Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.855
Filter
1.
BMC Cancer ; 24(1): 894, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39048945

ABSTRACT

BACKGROUND: Leukemia, a type of blood cell cancer, is categorized by the type of white blood cells affected (lymphocytes or myeloid cells) and disease progression (acute or chronic). In 2020, it ranked 15th among the most diagnosed cancers and 11th in cancer-related deaths globally, with 474,519 new cases and 311,594 deaths (GLOBOCAN2020). Research into leukemia's development mechanisms may lead to new treatments. Ubiquitin-specific proteases (USPs), a family of deubiquitinating enzymes, play critical roles in various biological processes, with both tumor-suppressive and oncogenic functions, though a comprehensive understanding is still needed. AIM: This systematic review aimed to provide a comprehensive review of how Ubiquitin-specific proteases are involved in pathogenesis of different types of leukemia. METHODS: We systematically searched the MEDLINE (via PubMed), Scopus, and Web of Science databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA) to identify relevant studies focusing on the role of USPs in leukemia. Data from selected articles were extracted, synthesized, and organized to present a coherent overview of the subject matter. RESULTS: The review highlights the crucial roles of USPs in chromosomal aberrations, cell proliferation, differentiation, apoptosis, cell cycle regulation, DNA repair, and drug resistance. USP activity significantly impacts leukemia progression, inhibition, and chemotherapy sensitivity, suggesting personalized diagnostic and therapeutic approaches. Ubiquitin-specific proteases also regulate gene expression, protein stability, complex formation, histone deubiquitination, and protein repositioning in specific leukemia cell types. CONCLUSION: The diagnostic, prognostic, and therapeutic implications associated with ubiquitin-specific proteases (USPs) hold significant promise and the potential to transform leukemia management, ultimately improving patient outcomes.


Subject(s)
Leukemia , Ubiquitin-Specific Proteases , Humans , Leukemia/pathology , Leukemia/enzymology , Leukemia/diagnosis , Leukemia/genetics , Ubiquitin-Specific Proteases/metabolism , Apoptosis , Cell Proliferation , Drug Resistance, Neoplasm , Cell Differentiation , Chromosome Aberrations , DNA Repair
2.
Nature ; 630(8015): 198-205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720074

ABSTRACT

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase , Leukemia , Signal Transduction , p21-Activated Kinases , Animals , Humans , Mice , Cell Line , Class Ib Phosphatidylinositol 3-Kinase/genetics , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Cytarabine/pharmacology , Cytarabine/therapeutic use , Leukemia/drug therapy , Leukemia/enzymology , Leukemia/genetics , Leukemia/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/metabolism , Phosphorylation , Xenograft Model Antitumor Assays
3.
Molecules ; 29(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38792133

ABSTRACT

L-asparaginases are used in the treatment of acute lymphoblastic leukemia. The aim of this work was to compare the antiproliferative potential and proapoptotic properties of novel L-asparaginases from different structural classes, viz. EcAIII and KpAIII (class 2), as well as ReAIV and ReAV (class 3). The EcAII (class 1) enzyme served as a reference. The proapoptotic and antiproliferative effects were tested using four human leukemia cell models: MOLT-4, RAJI, THP-1, and HL-60. The antiproliferative assay with the MOLT-4 cell line indicated the inhibitory properties of all tested L-asparaginases. The results from the THP-1 cell models showed a similar antiproliferative effect in the presence of EcAII, EcAIII, and KpAIII. In the case of HL-60 cells, the inhibition of proliferation was observed in the presence of EcAII and KpAIII, whereas the proliferation of RAJI cells was inhibited only by EcAII. The results of the proapoptotic assays showed individual effects of the enzymes toward specific cell lines, suggesting a selective (time-dependent and dose-dependent) action of the tested L-asparaginases. We have, thus, demonstrated that novel L-asparaginases, with a lower substrate affinity than EcAII, also exhibit significant antileukemic properties in vitro, which makes them interesting new drug candidates for the treatment of hematological malignancies. For all enzymes, the kinetic parameters (Km and kcat) and thermal stability (Tm) were determined. Structural and catalytic properties of L-asparaginases from different classes are also summarized.


