Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.085
1.
BMC Infect Dis ; 24(1): 545, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816702

BACKGROUND: This study aimed to investigate the relationship between the physicochemical characteristics of An. gambiae s.s. and An. coluzzii breeding sites, the susceptibility profiles to commonly used insecticides in public health, and the underlying insecticide resistance mechanisms. METHODS: Anopheles breeding sites surveys were conducted in Cotonou and Natitingou in September 2020, January and August 2021. Physicochemical properties and bacterial loads were determined in individual breeding sites. The WHO susceptibility assays were carried out using the female of the emerging adult mosquitoes. Anopheles species were identified through PCR techniques. Kdr L1014F/S, N1575Y and G119S mutations were investigated using TaqMan genotyping assays. RESULTS: Molecular analysis showed that all mosquitoes analyzed in Cotonou were Anopheles coluzzii, while those of Natitingou were Anopheles gambiae s.s. Fecal coliforms were identified as playing a role in this distribution through their significant influence on the presence of An. coluzzii larvae. WHO susceptibility assay indicated a high level of resistance to deltamethrin in the two cities. The resistance levels to deltamethrin were higher in Cotonou (X2 = 31.689; DF = 1; P < 0.0001). There was a suspected resistance to bendiocarb in Cotonou, whereas the mosquito population in Natitingou was resistant. The kdr L1014F mutation was highly observed in both mosquito populations (frequence: 86-91%), while the Ace-1 mutation was found in a small proportion of mosquitoes. In Cotonou, salinity was the only recorded physicochemical parameter that significantly correlated with the resistance of Anopheles mosquitoes to deltamethrin (P < 0.05). In Natitingou, significant correlations were observed between the allelic frequencies of the kdr L1014F mutation and pH, conductivity, and TDS. CONCLUSION: These results indicate a high level of pyrethroid resistance in the anopheles populations of both Cotonou and Natitingou. Moreover, this study report the involvement of abiotic factors influencing Anopheles susceptibility profile.


Anopheles , Insecticide Resistance , Insecticides , Mutation , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Benin , Insecticides/pharmacology , Female , Pyrethrins/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Nitriles/pharmacology , Larva/drug effects , Breeding , Cities , Phenylcarbamates
2.
Parasite Immunol ; 46(5): e13035, 2024 May.
Article En | MEDLINE | ID: mdl-38712475

Trichinella spiralis (T. spiralis) is an immunomodulating parasite that can adversely affect tumor growth and extend host lifespan. The aim of this study was to elucidate the mechanisms by which T. spiralis larval antigens achieve this effect using Ehrlich solid carcinoma (ESC) murine model. Assessment was done by histopathological and immunohistochemical analysis of caspase-3, TNF-α, Ki-67 and CD31. Additionally, Bcl2 and Bcl2-associated protein X (Bax) relative gene expression was assessed by molecular analysis for studying the effect of T. spiralis crude larval extract (CLE) antigen on tumor necrosis, apoptosis, cell proliferation and angiogenesis. We found that both T. spiralis infection and CLE caused a decrease in the areas of necrosis in ESC. Moreover, they led to increased apoptosis through activation of caspase-3, up-regulation of pro-apoptotic gene, Bax and down-regulation of anti-apoptotic gene, Bcl2. Also, T. spiralis infection and CLE diminished ESC proliferation, as evidenced by decreasing Ki-67. T. spiralis infection and CLE were able to suppress the development of ESC by inhibiting tumor proliferation, inducing apoptosis and decreasing tumor necrosis, with subsequent decrease in tumor metastasis. T. spiralis CLE antigen may be considered as a promising complementary immunotherapeutic agent in the treatment of cancer.


Carcinoma, Ehrlich Tumor , Larva , Trichinella spiralis , Animals , Trichinella spiralis/drug effects , Mice , Larva/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/immunology , Apoptosis/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Antigens, Helminth/immunology , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Ki-67 Antigen/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Tumor Necrosis Factor-alpha/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Immunohistochemistry
3.
Parasitol Res ; 123(5): 211, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748261

