Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.347
Filter
1.
Nat Commun ; 15(1): 7976, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266519

ABSTRACT

Cellular homeostasis depends on the supply of metabolic energy in the form of ATP and electrochemical ion gradients. The construction of synthetic cells requires a constant supply of energy to drive membrane transport and metabolism. Here, we provide synthetic cells with long-lasting metabolic energy in the form of an electrochemical proton gradient. Leveraging the L-malate decarboxylation pathway we generate a stable proton gradient and electrical potential in lipid vesicles by electrogenic L-malate/L-lactate exchange coupled to L-malate decarboxylation. By co-reconstitution with the transporters GltP and LacY, the synthetic cells maintain accumulation of L-glutamate and lactose over periods of hours, mimicking nutrient feeding in living cells. We couple the accumulation of lactose to a metabolic network for the generation of intermediates of the glycolytic and pentose phosphate pathways. This study underscores the potential of harnessing a proton motive force via a simple metabolic network, paving the way for the development of more complex synthetic systems.


Subject(s)
Malates , Decarboxylation , Malates/metabolism , Glutamic Acid/metabolism , Biological Transport , Artificial Cells/metabolism , Lactic Acid/metabolism , Lactose/metabolism , Escherichia coli/metabolism , Nutrients/metabolism , Proton-Motive Force , Antiporters/metabolism , Glycolysis , Metabolic Networks and Pathways , Protons , Pentose Phosphate Pathway
2.
Carbohydr Polym ; 345: 122543, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39227090

ABSTRACT

Lacto-N-neotetraose (LNnT), as a neutral core structure within human milk oligosaccharides (HMOs), has garnered widespread attention due to its exceptional physiological functions. In the process of LNnT synthesis using cellular factory approaches, substrate promiscuity of glycosyltransferases leads to the production of longer oligosaccharide derivatives. Here, rational modification of ß1,3-N-acetylglucosaminyltransferase from Neisseria meningitidis (LgtA) effectively decreased the concentration of long-chain LNnT derivatives. Specifically, the optimal ß1,4-galactosyltransferase (ß1,4-GalT) was selected from seven known candidates, enabling the efficient synthesis of LNnT in Escherichia coli BL21(DE3). Furthermore, the influence of lactose concentration on the distribution patterns of LNnT and its longer derivatives was investigated. The modification of LgtA was conducted with computational assistance, involving alanine scanning based on molecular docking to identify the substrate binding pocket and implementing large steric hindrance on crucial amino acids to obstruct LNnT entry. The implementation of saturation mutagenesis at positions 223 and 228 of LgtA yielded advantageous mutant variants that did not affect LNnT synthesis while significantly reducing the production of longer oligosaccharide derivatives. The most effective mutant, N223I, reduced the molar ratio of long derivatives by nearly 70 %, showcasing promising prospects for LNnT production with diminished byproducts.


Subject(s)
N-Acetylglucosaminyltransferases , Neisseria meningitidis , Oligosaccharides , Neisseria meningitidis/enzymology , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Molecular Docking Simulation , Escherichia coli/genetics , Substrate Specificity , Lactose/analogs & derivatives , Lactose/metabolism , Lactose/chemistry , Humans
3.
Sci Rep ; 14(1): 20827, 2024 09 06.
Article in English | MEDLINE | ID: mdl-39242646

ABSTRACT

Understanding the human milk metabolome can help inform infant nutrition and health. Untargeted metabolomics was used to study breast milk from 31 healthy participants to assess the shared metabolites in milk from participants with various backgrounds and understand how different demographic, health, and environmental factors impact the milk metabolome. Breast milk samples were analyzed by four separate UPLC-MS/MS methods. Metabolite Set Enrichment Analysis was used to study the most and least variable metabolites. The associations between participant factors and the metabolome were assessed with redundancy analyses. Among all 31 participants and between each untargeted UPLC-MS/MS method, 731 metabolites were detected, of which 389 were shared among all participants. Of the shared metabolites, lactose was the least and lactobionate the most variable metabolite. In the biological super pathway analysis, xenobiotics were the most variable metabolites. Infant age, maternal age, number of live births, and pre-pregnancy BMI were associated with the milk metabolome. In conclusion, the most variable metabolites originate from environmental exposures while the well-conserved core metabolites are linked to cell metabolism or are crucial for infant nutrition and osmoregulation. Understanding the variability of the breast milk metabolome can help identify components that are crucial for infant nutrition, growth, and development.