Subject(s)
Antineoplastic Agents , Apoptosis , Asparaginase , Cell Proliferation , Humans , Asparaginase/pharmacology , Asparaginase/chemistry , Asparaginase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Substrate Specificity , HL-60 Cells , Leukemia/drug therapy , Leukemia/enzymology
4.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256018

ABSTRACT

NSD3 (nuclear receptor-binding SET domain protein 3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. Recently, this amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. Specifically, in this review we will focus on the functions that have been characterized as methyltransferase dependent, and those that have been correlated with the expression of the NSD3S isoform. There is evidence that both the NSD3L and NSD3S isoforms are relevant for cancer progression, establishing NSD3 as a therapeutic target. However, further functional studies are needed to differentiate NSD3 oncogenic activity as dependent or independent of the catalytic domain of the protein, as well as the contribution of each isoform and its clinical significance in cancer progression.


Subject(s)
Histone-Lysine N-Methyltransferase , Neoplasms , Nuclear Proteins , Humans , Male , Carcinoma/enzymology , Leukemia/enzymology , Oncogenes , Protein Isoforms/genetics , Histone-Lysine N-Methyltransferase/metabolism , Nuclear Proteins/metabolism , Neoplasms/enzymology , Neoplasms/pathology
5.
Blood ; 141(19): 2372-2389, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36580665

ABSTRACT

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Subject(s)
BRCA1 Protein , DNA Damage , Leukemia , Animals , Mice , BRCA2 Protein , DNA/metabolism , Leukemia/enzymology , Leukemia/genetics , DNA Polymerase theta
6.
J Biol Chem ; 297(4): 101170, 2021 10.
Article in English | MEDLINE | ID: mdl-34492268

ABSTRACT

Elevated intracellular levels of dNTPs have been shown to be a biochemical marker of cancer cells. Recently, a series of mutations in the multifunctional dNTP triphosphohydrolase (dNTPase), sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), have been reported in various cancers. Here, we investigated the structure and functions of SAMHD1 R366C/H mutants, found in colon cancer and leukemia. Unlike many other cancer-specific mutations, the SAMHD1 R366 mutations do not alter cellular protein levels of the enzyme. However, R366C/H mutant proteins exhibit a loss of dNTPase activity, and their X-ray structures demonstrate the absence of dGTP substrate in their active site, likely because of a loss of interaction with the γ-phosphate of the substrate. The R366C/H mutants failed to reduce intracellular dNTP levels and restrict HIV-1 replication, functions of SAMHD1 that are dependent on the ability of the enzyme to hydrolyze dNTPs. However, these mutants retain dNTPase-independent functions, including mediating dsDNA break repair, interacting with CtIP and cyclin A2, and suppressing innate immune responses. Finally, SAMHD1 degradation in human primary-activated/dividing CD4+ T cells further elevates cellular dNTP levels. This study suggests that the loss of SAMHD1 dNTPase activity induced by R366 mutations can mechanistically contribute to the elevated dNTP levels commonly found in cancer cells.


Subject(s)
Colonic Neoplasms , Leukemia , Mutation, Missense , Neoplasm Proteins , SAM Domain and HD Domain-Containing Protein 1 , Amino Acid Substitution , Cell Line , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , Cyclin A2/chemistry , Cyclin A2/genetics , Cyclin A2/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Humans , Leukemia/enzymology , Leukemia/genetics , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , SAM Domain and HD Domain-Containing Protein 1/chemistry , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , Structure-Activity Relationship
7.
Cancer Sci ; 112(12): 4944-4956, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34533861

ABSTRACT

Diverse metabolic changes are induced by various driver oncogenes during the onset and progression of leukemia. By upregulating glycolysis, cancer cells acquire a proliferative advantage over normal hematopoietic cells; in addition, these changes in energy metabolism contribute to anticancer drug resistance. Because leukemia cells proliferate by consuming glucose as an energy source, an alternative nutrient source is essential when glucose levels in bone marrow are insufficient. We profiled sugar metabolism in leukemia cells and found that mannose is an energy source for glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway. Leukemia cells express high levels of phosphomannose isomerase (PMI), which mobilizes mannose to glycolysis; consequently, even mannose in the blood can be used as an energy source for glycolysis. Conversely, suppression of PMI expression or a mannose load exceeding the processing capacity of PMI inhibited transcription of genes related to mitochondrial metabolism and the TCA cycle, therefore suppressing the growth of leukemia cells. High PMI expression was also a poor prognostic factor for acute myeloid leukemia. Our findings reveal a new mechanism for glucose starvation resistance in leukemia. Furthermore, the combination of PMI suppression and mannose loading has potential as a novel treatment for driver oncogene-independent leukemia.