Ivermectin is one of the most widely used drugs for parasite control. Previous studies have shown a reduction in the abundance and diversity of "non-target" coprophilous organisms due to the presence of ivermectin (IVM) in bovine faecal matter (FM). Due to its breadth of behavioural habits, Calliphora vicina is a suitable dipteran species to evaluate the effects of IVM in FM. The aim of this work was to evaluate the effect of five concentrations of IVM in FM (3000, 300, 100, 30, and 3 ng/g) on the development of C. vicina. The following endpoints were evaluated: survival (between the first larval stage and emergence of new adults), larval development times to pupation and pupation times to adult, and adult emergence (% sex) and LC50. Sampling was performed from larval hatching at 60 and 120 min and at 3, 4, 5, and 12 h, and every 24 h specimens were weighed until pupae were observed. Data were analysed by ANOVA using a non-parametric Kruskal-Wallis test and as a function of elapsed development time and accumulated degree hours (ADH). Mortality at 3000 and 300 ng/g was 100% and 97%, respectively. There were statistically significant delays in adult emergence time (p = 0.0216) and in the ADH (p = 0.0431) between the control group (C) and 100 ng/g. The LC50 was determined at 5.6 ng/g. These results demonstrate the lethal and sub-lethal effects of IVM on C. vicina, while highlighting the usefulness of this species as a bioindicator for ecotoxicological studies.


Calliphoridae , Feces , Ivermectin , Larva , Animals , Ivermectin/pharmacology , Calliphoridae/drug effects , Calliphoridae/growth & development , Larva/drug effects , Larva/growth & development , Feces/parasitology , Cattle , Survival Analysis , Pupa/drug effects , Pupa/growth & development , Female , Antiparasitic Agents/pharmacology , Male , Lethal Dose 50 , Diptera/drug effects , Diptera/growth & development
4.
J Agric Food Chem ; 72(19): 10958-10969, 2024 May 15.
Article En | MEDLINE | ID: mdl-38703118

Demand for the exploration of botanical pesticides continues to increase due to the detrimental effects of synthetic chemicals on human health and the environment and the development of resistance by pests. Under the guidance of a bioactivity-guided approach and HSQC-based DeepSAT, 16 coumarin derivatives were discovered from the leaves of Ailanthus altissima (Mill.) Swingle, including seven undescribed monoterpenoid coumarins, three undescribed monoterpenoid phenylpropanoids, and two new coumarin derivatives. The structure and configurations of these compounds were established and validated via extensive spectroscopic analysis, acetonide analysis, and quantum chemical calculations. Biologically, 5 exhibited significant antifeedant activity toward the Plutella xylostella. Moreover, tyrosinase being closely related to the growth and development of larva, the inhibitory potentials of 5 against tyrosinase was evaluated in vitro and in silico. The bioactivity evaluation results highlight the prospect of 5 as a novel category of botanical insecticide.


Ailanthus , Coumarins , Insecticides , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Animals , Coumarins/pharmacology , Coumarins/chemistry , Ailanthus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Molecular Structure , Larva/drug effects , Larva/growth & development , Moths/drug effects , Moths/growth & development , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Biological Assay , Monoterpenes/pharmacology , Monoterpenes/chemistry , Feeding Behavior/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
5.
J Agric Food Chem ; 72(19): 10794-10804, 2024 May 15.
Article En | MEDLINE | ID: mdl-38711396

Chitin-degrading enzymes are critical components in regulating the molting process of the Asian corn borer and serve as potential targets for controlling this destructive pest of maize. Here, we used a scaffold-hopping strategy to design a series of efficient naphthylimide insecticides. Among them, compound 8c exhibited potent inhibition of chitinase from OfChi-h and OfChtI at low nanomolar concentrations (IC50 = 1.51 and 9.21 nM, respectively). Molecular docking simulations suggested that 8c binds to chitinase by mimicking the interaction of chitin oligosaccharide substrates with chitinase. At low ppm concentrations, compound 8c performed comparably to commercial insecticides in controlling the highly destructive plant pest, the Asian corn borer. Tests on a wide range of nontarget organisms indicate that compound 8c has very low toxicity. In addition, the effect of inhibitor treatment on the expression of genes associated with the Asian corn borer chitin-degrading enzymes was further investigated by quantitative real-time polymerase chain reaction. In conclusion, our study highlights the potential of 8c as a novel chitinase-targeting insecticide for effective control of the Asian corn borer, providing a promising solution in the quest for sustainable pest management.