Subject(s)
Metabolome , Metabolomics , Milk, Human , Humans , Milk, Human/metabolism , Milk, Human/chemistry , Female , Metabolomics/methods , Adult , Mothers , Tandem Mass Spectrometry , Infant , Young Adult , Lactose/metabolism , Lactose/analysis
4.
Glycobiology ; 34(9)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39115362

ABSTRACT

α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.


Subject(s)
Colostrum , Lactalbumin , Milk , Lactalbumin/metabolism , Lactalbumin/chemistry , Animals , Glycosylation , Colostrum/chemistry , Colostrum/metabolism , Cattle , Milk/chemistry , Milk/metabolism , Female , Lactation/metabolism , Amino Sugars/chemistry , Amino Sugars/metabolism , Glycopeptides/metabolism , Glycopeptides/chemistry , Glycopeptides/analysis , Lactose/metabolism , Lactose/chemistry
5.
Bone Res ; 12(1): 44, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164247

ABSTRACT

The vitamin D receptor (VDR) plays a critical role in the regulation of mineral and bone homeostasis. Upon binding of 1α,25-dihydroxyvitamin D3 to the VDR, the activation function 2 (AF2) domain repositions and recruits coactivators for the assembly of the transcriptional machinery required for gene transcription. In contrast to coactivator-induced transcriptional activation, the functional effects of coactivator-independent VDR signaling remain unclear. In humans, mutations in the AF2 domain are associated with hereditary vitamin D-resistant rickets, a genetic disorder characterized by impaired bone mineralization and growth. In the present study, we used mice with a systemic or conditional deletion of the VDR-AF2 domain (VdrΔAF2) to study coactivator-independent VDR signaling. We confirm that ligand-induced transcriptional activation was disabled because the mutant VDRΔAF2 protein was unable to interact with coactivators. Systemic VdrΔAF2 mice developed short, undermineralized bones with dysmorphic growth plates, a bone phenotype that was more pronounced than that of systemic Vdr knockout (Vdr-/-) mice. Interestingly, a rescue diet that is high in calcium, phosphate, and lactose, normalized this phenotype in Vdr-/-, but not in VdrΔAF2 mice. However, osteoblast- and osteoclast-specific VdrΔAF2 mice did not recapitulate this bone phenotype indicating coactivator-independent VDR effects are more important in other organs. In addition, RNA-sequencing analysis of duodenum and kidney revealed a decreased expression of VDR target genes in systemic VdrΔAF2 mice, which was not observed in Vdr-/- mice. These genes could provide new insights in the compensatory (re)absorption of minerals that are crucial for bone homeostasis. In summary, coactivator-independent VDR effects contribute to mineral and bone homeostasis.


Subject(s)
Calcium , Lactose , Phosphates , Receptors, Calcitriol , Rickets , Signal Transduction , Animals , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Mice , Rickets/metabolism , Rickets/genetics , Rickets/pathology , Rickets/prevention & control , Phosphates/metabolism , Calcium/metabolism , Lactose/metabolism , Mice, Knockout , Diet , Mice, Inbred C57BL
6.
Article in English | MEDLINE | ID: mdl-39152090

ABSTRACT

Producing double-stranded RNA (dsRNA) represents a bottleneck for the adoption of RNA interference technology in agriculture, and the main hurdles are related to increases in dsRNA yield, production efficiency, and purity. Therefore, this study aimed to optimize dsRNA production in E. coli HT115 (DE3) using an in vivo system. To this end, we designed a new vector, pCloneVR_2, which resulted in the efficient production of dsRNA in E. coli HT115 (DE3). We performed optimizations in the culture medium and expression inducer in the fermentation of E. coli HT115 (DE3) for the production of dsRNA. Notably, the variable that had the greatest effect on dsRNA yield was cultivation in TB medium, which resulted in a 118% increase in yield. Furthermore, lactose induction (6 g/L) yielded 10 times more than IPTG. Additionally, our optimized up-scaled protocol of the TRIzol™ extraction method was efficient for obtaining high-quality and pure dsRNA. Finally, our optimized protocol achieved an average yield of 53.3 µg/mL after the production and purification of different dsRNAs, reducing production costs by 72%.