Subject(s)
Leukemia/drug therapy , Mannose-6-Phosphate Isomerase/metabolism , Mannose/administration & dosage , Up-Regulation , Animals , Cell Line, Tumor , Citric Acid Cycle/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Glycolysis/drug effects , Humans , K562 Cells , Leukemia/enzymology , Leukemia/genetics , Leukemia/pathology , Mannose/pharmacology , Mannose-6-Phosphate Isomerase/antagonists & inhibitors , Mice , Pentose Phosphate Pathway/drug effects , Prognosis , THP-1 Cells , Up-Regulation/drug effects , Xenograft Model Antitumor Assays
8.
Genes (Basel) ; 12(8)2021 07 30.
Article in English | MEDLINE | ID: mdl-34440361

ABSTRACT

The proliferative capacity and continuous survival of cells are highly dependent on telomerase expression and the maintenance of telomere length. For this reason, elevated expression of telomerase has been identified in virtually all cancers, including leukemias; however, it should be noted that expression of telomerase is sometimes observed later in malignant development. This time point of activation is highly dependent on the type of leukemia and its causative factors. Many recent studies in this field have contributed to the elucidation of the mechanisms by which the various forms of leukemias increase telomerase activity. These include the dysregulation of telomerase reverse transcriptase (TERT) at various levels which include transcriptional, post-transcriptional, and post-translational stages. The pathways and biological molecules involved in these processes are also being deciphered with the advent of enabling technologies such as next-generation sequencing (NGS), ribonucleic acid sequencing (RNA-Seq), liquid chromatography-mass spectrometry (LCMS/MS), and many others. It has also been established that TERT possess diagnostic value as most adult cells do not express high levels of telomerase. Indeed, studies have shown that prognosis is not favorable in patients who have leukemias expressing high levels of telomerase. Recent research has indicated that targeting of this gene is able to control the survival of malignant cells and therefore offers a potential treatment for TERT-dependent leukemias. Here we review the mechanisms of hTERT regulation and deliberate their association in malignant states of leukemic cells. Further, we also cover the clinical implications of this gene including its use in diagnostic, prognostic, and therapeutic discoveries.


Subject(s)
Leukemia/enzymology , Leukemia/genetics , Telomerase/genetics , Animals , Carcinogenesis/genetics , Enzyme Activation , Gene Expression Regulation, Enzymologic , Humans , MicroRNAs/metabolism , Protein Processing, Post-Translational , Telomerase/metabolism , Transcription, Genetic
9.
Cell Death Dis ; 12(7): 702, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262023

ABSTRACT

Acquired resistance to glucocorticoids (GCs) is an obstacle to the effective treatment of leukemia, but the molecular mechanisms of steroid insensitivity have not been fully elucidated. In this study, we established an acquired GC-resistant leukemia cell model and found a long noncoding RNA, HOTAIRM1, was overexpressed in the resistant cells by transcriptional profiling, and was higher expressed in patients with poor prognosis. The whole-genome-binding sites of HOTAIRM1 were determined by ChIRP-seq (chromatin isolation by RNA purification combined with sequencing) analysis. Further study determined that HOTAIRM1 bound to the transcriptional inhibitory region of ARHGAP18 and repressed the expression of ARHGAP18, which led to the increase of RHOA/ROCK1 signaling pathway and promoted GC resistance through antiapoptosis of leukemia cells. The inhibition of ROCK1 in GC-resistant cells could restore GCs responsiveness. In addition, HOTAIRM1 could also act as a protein sequester to prevent transcription factor AML1(acute myeloid leukemia 1) from binding to the regulatory region of ARHGAP18 by interacting with AML1. At last, we also proved AML1 could directly activate the expression of HOTAIRM1 through binding to the promoter of HOTAIRM1, which enriched the knowledge on the regulation of lncRNAs. This study revealed epigenetic causes of glucocorticoid resistance from the perspective of lncRNA, and laid a foundation for the optimization of glucocorticoid-based leukemia treatment strategy in clinic.