Chitin , Chitinases , Insect Proteins , Insecticides , Molecular Docking Simulation , Moths , Zea mays , Animals , Chitinases/chemistry , Chitinases/genetics , Chitinases/metabolism , Moths/enzymology , Moths/drug effects , Moths/genetics , Chitin/chemistry , Chitin/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/antagonists & inhibitors , Zea mays/chemistry , Zea mays/parasitology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Drug Design , Insect Control , Larva/growth & development , Larva/drug effects , Structure-Activity Relationship
6.
J Agric Food Chem ; 72(19): 10805-10813, 2024 May 15.
Article En | MEDLINE | ID: mdl-38712504

Aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mediate the responses of adaptive metabolism to various xenobiotics. Here, we found that BoAhR and BoARNT are highly expressed in the midgut of Bradysia odoriphaga larvae. The expression of BoAhR and BoARNT was significantly increased after exposure to imidacloprid and phoxim. The knockdown of BoAhR and BoARNT significantly decreased the expression of CYP6SX1 and CYP3828A1 as well as P450 enzyme activity and caused a significant increase in the sensitivity of larvae to imidacloprid and phoxim. Exposure to ß-naphthoflavone (BNF) significantly increased the expression of BoAhR, BoARNT, CYP6SX1, and CYP3828A1 as well as P450 activity and decreased larval sensitivity to imidacloprid and phoxim. Furthermore, CYP6SX1 and CYP3828A1 were significantly induced by imidacloprid and phoxim, and the silencing of these two genes significantly reduced larval tolerance to imidacloprid and phoxim. Taken together, the BoAhR/BoARNT pathway plays key roles in larval tolerance to imidacloprid and phoxim by regulating the expression of CYP6SX1 and CYP3828A1.


Insect Proteins , Insecticides , Larva , Neonicotinoids , Nitro Compounds , Receptors, Aryl Hydrocarbon , Animals , Insecticides/pharmacology , Larva/metabolism , Larva/genetics , Larva/growth & development , Larva/drug effects , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Diptera/metabolism , Diptera/genetics , Diptera/drug effects , Diptera/growth & development , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Inactivation, Metabolic , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734773

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Antifungal Agents , Candida , Protease Inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Protease Inhibitors/pharmacology , Microbial Sensitivity Tests , Animals , Capsicum/microbiology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Larva/microbiology , Larva/growth & development , Larva/drug effects
8.
J Insect Sci ; 24(3)2024 May 01.
Article En | MEDLINE | ID: mdl-38717261

The mealworm Tenebrio molitor L. (Coleoptera: Tenebrionidae) feeds on wheat bran and is considered both a pest and an edible insect. Its larvae contain proteins and essential amino acids, fats, and minerals, making them suitable for animal and human consumption. Zearalenone (ZEA) is the mycotoxin most commonly associated with Fusarium spp. It is found in cereals and cereal products, so their consumption is a major risk for mycotoxin contamination. One of the most important effects of ZEA is the induction of oxidative stress, which leads to physiological and behavioral changes. This study deals with the effects of high doses of ZEA (10 and 20 mg/kg) on survival, molting, growth, weight gain, activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione S-transferase (GST), and locomotion of mealworm larvae. Both doses of ZEA were found to (i) have no effect on survival, (ii) increase molting frequency, SOD, and GST activity, and (iii) decrease body weight and locomotion, with more pronounced changes at 20 mg/kg. These results indicated the susceptibility of T. molitor larvae to high doses of ZEA in feed.


Glutathione Transferase , Larva , Locomotion , Tenebrio , Zearalenone , Animals , Tenebrio/drug effects , Tenebrio/growth & development , Larva/growth & development , Larva/drug effects , Zearalenone/toxicity , Glutathione Transferase/metabolism , Locomotion/drug effects , Superoxide Dismutase/metabolism , Antioxidants/metabolism
9.
BMC Complement Med Ther ; 24(1): 183, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704537

BACKGROUND: Highlighting affordable alternative crops that are rich in bioactive phytoconstituents is essential for advancing nutrition and ensuring food security. Amaranthus blitum L. (AB) stands out as one such crop with a traditional history of being used to treat intestinal disorders, roundworm infections, and hemorrhage. This study aimed to evaluate the anthelmintic and hematologic activities across various extracts of AB and investigate the phytoconstituents responsible for these activities. METHODS: In vitro anthelmintic activity against Trichinella spiralis was evaluated in terms of larval viability reduction. The anti-platelet activities were assessed based on the inhibitory effect against induced platelet aggregation. Further, effects on the extrinsic pathway, the intrinsic pathway, and the ultimate common stage of blood coagulation, were monitored through measuring blood coagulation parameters: prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT), respectively. The structures of isolated compounds were elucidated by spectroscopic analysis. RESULTS: Interestingly, a previously undescribed compound (19), N-(cis-p-coumaroyl)-ʟ-tryptophan, was isolated and identified along with 21 known compounds. Significant in vitro larvicidal activities were demonstrated by the investigated AB extracts at 1 mg/mL. Among tested compounds, compound 18 (rutin) displayed the highest larvicidal activity. Moreover, compounds 19 and 20 (N-(trans-p-coumaroyl)-ʟ-tryptophan) induced complete larval death within 48 h. The crude extract exhibited the minimal platelet aggregation of 43.42 ± 11.69%, compared with 76.22 ± 14.34% in the control plasma. Additionally, the crude extract and two compounds 19 and 20 significantly inhibited the extrinsic coagulation pathway. CONCLUSIONS: These findings extend awareness about the nutritional value of AB as a food, with thrombosis-preventing capabilities and introducing a promising source for new anthelmintic and anticoagulant agents.


