for L-lactate and D-lactate respectively. The proposed method is successfully applied to the simultaneous detection of L-/D-lactate concentrations in human serum with satisfactory accuracy. Our study provides a robust approach for developing chiral biosensors, which would have promising application prospect in point-of-care testing (POCT) analysis of various biological and food samples.


Biosensing Techniques , Lactic Acid , Humans , Lactic Acid/analysis , Hydrogels , Point-of-Care Systems , L-Lactate Dehydrogenase/chemistry , Biosensing Techniques/methods
...