Subject(s)
Antineoplastic Agents/pharmacology , Core Binding Factor Alpha 2 Subunit/metabolism , Dexamethasone/pharmacology , Drug Resistance, Neoplasm , GTPase-Activating Proteins/metabolism , Glucocorticoids/pharmacology , Leukemia/drug therapy , MicroRNAs/metabolism , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/genetics , Drug Resistance, Neoplasm/genetics , GTPase-Activating Proteins/genetics , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Leukemia/enzymology , Leukemia/genetics , Leukemia/pathology , MicroRNAs/genetics , Protein Binding , Signal Transduction , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/genetics
10.
Biochem Pharmacol ; 194: 114677, 2021 12.
Article in English | MEDLINE | ID: mdl-34265280

ABSTRACT

New and potent agents that evade multidrug resistance (MDR) and inhibit epigenetic modifications are of great interest in cancer drug development. Here, we describe that a moniliformin derivative (IUPAC name: 3-(naphthalen-2-ylsulfanyl)-4-{[(2Z)-1,3,3-trimethyl-2,3-dihydro-1H-indol-2-ylidene]methyl}cyclobut-3-ene-1,2-dione; code: MCC1381) bypasses P-gp-mediated MDR. Using transcriptomics, we identified a large number of genes significantly regulated in response to MCC1381, which affected the cell cycle and disturbed cellular death and survival. The potential targets of MCC1381 might be histone deacetylases (HDACs) as predicted by SwissTargetPrediction. In silico studies confirmed that MCC1381 presented comparable affinity with HDAC1, 2, 3, 6, 8 and 11. Besides, the inhibition activity of HDACs was dose-dependently inhibited by MCC1381. Particularly, a strong binding affinity was observed between MCC1381 and HDAC6 by microscale thermophoresis analysis. MCC1381 decreased the expression of HDAC6, inversely correlated with the increase of acetylated HDAC6 substrates, acetylation p53 and α-tubulin. Furthermore, MCC1381 arrested the cell cycle at the G2/M phase, induced the generation of reactive oxygen species and collapse of the mitochondrial membrane potential. MCC1381 exhibited in vivo anti-cancer activity in xenografted zebrafish. Collectively, MCC1381 extended cytotoxicity towards P-gp-resistant leukemia cancer cells and may act as a pan-HDACs inhibitor, indicating that MCC1381 is a novel candidate for cancer therapy.


Subject(s)
Apoptosis/drug effects , Cyclobutanes/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Leukemia/enzymology , Mycotoxins/pharmacology , Animals , Apoptosis/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cyclobutanes/chemistry , Cyclobutanes/therapeutic use , Dose-Response Relationship, Drug , HCT116 Cells , HEK293 Cells , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/chemistry , Humans , Leukemia/drug therapy , Molecular Docking Simulation , Mycotoxins/therapeutic use , Protein Structure, Secondary , Protein Structure, Tertiary , Xenograft Model Antitumor Assays/methods , Zebrafish
11.
Int J Biol Macromol ; 187: 513-527, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34310992

ABSTRACT

To clarify the mechanism of semicarbazide-modified α-lactalbumin (SEM-LA)-mediated cytotoxicity, we investigated its effect on human U937 leukemia cells and MCF-7 breast cancer cells in the current study. SEM-LA induced apoptosis in U937 cells, which showed increased NOX4 expression, procaspase-8 degradation, and t-Bid production. FADD depletion inhibited SEM-LA-elicited caspase-8 activation, t-Bid production, and cell death, indicating that SEM-LA activated death receptor-mediated apoptosis in U937 cells. SEM-LA stimulated Ca2+-mediated Akt activation, which in turn increased Sp1- and p300-mediated NOX4 transcription. The upregulation of NOX4 expression promoted ROS-mediated p38 MAPK phosphorylation, leading to protein phosphatase 2A (PP2A)-regulated tristetraprolin (TTP) degradation. Remarkably, TTP downregulation increased the stability of TNF-α mRNA, resulting in the upregulation of TNF-α protein expression. Abolishment of Ca2+-NOX4-ROS axis-mediated p38 MAPK activation attenuated SEM-LA-induced TNF-α upregulation and protected U937 cells from SEM-LA-mediated cytotoxicity. The restoration of TTP expression alleviated the effect of TNF-α upregulation and cell death induced by SEM-LA. Altogether, the data in this study demonstrate that SEM-LA activates TNF-α-mediated apoptosis in U937 cells through the NOX4/p38 MAPK/PP2A axis. We think that a similar pathway can also explain the death of MCF-7 human breast cancer cells after SEM-LA treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Lactalbumin/pharmacology , Leukemia/drug therapy , NADPH Oxidase 4/metabolism , Protein Phosphatase 2/metabolism , Semicarbazides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Apoptosis Regulatory Proteins/metabolism , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Calcium Signaling/drug effects , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism , Female , Humans , Leukemia/enzymology , Leukemia/genetics , Leukemia/pathology , MCF-7 Cells , NADPH Oxidase 4/genetics , Protein Phosphatase 2/genetics , Proteolysis , Reactive Oxygen Species/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Tristetraprolin/metabolism , Tumor Necrosis Factor-alpha/genetics , U937 Cells , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Theranostics ; 11(14): 6891-6904, 2021.
Article in English | MEDLINE | ID: mdl-34093860