Amaranthus , Anthelmintics , Anticoagulants , Phytochemicals , Plant Extracts , Platelet Aggregation Inhibitors , Animals , Anthelmintics/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Anticoagulants/pharmacology , Larva/drug effects
10.
PLoS One ; 19(5): e0303238, 2024.
Article En | MEDLINE | ID: mdl-38709762

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.


Chlorpyrifos , Coleoptera , Insecticide Resistance , Insecticides , Neonicotinoids , Thiazines , Animals , Coleoptera/drug effects , Insecticides/pharmacology , Neonicotinoids/pharmacology , Chlorpyrifos/pharmacology , Pyrethrins/pharmacology , Nitriles/pharmacology , Larva/drug effects , Czech Republic , Thiamethoxam , Solanum tuberosum/parasitology
11.
PLoS One ; 19(5): e0302941, 2024.
Article En | MEDLINE | ID: mdl-38709777

Insecticidal Bacillus thuringiensis Berliner (Bt) toxins produced by transgenic cotton (Gossypium hirsutum L.) plants have become an essential component of cotton pest management. Bt toxins are the primary management tool in transgenic cotton for lepidopteran pests, the most important of which is the bollworm (Helicoverpa zea Boddie) (Lepidoptera: Noctuidae) in the United States (U.S.). However, bollworm larvae that survive after consuming Bt toxins may experience sublethal effects, which could alter interactions with other organisms, such as natural enemies. Experiments were conducted to evaluate how sublethal effects of a commercial Bt product (Dipel) incorporated into artificial diet and from Bt cotton flowers impact predation from the convergent lady beetle (Hippodamia convergens Guérin-Méneville) (Coleoptera: Coccinellidae), common in cotton fields of the mid-southern U.S. Sublethal effects were detected through reduced weight and slower development in bollworm larvae which fed on Dipel incorporated into artificial diet, Bollgard II, and Bollgard 3 cotton flowers. Sublethal effects from proteins incorporated into artificial diet were found to significantly alter predation from third instar lady beetle larvae. Predation of bollworm larvae also increased significantly after feeding for three days on a diet incorporated with Bt proteins. These results suggest that the changes in larval weight and development induced by Bt can be used to help predict consumption of bollworm larvae by the convergent lady beetle. These findings are essential to understanding the potential level of biological control in Bt cotton where lepidopteran larvae experience sublethal effects.


Bacillus thuringiensis , Coleoptera , Flowers , Gossypium , Larva , Plants, Genetically Modified , Predatory Behavior , Animals , Coleoptera/drug effects , Coleoptera/physiology , Gossypium/parasitology , Gossypium/genetics , Predatory Behavior/drug effects , Larva/drug effects , Pest Control, Biological , Moths/drug effects , Moths/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus thuringiensis Toxins
12.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791458

Amblyomma sculptum is a species of tick in the family Ixodidae, with equids and capybaras among its preferred hosts. In this study, the acaricidal activity of the essential oil (EO) from Piper aduncum and its main component, Dillapiole, were evaluated against larvae of A. sculptum to establish lethal concentration values and assess the effects of these compounds on tick enzymes. Dillapiole exhibited slightly greater activity (LC50 = 3.38 mg/mL; 95% CI = 3.24 to 3.54) than P. aduncum EO (LC50 = 3.49 mg/mL; 95% CI = 3.36 to 3.62) against ticks. The activities of α-esterase (α-EST), ß-esterase (ß-EST), and glutathione-S-transferase (GST) enzymes in A. sculptum larvae treated with Dillapiole showed a significant increase compared to the control at all concentrations (LC5, LC25, LC50 and LC75), similar results were obtained with P. aduncum EO, except for α-EST, which did not differ from the control at the highest concentration (LC75). The results of the acetylcholinesterase (AChE) activity show an increase in enzyme activity at the two lower concentrations (LC5 and LC25) and a reduction in activity at the two higher, lethal concentrations (LC50 and LC75) compared to the control. These results suggest potential mechanisms of action for these natural acaricides and can provide guidance for the future development of potential plant-derived formulations.