Subject(s)
Culture Media , Escherichia coli , Fermentation , RNA, Double-Stranded , Escherichia coli/genetics , Escherichia coli/metabolism , RNA, Double-Stranded/genetics , Culture Media/chemistry , Genetic Vectors , Metabolic Engineering/methods , RNA Interference , Lactose/metabolism
7.
Int J Biol Macromol ; 277(Pt 3): 134202, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089546

ABSTRACT

Cellobiose 2-epimerase (CE) catalyzes the conversion of the lactose into its high-value derivatives, epilactose and lactulose, which has great prospects in food applications. In this study, CE sequences from the Qinghai-Tibet Plateau gene catalogue, we screened these for structural flexibility through molecular dynamics simulation to identify potential psychrophilic CE candidates. One such psychrophilic CE we termed psyCE demonstrated exceptional epimerization activity, achieving an optimum activity of 122.2 ± 1.6 U/mg. Its kinetic parameters (Kcat and Km) for epimerization activity were 219.9 ± 5.6 s-1 and 261.9 ± 18.1 mM, respectively, representing the highest Kcat recorded among known cold-active CEs. Notably, this is the first report of a psychrophilic CE. The psyCE can effectively produce epilactose at 8 °C, converting 20.3 % of 200 mM lactose into epilactose within four hours. These findings suggest that psyCE is highly suitable for cryogenic food processing, and glaciers may serve as a valuable repository of psychrophilic enzymes.


Subject(s)
Carbohydrate Epimerases , Cellobiose , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Cellobiose/chemistry , Cellobiose/metabolism , Kinetics , Tibet , Molecular Dynamics Simulation , Lactose/metabolism , Lactose/chemistry , Amino Acid Sequence , Disaccharides
8.
BMC Vet Res ; 20(1): 286, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961471

ABSTRACT

BACKGROUND: The milk's nutritional value is determined by its constituents, including fat, protein, carbohydrates, and minerals. The mammary gland's ability to produce milk is controlled by a complex network of genes. Thereby, the fat, protein, and lactose synthesis must be boost in milk to increase milk production efficiency. This can be accomplished by fusing genetic advancements with proper management practices. Therefore, this study aimed to investigate the association between the Lipoprotein lipase (LPL), kappa casein CSN3, and Glucose transporter 1 (GLUT1) genes expression levels and such milk components as fat, protein, and lactose in different dairy breeds during different stages of lactation. METHODS: To achieve such a purpose, 94 milk samples were collected (72 samples from 36 multiparous black-white and red-white Holstein-Friesian (HF) cows and 22 milk samples from 11 Egyptian buffaloes) during the early and peak lactation stages. The milk samples were utilized for milk analysis and genes expressions analyses using non- invasive approach in obtaining milk fat globules (MFGs) as a source of Ribonucleic acid (RNA). RESULTS: LPL and CSN3 genes expressions levels were found to be significantly higher in Egyptian buffalo than Holstein-Friesian (HF) cows as well as fat and protein percentages. On the other hand, GLUT1 gene expression level was shown to be significantly higher during peak lactation than early lactation. Moreover, lactose % showed a significant difference in peak lactation phase compared to early lactation phase. Also, fat and protein percentages were significantly higher in early lactation period than peak lactation period but lactose% showed the opposite pattern of Egyptian buffalo. CONCLUSION: Total RNA can be successfully obtained from MFGs. The results suggest that these genes play a role in glucose absorption and lactose synthesis in bovine mammary epithelial cells during lactation. Also, these results provide light on the differential expression of these genes among distinct Holstein-Friesian cow breeds and Egyptian buffalo subspecies throughout various lactation phases.


Subject(s)
Caseins , Glycolipids , Glycoproteins , Lactation , Lipid Droplets , Mammary Glands, Animal , Milk , RNA, Messenger , Animals , Cattle/genetics , Lactation/genetics , Female , Lipid Droplets/metabolism , Milk/chemistry , Milk/metabolism , Glycolipids/metabolism , Caseins/genetics , Caseins/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mammary Glands, Animal/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Buffaloes/genetics , Buffaloes/metabolism , Lactose/metabolism , Lactose/analysis , Milk Proteins/analysis , Milk Proteins/metabolism , Milk Proteins/genetics , Gene Expression Regulation
9.
Nanoscale ; 16(31): 14932-14939, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39046038