ABSTRACT

Rationale: Tanshinone, a type of diterpenes derived from salvia miltiorrhiza, is a particularly promising herbal medicine compound for the treatment of cancers including acute myeloid leukemia (AML). However, the therapeutic function and the underlying mechanism of Tanshinone in AML are not clear, and the toxic effect of Tanshinone limits its clinical application. Methods: Our work utilizes human leukemia cell lines, zebrafish transgenics and xenograft models to study the cellular and molecular mechanisms of how Tanshinone affects normal and abnormal hematopoiesis. WISH, Sudan Black and O-Dianisidine Staining were used to determine the expression of hematopoietic genes on zebrafish embryos. RNA-seq analysis showed that differential expression genes and enrichment gene signature with Tan I treatment. The surface plasmon resonance (SPR) method was used with a BIAcore T200 (GE Healthcare) to measure the binding affinities of Tan I. In vitro methyltransferase assay was performed to verify Tan I inhibits the histone enzymatic activity of the PRC2 complex. ChIP-qPCR assay was used to determine the H3K27me3 level of EZH2 target genes. Results: We found that Tanshinone I (Tan I), one of the Tanshinones, can inhibit the proliferation of human leukemia cells in vitro and in the xenograft zebrafish model, as well as the normal and malignant definitive hematopoiesis in zebrafish. Mechanistic studies illustrate that Tan I regulates normal and malignant hematopoiesis through direct binding to EZH2, a well-known histone H3K27 methyltransferase, and inhibiting PRC2 enzymatic activity. Furthermore, we identified MMP9 and ABCG2 as two possible downstream genes of Tan I's effects on EZH2. Conclusions: Together, this study confirmed that Tan I is a novel EZH2 inhibitor and suggested MMP9 and ABCG2 as two potential therapeutic targets for myeloid malignant diseases.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Abietanes/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Hematopoiesis/drug effects , Leukemia/drug therapy , Leukemia/metabolism , Matrix Metalloproteinase 9/metabolism , Neoplasm Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Animals , Animals, Genetically Modified , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chromatin Immunoprecipitation , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Hematopoiesis/genetics , Histones/metabolism , Humans , Leukemia/enzymology , Leukemia/genetics , Matrix Metalloproteinase 9/genetics , Neoplasm Proteins/genetics , Polycomb Repressive Complex 2/metabolism , Protein Binding , RNA-Seq , Salvia miltiorrhiza/chemistry , Surface Plasmon Resonance , Transcriptome/genetics , Xenograft Model Antitumor Assays , Zebrafish
13.
Future Oncol ; 17(27): 3561-3577, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34189942

ABSTRACT

Purpose: The present study was planned to explore the expression variations of mitochondrial sirtuins and the mitochondrial DNA repair enzyme OGG1-2a in leukemia patients. Oxidative stress and deacetylation levels of leukemia patients were measured in the present study. Methods: A total of 200 leukemia patients along with 200 healthy controls were evaluated using quantitative PCR, 8OXOG assay and deacetylation assay. Results: Significant deregulation of SIRT3 (p < 0.0001), SIRT4 (p < 0.0001), SIRT5 (p < 0.0001), Ki-67 (p < 0.0001) and OGG1-2a (p < 0.0001) was detected in patients versus controls. Survival analysis showed that deregulation of said genes was associated with decreased survival of leukemia patients (SIRT3: p < 0.004; SIRT4: p < 0.0009; SIRT5: p < 0.0001; OGG1-2a: p < 0.03). Receiver operating characteristic curve analysis confirmed the diagnostic values of selected genes in leukemia patients. Levels of 8OXOG adducts were measured, and significantly increased 8OXOG adduct levels were observed in patients versus controls. Conclusion: These data suggest that deregulation of SIRT3, SIRT4, SIRT5 and OGG1-2a acts as a diagnostic and prognostic marker in leukemia.