Acaricides , Acetylcholinesterase , Larva , Oils, Volatile , Piper , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Acetylcholinesterase/metabolism , Piper/chemistry , Larva/drug effects , Acaricides/pharmacology , Glutathione Transferase/metabolism , Amblyomma , Inactivation, Metabolic , Cholinesterase Inhibitors/pharmacology , Benzodioxoles/pharmacology , Esterases/metabolism , Allyl Compounds , Dioxoles
13.
Molecules ; 29(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38792102

This study investigates the chemical composition of the essential oil obtained from the leaves of Bocageopsis multiflora (Mart.) R.E.Fr (Annonaceae), examining its effectiveness in combating both the larvae and adult forms of Aedes aegypti mosquitoes. Additionally, for a deeper understanding of the insecticidal activity, toxicity properties and molecular docking calculations were conducted using the main compounds of this essential oil. GC/MS analysis revealed the presence of 26 constituents, representing 95.2% of the essential oil, with the major components identified as the sesquiterpenes α-selinene, ß-selinene, and ß-elemene. Larvicidal assays demonstrated potent activity of this essential oil with significant LC50 values of 40.8 and 39.4 µg/mL at 24 and 48 h, respectively. Adulticidal assessments highlighted strong efficacy with LC50 of 12.5 µg/mL. Molecular docking analysis identified optimal interaction activities of α-selinene and ß-selinene with key Aedes proteins. The in silico studies comparing synthetic insecticides with the major sesquiterpenes of the essential oil revealed that ß-selinene exhibited a significantly higher binding affinity compared to the other two sesquiterpenes. Also, ADMET studies of the three main sesquiterpenes indicated acceptable drug-like properties. In these findings, safety evaluations showed low toxicity and skin sensitization for the main sesquiterpenes, contrasting with commercial synthetic insecticides. Therefore, in silico analyses suggest promising interactions with Aedes proteins, indicating its potential as an effective alternative to conventional insecticides These results show the larvicidal and adulticidal potential of the essential oil from Bocageopsis multiflora against Aedes aegypti, supported by its predominant constituents, α-selinene, ß-selinene and ß-elemene.


Aedes , Insecticides , Larva , Molecular Docking Simulation , Oils, Volatile , Animals , Aedes/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects , Plant Leaves/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Gas Chromatography-Mass Spectrometry
14.
Article En | MEDLINE | ID: mdl-38714098

As amphibians undergo thyroid hormone (TH)-dependent metamorphosis from an aquatic tadpole to the terrestrial frog, their innate immune system must adapt to the new environment. Skin is a primary line of defense, yet this organ undergoes extensive remodelling during metamorphosis and how it responds to TH is poorly understood. Temperature modulation, which regulates metamorphic timing, is a unique way to uncover early TH-induced transcriptomic events. Metamorphosis of premetamorphic tadpoles is induced by exogenous TH administration at 24 °C but is paused at 5 °C. However, at 5 °C a "molecular memory" of TH exposure is retained that results in an accelerated metamorphosis upon shifting to 24 °C. We used RNA-sequencing to identify changes in Rana (Lithobates) catesbeiana back skin gene expression during natural and TH-induced metamorphosis. During natural metamorphosis, significant differential expression (DE) was observed in >6500 transcripts including classic TH-responsive transcripts (thrb and thibz), heat shock proteins, and innate immune system components: keratins, mucins, and antimicrobial peptides (AMPs). Premetamorphic tadpoles maintained at 5 °C showed 83 DE transcripts within 48 h after TH administration, including thibz which has previously been identified as a molecular memory component in other tissues. Over 3600 DE transcripts were detected in TH-treated tadpoles at 24 °C or when tadpoles held at 5 °C were shifted to 24 °C. Gene ontology (GO) terms related to transcription, RNA metabolic processes, and translation were enriched in both datasets and immune related GO terms were observed in the temperature-modulated experiment. Our findings have implications on survival as climate change affects amphibia worldwide.


Gene Expression Profiling , Immunity, Innate , Metamorphosis, Biological , Skin , Temperature , Thyroid Hormones , Transcriptome , Animals , Metamorphosis, Biological/drug effects , Immunity, Innate/drug effects , Skin/drug effects , Skin/metabolism , Thyroid Hormones/metabolism , Transcriptome/drug effects , Rana catesbeiana/genetics , Rana catesbeiana/growth & development , Larva/growth & development , Larva/genetics , Larva/drug effects , Amphibian Proteins/genetics
15.
Malar J ; 23(1): 160, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778399

BACKGROUND: Anopheles mosquito resistance to insecticide remains a serious threat to malaria vector control affecting several sub-Sahara African countries, including Côte d'Ivoire, where high pyrethroid, carbamate and organophosphate resistance have been reported. Since 2017, new insecticides, namely neonicotinoids (e.g.; clothianidin) and pyrroles (e.g.; chlorfenapyr) have been pre-qualified by the World Health Organization (WHO) for use in public health to manage insecticide resistance for disease vector control. METHODS: Clothianidin and chlorfenapyr were tested against the field-collected Anopheles gambiae populations from Gagnoa, Daloa and Abengourou using the WHO standard insecticide susceptibility biossays. Anopheles gambiae larvae were collected from several larval habitats, pooled and reared to adulthood in each site in July 2020. Non-blood-fed adult female mosquitoes aged 2 to 5 days were exposed to diagnostic concentration deltamethrin, permethrin, alpha-cypermethrin, bendiocarb, and pirimiphos-methyl. Clothianidin 2% treated papers were locally made and tested using WHO tube bioassay while chlorfenapyr (100 µg/bottle) was evaluated using WHO bottle assays. Furthermore, subsamples of exposed mosquitoes were identified to species and genotyped for insecticide resistance markers including the knock-down resistance (kdr) west and east, and acetylcholinesterase (Ace-1) using molecular techniques. RESULTS: High pyrethroid resistance was recorded with diagnostic dose in Abengourou (1.1 to 3.4% mortality), in Daloa (15.5 to 33.8%) and in Gagnoa (10.3 to 41.6%). With bendiocarb, mortality rates ranged from 49.5 to 62.3%. Complete mortality (100% mortality) was recorded with clothianidin in Gagnoa, 94.9% in Daloa and 96.6% in Abengourou, while susceptibility (mortality > 98%) to chlorfenapyr 100 µg/bottle was recorded at all sites and to pirimiphos-methyl in Gagnoa and Abengourou. Kdr-west mutation was present at high frequency (0.58 to 0.73) in the three sites and Kdr-east mutation frequency was recorded at a very low frequency of 0.02 in both Abengourou and Daloa samples and absent in Gagnoa. The Ace-1 mutation was present at frequencies between 0.19 and 0.29 in these areas. Anopheles coluzzii represented 100% of mosquitoes collected in Daloa and Gagnoa, and 72% in Abengourou. CONCLUSIONS: This study showed that clothianidin and chlorfenapyr insecticides induce high mortality in the natural and pyrethroid-resistant An. gambiae populations in Côte d'Ivoire. These results could support a resistance management plan by proposing an insecticide rotation strategy for vector control interventions.


Anopheles , Insecticide Resistance , Insecticides , Mosquito Vectors , Pyrethrins , Animals , Anopheles/drug effects , Anopheles/genetics , Insecticides/pharmacology , Insecticide Resistance/genetics , Cote d'Ivoire , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Female , Neonicotinoids/pharmacology , Guanidines/pharmacology , Malaria/prevention & control , Malaria/transmission , Thiazoles/pharmacology , Pyrroles/pharmacology , Mosquito Control , Larva/drug effects
16.
PeerJ ; 12: e17349, 2024.
Article En | MEDLINE | ID: mdl-38784394

Background: Antibiotics are commonly used for controlling microbial growth in diseased organisms. However, antibiotic treatments during early developmental stages can have negative impacts on development and physiology that could offset the positive effects of reducing or eliminating pathogens. Similarly, antibiotics can shift the microbial community due to differential effectiveness on resistant and susceptible bacteria. Though antibiotic application does not typically result in mortality of marine invertebrates, little is known about the developmental and transcriptional effects. These sublethal effects could reduce the fitness of the host organism and lead to negative changes after removal of the antibiotics. Here, we quantify the impact of antibiotic treatment on development, gene expression, and the culturable bacterial community of a model cnidarian, Nematostella vectensis. Methods: Ampicillin, streptomycin, rifampicin, and neomycin were compared individually at two concentrations, 50 and 200 µg mL-1, and in combination at 50 µg mL-1 each, to assess their impact on N. vectensis. First, we determined the impact antibiotics have on larval development. Next Amplicon 16S rDNA gene sequencing was used to compare the culturable bacteria that persist after antibiotic treatment to determine how these treatments may differentially select against the native microbiome. Lastly, we determined how acute (3-day) and chronic (8-day) antibiotic treatments impact gene expression of adult anemones. Results: Under most exposures, the time of larval settlement extended as the concentration of antibiotics increased and had the longest delay of 3 days in the combination treatment. Culturable bacteria persisted through a majority of exposures where we identified 359 amplicon sequence variants (ASVs). The largest proportion of bacteria belonged to Gammaproteobacteria, and the most common ASVs were identified as Microbacterium and Vibrio. The acute antibiotic exposure resulted in differential expression of genes related to epigenetic mechanisms and neural processes, while constant application resulted in upregulation of chaperones and downregulation of mitochondrial genes when compared to controls. Gene Ontology analyses identified overall depletion of terms related to development and metabolism in both antibiotic treatments. Discussion: Antibiotics resulted in a significant increase to settlement time of N. vectensis larvae. Culturable bacterial species after antibiotic treatments were taxonomically diverse. Additionally, the transcriptional effects of antibiotics, and after their removal result in significant differences in gene expression that may impact the physiology of the anemone, which may include removal of bacterial signaling on anemone gene expression. Our research suggests that impacts of antibiotics beyond the reduction of bacteria may be important to consider when they are applied to aquatic invertebrates including reef building corals.


Anti-Bacterial Agents , Larva , Sea Anemones , Animals , Anti-Bacterial Agents/pharmacology , Sea Anemones/genetics , Sea Anemones/drug effects , Larva/microbiology , Larva/drug effects , Larva/genetics , Ampicillin/pharmacology , Neomycin/pharmacology , Streptomycin/pharmacology , Rifampin/pharmacology , Gene Expression/drug effects
17.
Sci Rep ; 14(1): 11784, 2024 05 23.
Article En | MEDLINE | ID: mdl-38782918

Microplastics, particles under 5 mm, pervade aquatic environments, notably in Tarragona's coastal region (NE Iberian Peninsula), hosting a major plastic production complex. To investigate weathering and yellowness impact on plastic pellets toxicity, sea-urchin embryo tests were conducted with pellets from three locations-near the source and at increasing distances. Strikingly, distant samples showed toxicity to invertebrate early stages, contrasting with innocuous results near the production site. Follow-up experiments highlighted the significance of weathering and yellowing in elevated pellet toxicity, with more weathered and colored pellets exhibiting toxicity. This research underscores the overlooked realm of plastic leachate impact on marine organisms while proposes that prolonged exposure of plastic pellets in the environment may lead to toxicity. Despite shedding light on potential chemical sorption as a toxicity source, further investigations are imperative to comprehend weathering, yellowing, and chemical accumulation in plastic particles.


Larva , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Larva/drug effects , Sea Urchins/drug effects , Plastics/toxicity , Plastics/chemistry , Environmental Monitoring/methods
18.
J Pharm Biomed Anal ; 245: 116187, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38692215

The continuous emergence of new psychoactive substances (NPS) attracted a great deal of attention within recent years. Lately, the two hallucinogenic NPS 1cP-LSD and 4-AcO-DET have appeared on the global market. Knowledge about their metabolism to identify potential metabolic targets for analysis and their cytotoxic properties is lacking. The aim of this work was thus to study their in vitro and in vivo metabolism in pooled human liver S9 fraction (pHLS9) and in zebrafish larvae (ZL) by means of liquid chromatography-high-resolution tandem mass spectrometry. Monooxygenases involved in the initial metabolic steps were elucidated using recombinant human isozymes. Investigations on their cytotoxicity were performed on the human hepatoma cell line HepG2 using a multiparametric, fluorescence-based high-content screening assay. This included measurement of CYP-enzyme mediated effects by means of the unspecific CYP inhibitor 1-aminbenzotriazole (ABT). Several phase I metabolites of both compounds and two phase II metabolites of 4-AcO-DET were produced in vitro and in vivo. After microinjection of 1cP-LSD into the caudal vein of ZL, three out of seven metabolites formed in pHLS9 were also detected in ZL. Twelve 4-AcO-DET metabolites were identified in ZL after exposure via immersion bath and five of them were found in pHLS9 incubations. Notably, unique metabolites of 4-AcO-DET were only produced by ZL, whereas 1cP-LSD specific metabolites were found both in ZL and in pHLS9. No toxic effects were observed for 1cP-LSD and 4-AcO-DET in HepG2 cells, however, two parameters were altered in incubations containing 4-AcO-DET together with ABT compared with incubations without ABT but in concentrations far above expected in vivo concentration. Further investigations should be done with other hepatic cell lines expressing higher levels of CYP enzymes.


Hallucinogens , Larva , Liver , Tandem Mass Spectrometry , Zebrafish , Animals , Humans , Hep G2 Cells , Tandem Mass Spectrometry/methods , Larva/drug effects , Larva/metabolism , Chromatography, Liquid/methods , Hallucinogens/toxicity , Liver/drug effects , Liver/metabolism , Phenethylamines/toxicity , High-Throughput Screening Assays/methods , Cytochrome P-450 Enzyme System/metabolism , Benzylamines , Dimethoxyphenylethylamine/analogs & derivatives
19.
Acta Trop ; 255: 107226, 2024 Jul.
Article En | MEDLINE | ID: mdl-38697451

Mosquito-borne disease pandemics, such as the Zika virus and chikungunya, have escalated cognizance of how critical it is to implement proficient mosquito vector control measures. The prevention of Culicidae is becoming more difficult these days because of the expeditious imminence of synthetic pesticide resistance and the universal expansion of tremendously invasive mosquito vectors. The present study highlights the insecticidal and larvicidal efficacy of the prospective novel actinobacterium derived from the marine Streptomyces sp. RD06 secondary metabolites against Culex quinquefasciatus mosquito. The pupicidal activity of Streptomyces sp. RD06 showed LC50=199.22 ± 11.54 and LC90= 591.84 ± 55.41 against the pupa. The purified bioactive metabolites 1, 2-Benzenedicarboxylic acid, diheptyl ester from Streptomyces sp. RD06 exhibited an LC50 value of 154.13 ± 10.50 and an LC90 value of 642.84 ± 74.61 tested against Cx. quinquefasciatus larvae. The Streptomyces sp. RD06 secondary metabolites exhibited 100 % non-hatchability at 62.5 ppm, and 82 % of hatchability was observed at 250 ppm. In addition, media optimization showed that the highest biomass production was attained at a temperature of 41.44 °C, pH 9.23, nitrogen source 11.43 mg/ml, and carbon source 150 mg/ml. Compared to control larvae, the histology and confocal microscopy results showed destruction to the anal gill, lumen content, and epithelial layer residues in the treated larvae. Utilizing an eco-friendly method, these alternative inventive insecticidal derivatives from Streptomyces sp. RD06 eradicates Culex quinquefasciatus. This study highlights the promising potential of these Streptomyces sp. RD06 secondary metabolites to develop affordable and efficacious mosquito larvicides to replace synthetic insecticides in the future.


Culex , Insecticides , Larva , Mosquito Vectors , Streptomyces , Animals , Streptomyces/chemistry , Streptomyces/metabolism , Culex/drug effects , Larva/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Mosquito Vectors/drug effects , Secondary Metabolism , Mosquito Control/methods , Filariasis/prevention & control , Pupa/drug effects
20.
Ecotoxicol Environ Saf ; 278: 116415, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38703406

The combined pollution of microplastics (MPs) and sulfamethoxazole (SMZ) often occurs in aquatic ecosystems, posing a serious threat to animal and human health. However, little is known about the liver damage caused by the single or co-exposure of MPs and SMZ, and its specific mechanisms are still poorly understood. In this study, we investigated the effects of co-exposure to 20 µm or 80 nm MPs and SMZ in both larval and adult zebrafish models. Firstly, we observed a significant decrease in the number of hepatocytes and the liver damage in larval zebrafish worsened following co-exposure to SMZ and MPs. Additionally, the number of macrophages and neutrophils decreased, while the expression of inflammatory cytokines and antioxidant enzyme activities increased after co-exposure in larval zebrafish. Transcriptome analysis revealed significant changes in gene expression in the co-exposed groups, particularly in processes related to oxidation-reduction, inflammatory response, and the MAPK signaling pathway in the liver of adult zebrafish. Co-exposure of SMZ and MPs also promoted hepatocyte apoptosis and inhibited proliferation levels, which was associated with the translocation of Nrf2 from the cytoplasm to the nucleus and an increase in protein levels of Nrf2 and NF-kB p65 in the adult zebrafish. Furthermore, our pharmacological experiments demonstrated that inhibiting ROS and blocking the MAPK signaling pathway partially rescued the liver injury induced by co-exposure both in larval and adult zebrafish. In conclusion, our findings suggest that co-exposure to SMZ and MPs induces hepatic dysfunction through the ROS-mediated MAPK signaling pathway in zebrafish. This information provides novel insights into the potential environmental risk of MPs and hazardous pollutants co-existence in aquatic ecosystems.


Microplastics , Reactive Oxygen Species , Sulfamethoxazole , Water Pollutants, Chemical , Zebrafish , Animals , Sulfamethoxazole/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , MAP Kinase Signaling System/drug effects , Liver/drug effects , Chemical and Drug Induced Liver Injury/pathology , Larva/drug effects , Apoptosis/drug effects , Hepatocytes/drug effects
...