ABSTRACT

6'-Sialyllactose (6'-SL), the most abundant sialylated human milk oligosaccharide, has attracted attention for its potential application in supplementary infant formulas. Herein, we report a facile strategy to construct a cascade bioreactor for the enzymatic synthesis of 6'-SL by co-immobilizing an enzymatic module consisting of CMP-sialic acid synthase and α-2,6-sialyltransferase into hierarchically porous MIL-53 (HP-MIL-53). The as-prepared HP-MIL-53 showed high enzyme immobilization capacity, reaching 226 mg g-1. Furthermore, the co-immobilized enzymes exhibited higher initial catalytic efficiency, and thermal, pH and storage stability than the free ones. Finally, the 6'-SL yield remained >80% after 13 cycles of use. We expect that HP-MIL-53 would have potential industrial applications in the enzymatic modular synthesis of 6'-SL and other glycans.


Subject(s)
Enzymes, Immobilized , Sialyltransferases , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Sialyltransferases/metabolism , Porosity , Humans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Oligosaccharides/biosynthesis , N-Acylneuraminate Cytidylyltransferase/metabolism , N-Acylneuraminate Cytidylyltransferase/chemistry , Bioreactors , Milk, Human/chemistry , Milk, Human/metabolism , Lactose/chemistry , Lactose/analogs & derivatives , Lactose/metabolism , Hydrogen-Ion Concentration , beta-D-Galactoside alpha 2-6-Sialyltransferase
10.
Bioresour Technol ; 406: 131063, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964512

ABSTRACT

Responsible use of natural resources and waste reduction are key concepts in bioeconomy. This study demonstrates that agro-food derived-biomasses from the Italian food industry, such as crude glycerol and cheese whey permeate (CWP), can be combined in a high-density fed-batch culture to produce a recombinant ß-galactosidase from Marinomonas sp. ef1 (M-ßGal). In a small-scale process (1.5 L) using 250 mL of crude glycerol and 300 mL of lactose-rich CWP, approximately 2000 kU of recombinant M-ßGal were successfully produced along with 30 g of galactose accumulated in the culture medium. The purified M-ßGal exhibited high hydrolysis efficiency in lactose-rich matrices, with hydrolysis yields of 82 % in skimmed milk at 4 °C and 94 % in CWP at 50 °C, highlighting its biotechnological potential. This approach demonstrates the effective use of crude glycerol and CWP in sustainable and cost-effective high-density Escherichia coli cultures, potentially applicable to recombinant production of various proteins.


Subject(s)
Biotechnology , Cheese , Escherichia coli , Glycerol , Whey , beta-Galactosidase , Glycerol/metabolism , beta-Galactosidase/metabolism , Escherichia coli/metabolism , Biotechnology/methods , Recombinant Proteins/metabolism , Hydrolysis , Batch Cell Culture Techniques , Lactose/metabolism
11.
Protein Expr Purif ; 223: 106558, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39074650

ABSTRACT

In this study, the cellobiose 2-epimerase gene csce from Caldicellulosiruptor saccharolyticus was expressed in Escherichia coli using TB medium containing yeast extract Oxoid and tryptone Oxoid. Interesting, it was found that when the concentration of isopropyl-beta-d-thiogalactopyranoside (IPTG) and lactose was 0 (no addition), the activity of cellobiose 2-epimerase reached 5.88 U/mL. It was 3.70-fold higher than the activity observed when 1.0 mM IPTG was added. When using M9 medium without yeast extract Oxoid and tryptone Oxoid, cellobiose 2-epimerase gene could not be expressed without IPTG and lactose. However, cellobiose 2-epimerase gene could be expressed when yeast extract Oxoid or tryptone Oxoid was added, indicating that these supplements contained inducers for gene expression. In the absence of IPTG and lactose, the addition of soy peptone Angel-1 or yeast extract Angel-1 to M9 medium significantly upregulated the expression of cellobiose 2-epimerase gene in E. coli BL21 pET28a-csce, and these inductions led to higher expression levels compared to tryptone Oxoid or yeast extract Oxoid. The relative transcription level of csce was consistent with its expression level in E. coli BL21 pET28a-csce. In the medium TB without IPTG and lactose and containing yeast extract Angel-1 and soy peptone Angel-1, the activity of cellobiose 2-epimerase reached 6.88 U/mL, representing a 2.2-fold increase compared to previously reported maximum activity in E. coli. The significance of this study lies in its implications for efficient heterologous expression of recombinant enzyme proteins in E. coli without the need for IPTG and lactose addition.