Lay abstract Leukemia is a type of blood cancer that has shown an increased rate of occurrence worldwide. Studies have shown that environmental and genetic factors are involved in the increased rate of this disease. Of the genetic factors, sirtuins (SIRT3, SIRT4 and SIRT5) and OGG1-2a have not been studied in leukemia. In the present study, the authors aimed to study the genetic/epigenetic changes in these genes in leukemia patients. Results of the present study showed involvement of selected gene variations in the increased rate of leukemia, at least in the Pakistani population.


Subject(s)
DNA Glycosylases/metabolism , Leukemia/diagnosis , Leukemia/enzymology , Mitochondria/enzymology , Sirtuins/metabolism , Adult , Biomarkers/metabolism , Case-Control Studies , Female , Humans , Leukemia/therapy , Male , Prognosis , Survival Analysis
14.
Biosci Rep ; 41(6)2021 06 25.
Article in English | MEDLINE | ID: mdl-33969374

ABSTRACT

Acute leukemia is a hematological malignant tumor. Long non-coding RNA urothelial cancer-associated 1 (UCA1) is involved in the chemo-resistance of diverse cancers, but it is unclear whether UCA1 is associated with the sensitivity of acute leukemia cells to daunorubicin (DNR). DNR (100 nM) was selected for functional analysis. The viability, cell cycle progression, apoptosis, and invasion of treated acute leukemia cells (HL-60 and U-937) were evaluated by cell counting kit-8 (CCK-8) assay, flow cytometry assay, or transwell assay. Protein levels were detected with Western blot analysis. Expression patterns of UCA1 and miR-613 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between UCA1 and microRNA-613 (miR-613) was verified by dual-luciferase reporter assay. We observed that UCA1 expression was elevated in HL-60 and U-937cells. DNR constrained viability, cell cycle progression, invasion, and facilitated apoptosis of HL-60 and U-937 cells in a dose-dependent manner, but these impacts mediated by DNR were reverted after UCA1 overexpression. MiR-613 was down-regulated in HL-60 and U-937 cells, and UCA1 was verified as a miR-613 sponge. MiR-613 inhibitor reversed DNR treatment-mediated effects on viability, cell cycle progression, apoptosis, and invasion of HL-60 and U-937 cells, but these impacts mediated by miR-613 inhibitor were counteracted after UCA1 inhibition. Notably, the inactivation of the PI3K/AKT pathway caused by DNR treatment was reversed after miR-613 inhibitor introduction, but this influence mediated by miR-613 inhibitor was offset after UCA1 knockdown. In conclusion, UCA1 up-regulation facilitated the resistance of acute leukemia cells to DNR via the PI3K/AKT pathway by sponging miR-613.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Daunorubicin/pharmacology , Drug Resistance, Neoplasm , Leukemia/drug therapy , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/metabolism , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Leukemic , HL-60 Cells , Humans , Leukemia/enzymology , Leukemia/genetics , Leukemia/pathology , MicroRNAs/genetics , Neoplasm Invasiveness , RNA, Long Noncoding/genetics , Signal Transduction , U937 Cells
15.
Nat Commun ; 12(1): 2792, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990599

ABSTRACT

ASH1L histone methyltransferase plays a crucial role in the pathogenesis of different diseases, including acute leukemia. While ASH1L represents an attractive drug target, developing ASH1L inhibitors is challenging, as the catalytic SET domain adapts an inactive conformation with autoinhibitory loop blocking the access to the active site. Here, by applying fragment-based screening followed by medicinal chemistry and a structure-based design, we developed first-in-class small molecule inhibitors of the ASH1L SET domain. The crystal structures of ASH1L-inhibitor complexes reveal compound binding to the autoinhibitory loop region in the SET domain. When tested in MLL leukemia models, our lead compound, AS-99, blocks cell proliferation, induces apoptosis and differentiation, downregulates MLL fusion target genes, and reduces the leukemia burden in vivo. This work validates the ASH1L SET domain as a druggable target and provides a chemical probe to further study the biological functions of ASH1L as well as to develop therapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , DNA-Binding Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Leukemia/drug therapy , Leukemia/enzymology , Animals , Antineoplastic Agents/chemistry , Catalytic Domain/drug effects , Catalytic Domain/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Drug Design , Drug Discovery , Enzyme Inhibitors/chemistry , Female , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Humans , Leukemia/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogenes , Protein Domains , Recombinant Fusion Proteins/genetics
16.
Biochimie ; 184: 8-17, 2021 May.
Article in English | MEDLINE | ID: mdl-33556471