Subject(s)
Carbohydrate Epimerases , Cellobiose , Escherichia coli , Lactose , Escherichia coli/genetics , Escherichia coli/metabolism , Lactose/metabolism , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/biosynthesis , Cellobiose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Isopropyl Thiogalactoside/pharmacology , Promoter Regions, Genetic , Gene Expression , Bacterial Proteins/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/metabolism
12.
J Biotechnol ; 392: 180-189, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39038661

ABSTRACT

Sialylation during N-glycosylation plays an important role in the half-life of therapeutic glycoproteins in vivo and has sparked interest in the production of therapeutic proteins using recombinant Chinese hamster ovary (rCHO) cells. To improve the sialylation of therapeutic proteins, we examined the effect of sialyllactose supplementation on sialylation of Fc-fusion glycoproteins produced in rCHO cells. Two enzymatically-synthesized sialyllactoses, 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), were administered separately to two rCHO cell lines producing the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44, respectively. Two sialyllactoses successfully increased sialylation of Fc-fusion glycoprotein in both cell lines, as evidenced by isoform distribution, sialylated N-glycan formation, and sialic acid content. Increased sialylation by adding sialyllactose was likely the result of increased amount of intracellular CMP-sialic acid (CMP-SA), the direct nucleotide sugar for sialylation. Furthermore, the degree of sialylation enhanced by sialyllactoses was slightly effective or nearly similar compared with the addition of N-acetylmannosamine (ManNAc), a representative nucleotide sugar precursor, to increase sialylation of glycoproteins. The effectiveness of sialyllactose was also confirmed using three commercially available CHO cell culture media. Taken together, these results suggest that enzymatically-synthesized sialyllactose represents a promising candidate for culture media supplementation to increase sialylation of glycoproteins in rCHO cell culture.


Subject(s)
Cricetulus , Immunoglobulin Fc Fragments , Lactose , Animals , CHO Cells , Lactose/analogs & derivatives , Lactose/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Cricetinae , Glycosylation , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , Culture Media/chemistry , Sialic Acids/metabolism , N-Acetylneuraminic Acid/metabolism , Oligosaccharides
13.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000066

ABSTRACT

Galectins are multifunctional effectors in cellular homeostasis and dysregulation. Oxidation of human galectin-1 (Gal-1) with its six sulfhydryls produces a disulfide-bridged oxidized form that lacks normal lectin activity yet gains new glycan-independent functionality. Nevertheless, the mechanistic details as to how Gal-1 oxidation occurs remain unclear. Here, we used 15N and 13C HSQC NMR spectroscopy to gain structural insight into the CuSO4-mediated path of Gal-1 oxidation and identified a minimum two-stage conversion process. During the first phase, disulfide bridges form slowly between C16-C88 and/or C42-C66 to produce a partially oxidized, conformationally flexible intermediate that retains the ability to bind lactose. Site-directed mutagenesis of C16 to S16 impedes the onset of this overall slow process. During the second phase, increased motional dynamics of the intermediate enable the relatively distant C2 and C130 residues to form the third and final disulfide bond, leading to an unfolded state and consequent dimer dissociation. This fully oxidized end state loses the ability to bind lactose, as shown by the hemagglutination assay. Consistent with this model, we observed that the Gal-1 C2S mutant maintains intermediate-state structural features with a free sulfhydryl group at C130. Incubation with dithiothreitol reduces all disulfide bonds and allows the lectin to revert to its native state. Thus, the sequential, non-random formation of three disulfide bridges in Gal-1 in an oxidative environment acts as a molecular switch for fundamental changes to its functionality. These data inspire detailed bioactivity analysis of the structurally defined oxidized intermediate in, e.g., acute and chronic inflammation.


Subject(s)
Cysteine , Galectin 1 , Oxidation-Reduction , Galectin 1/metabolism , Galectin 1/chemistry , Galectin 1/genetics , Humans , Cysteine/metabolism , Cysteine/chemistry , Disulfides/metabolism , Disulfides/chemistry , Protein Folding , Protein Unfolding , Models, Molecular , Lactose/metabolism , Lactose/chemistry , Mutagenesis, Site-Directed
14.
FEBS J ; 291(16): 3686-3705, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825733

ABSTRACT

The most extensively studied ß-d-galactosidases (EC3.2.1.23) belonging to four glycoside hydrolase (GH) families 1, 2, 35, and 42 are widely distributed among Bacteria, Archaea and Eukaryotes. Here, we report a novel GH35 family ß-galactosidase from the hyperthermophilic Thermoprotei archaeon Desulfurococcus amylolyticus (DaßGal). Unlike fungal monomeric six-domain ß-galactosidases, the DaßGal enzyme is a dimer; it has an extra jelly roll domain D7 and three composite domains (D4, D5, and D6) that are formed by the distantly located polypeptide chain regions. The enzyme possesses a high specificity for ß-d-galactopyranosides, and its distinguishing feature is the ability to cleave pNP-ß-d-fucopyranoside. DaßGal efficiently catalyzes the hydrolysis of lactose at high temperatures, remains stable and active at 65 °Ð¡, and retains activity at 95 °Ð¡ with a half-life time value equal to 73 min. These properties make archaeal DaßGal a more attractive candidate for biotechnology than the widely used fungal ß-galactosidases.


Subject(s)
Enzyme Stability , beta-Galactosidase , beta-Galactosidase/genetics , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Substrate Specificity , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Amino Acid Sequence , Protein Domains , Models, Molecular , Kinetics , Protein Folding , Hot Temperature , Hydrolysis , Lactose/metabolism , Lactose/chemistry
15.
Food Chem ; 457: 140127, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38908252

ABSTRACT

The production of the sugars fructose and lactulose from lactose using the enzymes ß-galactosidase and glucose isomerase immobilized on bacterial cellulose (BC) membranes has been investigated. Lactose is hydrolyzed by ß-galactosidase at 30 °C to glucose and galactose at a high conversion rate, while at the same temperature, glucose isomerase is not effective in converting the produced glucose to fructose. The rate of the isomerization reaction of glucose to fructose at 70 °C has been studied. Two types of enzyme immobilization were investigated: immobilization in one stage and immobilization in two stages. The results showed that BC membrane increased three-fold the yield and the reaction rate of fructose and lactulose production from lactose. The noteworthy enhancement of BC membranes' impact on the isomerization reaction by immobilized enzymes grants permission for a novel research avenue within the context of white biotechnology development. Additionally, this effect amplifies the role of BC in sustainability and the circular economy.


Subject(s)
Cellulose , Enzymes, Immobilized , Fructose , Lactose , Lactulose , beta-Galactosidase , Lactulose/chemistry , Lactulose/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lactose/chemistry , Lactose/metabolism , Cellulose/chemistry , Cellulose/metabolism , Fructose/chemistry , Fructose/metabolism , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Isomerism , Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Bacteria/enzymology , Bacteria/chemistry , Bacteria/metabolism
16.
ACS Synth Biol ; 13(6): 1866-1878, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38836566

ABSTRACT

3-Fucosyllactose (3-FL) is an important fucosylated human milk oligosaccharide (HMO) with biological functions such as promoting immunity and brain development. Therefore, the construction of microbial cell factories is a promising approach to synthesizing 3-FL from renewable feedstocks. In this study, a combinatorial engineering strategy was used to achieve efficient de novo 3-FL production in Escherichia coli. α-1,3-Fucosyltransferase (futM2) from Bacteroides gallinaceum was introduced into E. coli and optimized to create a 3-FL-producing chassis strain. Subsequently, the 3-FL titer increased to 5.2 g/L by improving the utilization of the precursor lactose and down-regulating the endogenous competitive pathways. Furthermore, a synthetic membraneless organelle system based on intrinsically disordered proteins was designed to spatially regulate the pathway enzymes, producing 7.3 g/L 3-FL. The supply of the cofactors NADPH and GTP was also enhanced, after which the 3-FL titer of engineered strain E26 was improved to 8.2 g/L in a shake flask and 10.8 g/L in a 3 L fermenter. In this study, we developed a valuable approach for constructing an efficient 3-FL-producing cell factory and provided a versatile workflow for other chassis cells and HMOs.


Subject(s)
Escherichia coli , Fucosyltransferases , Metabolic Engineering , Trisaccharides , Escherichia coli/genetics , Escherichia coli/metabolism , Trisaccharides/metabolism , Trisaccharides/biosynthesis , Metabolic Engineering/methods , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Lactose/metabolism , Bacteroides/genetics , Bacteroides/metabolism , Fermentation , Oligosaccharides
17.
Enzyme Microb Technol ; 179: 110466, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38889605

ABSTRACT

Lactulose is a semisynthetic nondigestive sugar derived from lactose, with wide applications in the food and pharmaceutical industries. Its biological production routes which use cellobiose 2-epimerase (C2E) as the key enzyme have attracted widespread attention. In this study, a set of C2Es from different sources were overexpressed in Escherichia coli to produce lactulose. We obtained a novel and highly efficient C2E from Clostridium disporicum (CDC2E) to synthesize lactulose from lactose. The effects of different heat treatment conditions, reaction pH, reaction temperature, and substrate concentrations were investigated. Under the optimum biotransformation conditions, the final concentration of lactulose was up to 1.45 M (496.3 g/L), with a lactose conversion rate of 72.5 %. This study provides a novel C2E for the biosynthesis of lactulose from low-cost lactose.


Subject(s)
Clostridium , Escherichia coli , Lactose , Lactulose , Lactulose/metabolism , Lactulose/biosynthesis , Lactose/metabolism , Clostridium/enzymology , Clostridium/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Hydrogen-Ion Concentration , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Cellobiose/metabolism , Temperature
18.
Faraday Discuss ; 252(0): 157-173, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-38836629

ABSTRACT

A scarcity of cofactors, necessary metabolites or substrates for in vivo enzymatic reactions, is among the major barriers for product synthesis in metabolically engineered cells. This work compares our recently developed cofactor-boosting strategy, which uses xylose reductase (XR) and lactose to increase the intracellular levels of reduced or oxidized nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), adenosine triphosphate (ATP) and acetyl coenzymeA (acetyl-CoA), with other previously reported methods. We demonstrated that the XR/lactose approach enhances levels of sugar alcohols and sugar phosphates, which leads to elevated levels of crucial cofactors required by specific metabolic pathways. The patterns of cofactor enhancement are not uniform and depend upon the specific pathway components that are overexpressed. We term this model the "user-pool" model. Here, we investigated metabolite alteration in the fatty-alcohol-producing system in the presence of XR/lactose within an early time frame (5 min after the bioconversion started). All metabolite data were analyzed using untargeted metabolomics. We found that the XR/lactose system could improve fatty-alcohol production as early as 5 min after the bioconversion started. The enhancement of key cofactors and intermediates, such as hexitol, NAD(P)H, ATP, 3-phosphoglycerate, acetyl-CoA, 6-phosphogluconate (6-PG) and glutathione, was consistent with those previously reported on a longer time scale (after 1 h). However, measurements performed at the early time reported here showed detectable differences in metabolite enhancement patterns, such as those of ATP, NADPH, acetyl-CoA and glutathione. These data could serve as a basis for future analysis of metabolic flux alteration by the XR/lactose system. Comparative analysis of the cofactor enhancement by XR and other methods suggests that XR/lactose can serve as a simple tool to increase levels of various cofactors for microbial cell factories.


Subject(s)
Biocatalysis , Aldehyde Reductase/metabolism , NADP/metabolism , NADP/chemistry , Lactose/metabolism , Lactose/chemistry , Coenzymes/metabolism , Coenzymes/chemistry , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/chemistry , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Metabolic Engineering
19.
Sci Rep ; 14(1): 14346, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906947

ABSTRACT

This study investigated the first-ever reported use of freshwater Nannochloropsis for the bioremediation of dairy processing side streams and co-generation of valuable products, such as ß-galactosidase enzyme. In this study, N. limnetica was found to grow rapidly on both autoclaved and non-autoclaved whey-powder media (referred to dairy processing by-product or DPBP) without the need of salinity adjustment or nutrient additions, achieving a biomass concentration of 1.05-1.36 g L-1 after 8 days. The species secreted extracellular ß-galactosidase (up to 40.84 ± 0.23 U L-1) in order to hydrolyse lactose in DPBP media into monosaccharides prior to absorption into biomass, demonstrating a mixotrophic pathway for lactose assimilation. The species was highly effective as a bioremediation agent, being able to remove > 80% of total nitrogen and phosphate in the DPBP medium within two days across all cultures. Population analysis using flow cytometry and multi-channel/multi-staining methods revealed that the culture grown on non-autoclaved medium contained a high initial bacterial load, comprising both contaminating bacteria in the medium and phycosphere bacteria associated with the microalgae. In both autoclaved and non-autoclaved DPBP media, Nannochloropsis cells were able to establish a stable microalgae-bacteria interaction, suppressing bacterial takeover and emerging as dominant population (53-80% of total cells) in the cultures. The extent of microalgal dominance, however, was less prominent in the non-autoclaved media. High initial bacterial loads in these cultures had mixed effects on microalgal performance, promoting ß-galactosidase synthesis on the one hand while competing for nutrients and retarding microalgal growth on the other. These results alluded to the need of effective pre-treatment step to manage bacterial population in microalgal cultures on DPBP. Overall, N. limnetica cultures displayed competitive ß-galactosidase productivity and propensity for efficient nutrient removal on DPBP medium, demonstrating their promising nature for use in the valorisation of dairy side streams.


Subject(s)
Microalgae , Whey , beta-Galactosidase , beta-Galactosidase/metabolism , Microalgae/metabolism , Microalgae/enzymology , Whey/metabolism , Lactose/metabolism , Stramenopiles/enzymology , Stramenopiles/metabolism , Fresh Water/microbiology , Biodegradation, Environmental , Biomass , Nitrogen/metabolism
20.
J Dairy Sci ; 107(9): 6866-6877, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38825129

ABSTRACT

Increasing nutrient supply to dairy calves has well known benefits; however, the effects of milk replacer (MR) composition when supplied in higher amounts are not fully understood, particularly in the first weeks of life. To better understand the metabolism of macronutrient supply in young calves (21 d old), we investigated diurnal patterns of heat production and substrate oxidation in young calves fed MR with an incremental supply of fat, lactose, or protein. Thirty-two groups of 3 mixed-sex Holstein-Friesian newborn calves (3.4 ± 1.6 d of age), were randomly assigned to one of 4 dietary treatments and studied for 21 d. Diets consisted of a basal MR (23.3% CP, 21.2% EE, and 48.8% lactose of DM) fed at 550 kJ/kg BW0.85 per day (CON; n = 24), or the basal MR incrementally supplied with 126 kJ of digestible energy/BW0.85 per day as milk fat (+FAT; n = 23), lactose (+LAC; n = 24), or milk protein (+PRO; n = 23). Calves were fed MR in 2 daily meals and had ad libitum access to water, but were not supplied with any calf starter nor forage. After 2 weeks of adaptation to the diets, groups of 3 calves were placed for 1 wk in an open-circuit respiration chamber for nitrogen and energy balance measurements (lasting 7 d). On d 3, glucose oxidation kinetics was estimated by using [U-13C]glucose. Measurements included total heat production (total energy [HP], activity [Hact] expenditure, resting metabolic rate [RMR]), respiration quotient (RQ), carbohydrate (COX) and fat oxidation (FOX) in 10 min. intervals and averaging these values per hour over days. Incremental supply of lactose and fat increased body fat deposition, with observed patterns in RMR indicating that this increase occurred primarily after the meals. Specifically, the average daily RMR was highest in the +PRO group and lowest in the CON treatment. The HP was higher in the +PRO group and throughout the day, hourly means of HP were higher in this treatment mainly caused by an increase in Hact. The recovery of 13CO2 from oral pulse-dosed [U-13C]glucose was high (77%), and not significantly different between treatments, indicating that ingested lactose was oxidized to a similar extent across treatments. Increasing lactose supply in young calves increased fat retention by reduction in fatty oxidation. Calves fed a MR with additional protein or fat raised RMR persistently throughout the day, whereas the extra lactose supply only affects RMR after the meal. Dietary glucose was almost completely oxidized (77% based on (13C) glucose measurement) regardless of nutrient supplementation. Extra protein supply increased HP and FOX compared with similar intakes of fat and lactose. Fasting heat production (FHP) of young, group-housed calves is comparable to literature values and unaffected by energy intake. Overall, these findings deepen our understanding of how different nutrients affect metabolic processes, fat retention, and energy expenditure in young dairy calves.


Subject(s)
Animal Feed , Diet , Lactose , Animals , Lactose/metabolism , Cattle , Diet/veterinary , Milk/metabolism , Milk/chemistry , Male , Oxidation-Reduction , Female
SELECTION OF CITATIONS
SEARCH DETAIL