ABSTRACT

Acquired drug-resistance, often involving downregulation or mutations in the target protein, is a major caveat in precision medicine. Understanding mechanisms of resistance to therapeutic drugs may unravel strategies to overcome or prevent them. We previously identified phorbol ester (PE) compounds such as TPA that induce Protein Kinase δ (PKCδ), thereby suppressing leukemogenesis. Here we identified erythroleukemia cell lines that resist PEs and showed that reduced PKCδ protein expression underlies drug resistance. Reduced level of PKCδ in resistant cell lines was due to its phosphorylation followed by protein degradation. Indeed, proteasome inhibition prevented PE-induced loss of PKCδ. Accordingly, a combination of TPA and the proteasome inhibitor ALLN significantly suppressed leukemia in a mouse model of leukemia. PKCδ downregulation by TPA was independent of the downstream MAPK/ERK/P38/JNK pathway. Instead, expression of ubiquitin-associated and SH3 domain-containing protein b (Ubash3b) was induced by TPA, which leads to PKCδ protein dephosphorylation and degradation. This specific degradation was blocked by RNAi-mediated depletion of Ubash3b. In drug-sensitive leukemic cells, TPA did not induce Ubash3b, and consequently, PKCδ levels remained high. A PE-resistant cell line derived from PE-treated sensitive cells exhibited very low PKCδ expression. In these drug resistance cells, a Ubash3b independent mechanism led to PKCδ degradation. Thus, PE compounds in combination with proteasome or specific inhibitors for Ubash3b, or other factors can overcome resistance to TPA, leading to durable suppression of leukemic growth. These results identify Ubash3b as a potential target for drug development.


Subject(s)
Carcinogenesis/drug effects , Down-Regulation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Leukemic/drug effects , Leukemia/enzymology , Neoplasm Proteins/metabolism , Protein Kinase C-delta/biosynthesis , Protein Tyrosine Phosphatases/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Humans , Leukemia/genetics , Leukemia/pathology , Neoplasm Proteins/genetics , Protein Kinase C-delta/genetics , Protein Tyrosine Phosphatases/genetics
17.
J Biol Chem ; 296: 100229, 2021.
Article in English | MEDLINE | ID: mdl-33361155

ABSTRACT

DNA of living cells is always exposed to damaging factors. To counteract the consequences of DNA lesions, cells have evolved several DNA repair systems, among which base excision repair is one of the most important systems. Many currently used antitumor drugs act by damaging DNA, and DNA repair often interferes with chemotherapy and radiotherapy in cancer cells. Tumors are usually extremely genetically heterogeneous, often bearing mutations in DNA repair genes. Thus, knowledge of the functionality of cancer-related variants of proteins involved in DNA damage response and repair is of great interest for personalization of cancer therapy. Although computational methods to predict the variant functionality have attracted much attention, at present, they are mostly based on sequence conservation and make little use of modern capabilities in computational analysis of 3D protein structures. We have used molecular dynamics (MD) to model the structures of 20 clinically observed variants of a DNA repair enzyme, 8-oxoguanine DNA glycosylase. In parallel, we have experimentally characterized the activity, thermostability, and DNA binding in a subset of these mutant proteins. Among the analyzed variants of 8-oxoguanine DNA glycosylase, three (I145M, G202C, and V267M) were significantly functionally impaired and were successfully predicted by MD. Alone or in combination with sequence-based methods, MD may be an important functional prediction tool for cancer-related protein variants of unknown significance.


Subject(s)
DNA Glycosylases/chemistry , DNA Repair , DNA, Neoplasm/chemistry , Guanine/analogs & derivatives , Mutation , Neoplasm Proteins/chemistry , Amino Acid Substitution , Binding Sites , DNA Damage , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Gene Expression , Guanine/chemistry , Guanine/metabolism , Humans , Kinetics , Leukemia/enzymology , Leukemia/genetics , Leukemia/pathology , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Molecular Dynamics Simulation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Principal Component Analysis , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Small Cell Lung Carcinoma/enzymology , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology
18.
Br J Haematol ; 193(5): 922-927, 2021 06.
Article in English | MEDLINE | ID: mdl-33161592

ABSTRACT

Given its myeloid-restricted expression, myeloperoxidase (MPO) is typically used for lineage assignment (myeloid vs. lymphoid) during acute leukaemia (AL) diagnostics. In the present study, a robust flow cytometric definition for MPO positivity was established based on the standardised EuroFlow protocols, the standardised Acute Leukaemia Orientation Tube and 1734 multicentre AL cases (with confirmed assay stability). The best diagnostic performance was achieved by defining MPO positivity as ≥20% of the AL cells exceeding a lymphocyte-based threshold. The methodology employed should be applicable to any form of standardised flow cytometry.


Subject(s)
Flow Cytometry/standards , Immunophenotyping/standards , Leukemia , Neoplasm Proteins , Peroxidase , Acute Disease , Female , Humans , Leukemia/diagnosis , Leukemia/enzymology , Leukemia/immunology , Male , Neoplasm Proteins/blood , Neoplasm Proteins/immunology , Peroxidase/blood , Peroxidase/immunology
19.
Mol Cell Biochem ; 476(1): 417-423, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32996079

ABSTRACT

Ataxia telangiectasia mutated (ATM), a critical DNA damage sensor, also possesses non-nuclear functions owing to its presence in extra-nuclear compartments, including peroxisomes, lysosomes, and mitochondria. ATM is frequently altered in several human cancers. Recently, we and others have shown that loss of ATM is associated with defective mitochondrial autophagy (mitophagy) in ataxia-telangiectasia (A-T) fibroblasts and B-cell lymphomas. Further, we reported that ATM protein but not ATM kinase activity is required for mitophagy. However, the mechanism of ATM kinase activation during ionophore-induced mitophagy is unknown. In the work reported here, using several ionophores in A-T and multiple T-cell and B-cell lymphoma cell lines, we show that ionophore-induced mitophagy triggers oxidative stress-induced ATMSer1981 phosphorylation through ROS activation, which is different from neocarzinostatin-induced activation of ATMSer1981, Smc1Ser966, and Kap1Ser824. We used A-T cells overexpressed with WT or S1981A (auto-phosphorylation dead) ATM plasmids and show that ATM is activated by ROS-induced oxidative stress emanating from ionophore-induced mitochondrial damage and mitophagy. The antioxidants N-acetylcysteine and glutathione significantly inhibited ROS production and ATMSer1981 phosphorylation but failed to inhibit mitophagy as determined by retroviral infection with mt-mKeima construct followed by lysosomal dual-excitation ratiometric pH measurements. Our data suggest that while ATM kinase does not participate in mitophagy, it is activated via elevated ROS.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , B-Lymphocytes/cytology , Ionophores/pharmacology , Leukemia/enzymology , Mitophagy , Reactive Oxygen Species/metabolism , T-Lymphocytes/cytology , Animals , Antioxidants/metabolism , Apoptosis , Cell Line, Tumor , Cell Nucleus/metabolism , DNA Damage , Fibroblasts/metabolism , Gene Expression Regulation, Leukemic , HEK293 Cells , Histones/metabolism , Humans , Hydrogen-Ion Concentration , Jurkat Cells , Lysosomes/metabolism , Membrane Potential, Mitochondrial , Mice , Mitochondria/metabolism , Oxidative Stress , Phosphorylation , Sequence Analysis, DNA , Signal Transduction
20.
Oxid Med Cell Longev ; 2020: 7095902, 2020.
Article in English | MEDLINE | ID: mdl-33312338

ABSTRACT

The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We propose that NOX2 may be a targetable immune checkpoint in cancer.


Subject(s)
Carcinogenesis , Leukemia , Mutation , NADPH Oxidase 2 , Neoplasm Proteins , Reactive Oxygen Species , Tumor Microenvironment , Animals , Carcinogenesis/genetics , Carcinogenesis/immunology , Carcinogenesis/metabolism , Humans , Killer Cells, Natural/enzymology , Killer Cells, Natural/immunology , Leukemia/enzymology , Leukemia/genetics , Leukemia/immunology , Lymphocytes, Tumor-Infiltrating/enzymology , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid Cells/enzymology , Myeloid Cells/immunology , NADPH Oxidase 2/genetics , NADPH Oxidase 2/immunology , NADPH Oxidase 2/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL