Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.304
Filter
1.
Neurobiol Aging ; 141: 160-170, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964013

ABSTRACT

Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify genes that underpin sex-associated risk of AD. PIN1 is a key regulator of the tau phosphorylation signaling pathway; however, potential differences in PIN1 expression, in males and females, are still unknown. We analyzed brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels in an aging and AD cohort, which revealed reduced PIN1 levels primarily within females. We validated this observation in an independent dataset (ROS/MAP), which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again driven predominantly by female subjects. Histochemical analysis of PIN1 in AD and control male and female neocortex revealed an overall decrease in axonal PIN1 protein levels in females. These findings emphasize the importance of considering sex differences in AD research.


Subject(s)
Alzheimer Disease , Cognition , Cognitive Dysfunction , NIMA-Interacting Peptidylprolyl Isomerase , Neocortex , Neurofibrillary Tangles , Sex Characteristics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Humans , Female , Neocortex/pathology , Neocortex/metabolism , Male , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/metabolism , Aged , Aged, 80 and over , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/metabolism , Phenotype , Limbic System/pathology , Limbic System/metabolism , Gene Expression , Aging/pathology , Aging/genetics , Aging/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , tau Proteins/metabolism , tau Proteins/genetics , Phosphorylation
2.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38967041

ABSTRACT

Autonomic symptoms in Parkinson's disease result from variable involvement of the central and peripheral systems, but many aspects remain unclear. The analysis of functional connectivity has shown promising results in assessing the pathophysiology of Parkinson's disease. This study aims to investigate the association between autonomic symptoms and cortical functional connectivity in early Parkinson's disease patients using high-density EEG. 53 early Parkinson's disease patients (F/M 18/35) and 49 controls (F/M 20/29) were included. Autonomic symptoms were evaluated using the Scales for Outcomes in Parkinson's disease-Autonomic Dysfunction score. Data were recorded with a 64-channel EEG system. We analyzed cortical functional connectivity, based on weighted phase-lag index, in θ-α-ß-low-γ bands. A network-based statistic was used to perform linear regression between Scales for Outcomes in Parkinson's disease-Autonomic Dysfunction score and functional connectivity in Parkinson's disease patients. We observed a positive relation between the Scales for Outcomes in Parkinson's disease-Autonomic Dysfunction score and α-functional connectivity (network τ = 2.8, P = 0.038). Regions with higher degrees were insula and limbic lobe. Moreover, we found positive correlations between the mean connectivity of this network and the gastrointestinal, cardiovascular, and thermoregulatory domains of Scales for Outcomes in Parkinson's disease-Autonomic Dysfunction. Our results revealed abnormal functional connectivity in specific areas in Parkinson's disease patients with greater autonomic symptoms. Insula and limbic areas play a significant role in the regulation of the autonomic system. Increased functional connectivity in these regions might represent the central compensatory mechanism of peripheral autonomic dysfunction in Parkinson's disease.


Subject(s)
Autonomic Nervous System Diseases , Electroencephalography , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Female , Male , Middle Aged , Aged , Autonomic Nervous System Diseases/physiopathology , Autonomic Nervous System Diseases/etiology , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology , Limbic System/physiopathology , Limbic System/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
3.
Sci Rep ; 14(1): 13114, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849374

ABSTRACT

Aberrant neuronal circuit dynamics are at the core of complex neuropsychiatric disorders, such as schizophrenia (SZ). Clinical assessment of the integrity of neuronal circuits in SZ has consistently described aberrant resting-state gamma oscillatory activity, decreased auditory-evoked gamma responses, and abnormal mismatch responses. We hypothesized that corticothalamic circuit manipulation could recapitulate SZ circuit phenotypes in rodent models. In this study, we optogenetically inhibited the mediodorsal thalamus-to-prefrontal cortex (MDT-to-PFC) or the PFC-to-MDT projection in rats and assessed circuit function through electrophysiological readouts. We found that MDT-PFC perturbation could not recapitulate SZ-linked phenotypes such as broadband gamma disruption, altered evoked oscillatory activity, and diminished mismatch negativity responses. Therefore, the induced functional impairment of the MDT-PFC pathways cannot account for the oscillatory abnormalities described in SZ.


Subject(s)
Evoked Potentials, Auditory , Optogenetics , Prefrontal Cortex , Thalamus , Animals , Optogenetics/methods , Rats , Prefrontal Cortex/physiology , Male , Thalamus/physiology , Schizophrenia/physiopathology , Neural Pathways , Rats, Sprague-Dawley , Gamma Rhythm/physiology , Limbic System/physiology
4.
J Headache Pain ; 25(1): 99, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862883

ABSTRACT

Migraine is a complex neurological condition characterized by recurrent headaches, which is often accompanied by various neurological symptoms. Magnetic resonance imaging (MRI) is a powerful tool for investigating whole-brain connectivity patterns; however, systematic assessment of structural connectome organization has rarely been performed. In the present study, we aimed to examine the changes in structural connectivity in patients with episodic migraines using diffusion MRI. First, we computed structural connectivity using diffusion MRI tractography, after which we applied dimensionality reduction techniques to the structural connectivity and generated three low-dimensional eigenvectors. We subsequently calculated the manifold eccentricity, defined as the Euclidean distance between each data point and the center of the data in the manifold space. We then compared the manifold eccentricity between patients with migraines and healthy controls, revealing significant between-group differences in the orbitofrontal cortex, temporal pole, and sensory/motor regions. Between-group differences in subcortico-cortical connectivity further revealed significant changes in the amygdala, accumbens, and caudate nuclei. Finally, supervised machine learning effectively classified patients with migraines and healthy controls using cortical and subcortical structural connectivity features, highlighting the importance of the orbitofrontal and sensory cortices, in addition to the caudate, in distinguishing between the groups. Our findings confirmed that episodic migraine is related to the structural connectome changes in the limbic and sensory systems, suggesting its potential utility as a diagnostic marker for migraine.


Subject(s)
Connectome , Migraine Disorders , Humans , Migraine Disorders/diagnostic imaging , Migraine Disorders/pathology , Connectome/methods , Female , Adult , Male , Limbic System/diagnostic imaging , Limbic System/pathology , Diffusion Tensor Imaging/methods , Young Adult
5.
Math Biosci Eng ; 21(4): 5803-5825, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38872559

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a common childhood developmental disorder. In recent years, pattern recognition methods have been increasingly applied to neuroimaging studies of ADHD. However, these methods often suffer from limited accuracy and interpretability, impeding their contribution to the identification of ADHD-related biomarkers. To address these limitations, we applied the amplitude of low-frequency fluctuation (ALFF) results for the limbic system and cerebellar network as input data and conducted a binary hypothesis testing framework for ADHD biomarker detection. Our study on the ADHD-200 dataset at multiple sites resulted in an average classification accuracy of 93%, indicating strong discriminative power of the input brain regions between the ADHD and control groups. Moreover, our approach identified critical brain regions, including the thalamus, hippocampal gyrus, and cerebellum Crus 2, as biomarkers. Overall, this investigation uncovered potential ADHD biomarkers in the limbic system and cerebellar network through the use of ALFF realizing highly credible results, which can provide new insights for ADHD diagnosis and treatment.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Biomarkers , Cerebellum , Limbic System , Magnetic Resonance Imaging , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/metabolism , Humans , Cerebellum/diagnostic imaging , Cerebellum/metabolism , Limbic System/diagnostic imaging , Limbic System/physiopathology , Limbic System/metabolism , Biomarkers/metabolism , Child , Male , Female , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Neuroimaging/methods , Adolescent , Algorithms , Hippocampus/diagnostic imaging , Hippocampus/metabolism
6.
Biol Sex Differ ; 15(1): 42, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750598

ABSTRACT

BACKGROUND: Sex differences exist in the prevalence and clinical manifestation of several mental disorders, suggesting that sex-specific brain phenotypes may play key roles. Previous research used machine learning models to classify sex from imaging data of the whole brain and studied the association of class probabilities with mental health, potentially overlooking regional specific characteristics. METHODS: We here investigated if a regionally constrained model of brain volumetric imaging data may provide estimates that are more sensitive to mental health than whole brain-based estimates. Given its known role in emotional processing and mood disorders, we focused on the limbic system. Using two different cohorts of healthy subjects, the Human Connectome Project and the Queensland Twin IMaging, we investigated sex differences and heritability of brain volumes of limbic structures compared to non-limbic structures, and subsequently applied regionally constrained machine learning models trained solely on limbic or non-limbic features. To investigate the biological underpinnings of such models, we assessed the heritability of the obtained sex class probability estimates, and we investigated the association with major depression diagnosis in an independent clinical sample. All analyses were performed both with and without controlling for estimated total intracranial volume (eTIV). RESULTS: Limbic structures show greater sex differences and are more heritable compared to non-limbic structures in both analyses, with and without eTIV control. Consequently, machine learning models performed well at classifying sex based solely on limbic structures and achieved performance as high as those on non-limbic or whole brain data, despite the much smaller number of features in the limbic system. The resulting class probabilities were heritable, suggesting potentially meaningful underlying biological information. Applied to an independent population with major depressive disorder, we found that depression is associated with male-female class probabilities, with largest effects obtained using the limbic model. This association was significant for models not controlling for eTIV whereas in those controlling for eTIV the associations did not pass significance correction. CONCLUSIONS: Overall, our results highlight the potential utility of regionally constrained models of brain sex to better understand the link between sex differences in the brain and mental disorders.


Psychiatric disorders have different prevalence between sexes, with women being twice as likely to develop depression and anxiety across the lifespan. Previous studies have investigated sex differences in brain structure that might contribute to this prevalence but have mostly focused on a single-structure level, potentially overlooking the interplay between brain regions. Sex differences in structures responsible for emotional regulation (limbic system), affected in many psychiatric disorders, have been previously reported. Here, we apply a machine learning model to obtain an estimate of brain sex for each participant based on the volumes of multiple brain regions. Particularly, we compared the estimates obtained with a model based solely on limbic structures with those obtained with a non-limbic model (entire brain except limbic structures) and a whole brain model. To investigate the genetic determinants of the models, we assessed the heritability of the estimates between identical twins and fraternal twins. The estimates of all our models were heritable, suggesting a genetic component contributing to brain sex. Finally, to investigate the association with mental health, we compared brain sex estimates in healthy subjects and in a depressed population. We found an association between depression and brain sex in females for the limbic model, but not for the non-limbic model. No effect was found in males. Overall, our results highlight the potential utility of machine learning models of brain sex based on relevant structures to better understand the link between sex differences in the brain and mental disorders.


Subject(s)
Limbic System , Mental Disorders , Phenotype , Sex Characteristics , Humans , Limbic System/diagnostic imaging , Female , Male , Mental Disorders/genetics , Mental Disorders/diagnostic imaging , Adult , Machine Learning , Depressive Disorder, Major/genetics , Depressive Disorder, Major/diagnostic imaging , Young Adult , Middle Aged
8.
Behav Brain Res ; 469: 115043, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38729219

ABSTRACT

Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood. To address this issue, social hierarchy in home-caged sibling Wistar rats (three male rats/cage) was determined by employing a social confrontation tube test (postnatal weeks 9-12). Then, locomotor activity and anxiety-like behaviors were evaluated using an open-field test (OFT) and elevated plus-maze (EPM) at 13 weeks of age. The rapid Golgi impregnation method was conducted to quantify the spine density of the first secondary branch of the primary dendrite in 20 µm length. The results indicated that dominant rats had significantly higher anxiety-like behaviors compared to subordinates, as was evident by lower open-arm entries and time spent in the EPM and lower entries and time spent in the center of OFT. The spine density analysis revealed a significantly higher number of spines in subordinates compared to the dominant rats in dmPFC pyramidal neurons and the apical and basal dendrites of hippocampal CA1 pyramidal neurons. However, the spine density of pyramidal-like neurons in the BLA was higher in dominant rats. Our findings suggest that dominant social rank is associated with higher anxiety and differential density of the dendritic spine in the prefrontal cortex and limbic regions of the brain in male rats.


Subject(s)
Anxiety , Dendritic Spines , Hierarchy, Social , Prefrontal Cortex , Rats, Wistar , Animals , Prefrontal Cortex/pathology , Male , Dendritic Spines/physiology , Anxiety/pathology , Anxiety/physiopathology , Rats , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Behavior, Animal/physiology , Limbic System/pathology , Basolateral Nuclear Complex/pathology , Hippocampus/pathology
9.
Nat Commun ; 15(1): 4669, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821963

ABSTRACT

Measures of fMRI resting-state functional connectivity (rs-FC) are an essential tool for basic and clinical investigations of fronto-limbic circuits. Understanding the relationship between rs-FC and the underlying patterns of neural activity in these circuits is therefore vital. Here we introduced inhibitory designer receptors exclusively activated by designer drugs (DREADDs) into the amygdala of two male macaques. We evaluated the causal effect of activating the DREADD receptors on rs-FC and neural activity within circuits connecting amygdala and frontal cortex. Activating the inhibitory DREADD increased rs-FC between amygdala and ventrolateral prefrontal cortex. Neurophysiological recordings revealed that the DREADD-induced increase in fMRI rs-FC was associated with increased local field potential coherency in the alpha band (6.5-14.5 Hz) between amygdala and ventrolateral prefrontal cortex. Thus, our multi-modal approach reveals the specific signature of neuronal activity that underlies rs-FC in fronto-limbic circuits.


Subject(s)
Amygdala , Magnetic Resonance Imaging , Prefrontal Cortex , Magnetic Resonance Imaging/methods , Male , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Amygdala/physiology , Amygdala/diagnostic imaging , Neural Pathways/physiology , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Limbic System/physiology , Limbic System/diagnostic imaging , Brain Mapping/methods , Rest/physiology , Macaca mulatta , Designer Drugs/pharmacology , Clozapine/analogs & derivatives , Clozapine/pharmacology , Nerve Net/physiology , Nerve Net/diagnostic imaging
10.
Neurobiol Aging ; 140: 81-92, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744041

ABSTRACT

Limbic predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is common in older adults and is associated with neurodegeneration, cognitive decline and dementia. In this MRI and pathology investigation we tested the hypothesis that LATE-NC is associated with abnormalities in white matter structural integrity and connectivity of a network of brain regions typically harboring TDP-43 inclusions in LATE, referred to here as the "LATE-NC network". Ex-vivo diffusion MRI and detailed neuropathological data were collected on 184 community-based older adults. Linear regression revealed an independent association of higher LATE-NC stage with lower diffusion anisotropy in a set of white matter connections forming a pattern of connectivity that is consistent with the stereotypical spread of this pathology in the brain. Graph theory analysis revealed an association of higher LATE-NC stage with weaker integration and segregation in the LATE-NC network. Abnormalities were significant in stage 3, suggesting that they are detectable in later stages of the disease. Finally, LATE-NC network abnormalities were associated with faster cognitive decline, specifically in episodic and semantic memory.


Subject(s)
Diffusion Magnetic Resonance Imaging , TDP-43 Proteinopathies , White Matter , Humans , Male , White Matter/diagnostic imaging , White Matter/pathology , Female , Aged , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/diagnostic imaging , Aged, 80 and over , Limbic System/pathology , Limbic System/diagnostic imaging , Aging/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology , Dementia , DNA-Binding Proteins
11.
Schizophr Res ; 267: 519-527, 2024 May.
Article in English | MEDLINE | ID: mdl-38704344

ABSTRACT

BACKGROUND: Previous investigations have revealed substantial differences in neuroimaging characteristics between healthy controls (HCs) and individuals diagnosed with schizophrenia (SCZ). However, we are not entirely sure how brain activity links to symptoms in schizophrenia, and there is a need for reliable brain imaging markers for treatment prediction. METHODS: In this longitudinal study, we examined 56 individuals diagnosed with 56 SCZ and 51 HCs. The SCZ patients underwent a three-month course of antipsychotic treatment. We employed resting-state functional magnetic resonance imaging (fMRI) along with fractional Amplitude of Low Frequency Fluctuations (fALFF) and support vector regression (SVR) methods for data acquisition and subsequent analysis. RESULTS: In this study, we initially noted lower fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, coupled with higher fALFF values in the left hippocampus and right putamen in SCZ patients compared to the HCs at baseline. However, when comparing fALFF values in brain regions with abnormal baseline fALFF values for SCZ patients who completed the follow-up, no significant differences in fALFF values were observed after 3 months of treatment compared to baseline data. The fALFF values in the right postcentral/precentral gyrus and left postcentral gyrus, and the left postcentral gyrus were useful in predicting treatment effects. CONCLUSION: Our findings suggest that reduced fALFF values in the sensory-motor networks and increased fALFF values in the limbic system may constitute distinctive neurobiological features in SCZ patients. These findings may serve as potential neuroimaging markers for the prognosis of SCZ patients.


Subject(s)
Antipsychotic Agents , Limbic System , Magnetic Resonance Imaging , Schizophrenia , Humans , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Male , Female , Adult , Antipsychotic Agents/pharmacology , Limbic System/diagnostic imaging , Limbic System/physiopathology , Longitudinal Studies , Young Adult , Treatment Outcome , Outcome Assessment, Health Care , Middle Aged , Support Vector Machine
12.
Neuron ; 112(13): 2241-2256.e8, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38640933

ABSTRACT

Individual preferences for the flavor of different foods and fluids exert a strong influence on behavior. Most current theories posit that preferences are integrated with other state variables in the orbitofrontal cortex (OFC), which is thought to derive the relative subjective value of available options to guide choice behavior. Here, we report that instead of a single integrated valuation system in the OFC, another complementary one is centered in the ventrolateral prefrontal cortex (vlPFC) in macaques. Specifically, we found that the OFC and vlPFC preferentially represent outcome flavor and outcome probability, respectively, and that preferences are separately integrated into value representations in these areas. In addition, the vlPFC, but not the OFC, represented the probability of receiving the available outcome flavors separately, with the difference between these representations reflecting the degree of preference for each flavor. Thus, both the vlPFC and OFC exhibit dissociable but complementary representations of subjective value, both of which are necessary for decision-making.


Subject(s)
Choice Behavior , Macaca mulatta , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Choice Behavior/physiology , Male , Limbic System/physiology , Food Preferences/physiology , Neural Pathways/physiology , Decision Making/physiology
13.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602739

ABSTRACT

Non-invasive brain stimulations have drawn attention in remediating memory decline in older adults. However, it remains unclear regarding the cognitive and neural mechanisms underpinning the neurostimulation effects on memory rehabilitation. We evaluated the intervention effects of 2-weeks of neurostimulations (high-definition transcranial direct current stimulation, HD-tDCS, and electroacupuncture, EA versus controls, CN) on brain activities and functional connectivity during a working memory task in normally cognitive older adults (age 60+, n = 60). Results showed that HD-tDCS and EA significantly improved the cognitive performance, potentiated the brain activities of overlapping neural substrates (i.e. hippocampus, dlPFC, and lingual gyrus) associated with explicit and implicit memory, and modulated the nodal topological properties and brain modular interactions manifesting as increased intramodular connection of the limbic-system dominated network, decreased intramodular connection of default-mode-like network, as well as stronger intermodular connection between frontal-dominated network and limbic-system-dominated network. Predictive model further identified the neuro-behavioral association between modular connections and working memory. This preliminary study provides evidence that noninvasive neurostimulations can improve older adults' working memory through potentiating the brain activity of working memory-related areas and mediating the modular interactions of related brain networks. These findings have important implication for remediating older adults' working memory and cognitive declines.


Subject(s)
Memory, Short-Term , Transcranial Direct Current Stimulation , Independent Living , Brain/diagnostic imaging , Limbic System
14.
J Neuropathol Exp Neurol ; 83(6): 396-415, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38613823

ABSTRACT

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.


Subject(s)
TDP-43 Proteinopathies , Humans , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/genetics , Aging/pathology , Aging/genetics , Risk Factors , Limbic System/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Aged, 80 and over , Dementia
15.
Pharmacol Biochem Behav ; 239: 173752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521210

ABSTRACT

RATIONALE: Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE: The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS: Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS: Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION: In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.


Subject(s)
Benzamides , Nicotine , Receptor, Metabotropic Glutamate 5 , Reward , Animals , Nicotine/pharmacology , Male , Benzamides/pharmacology , Benzamides/therapeutic use , Receptor, Metabotropic Glutamate 5/metabolism , Rats , Neuronal Plasticity/drug effects , Cigarette Smoking , Female , Quinpirole/pharmacology , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Psychotic Disorders/drug therapy , Psychotic Disorders/metabolism , Allosteric Regulation/drug effects , Limbic System/metabolism , Limbic System/drug effects , Animals, Newborn , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects
16.
J Affect Disord ; 355: 190-199, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38548195

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is an immune-mediated and multi-systemic disease which may affect the nervous system, causing neuropsychiatric SLE (NPSLE). Recent neuroimaging studies have examined brain functional alterations in SLE. However, discrepant findings were reported. This meta-analysis aims to identify consistent resting-state functional abnormalities in SLE. METHODS: PubMed and Web of Science were searched to identify candidate resting-state functional MRI studies assessing SLE. A voxel-based meta-analysis was performed using the anisotropic effect-size version of the seed-based d mapping (AES-SDM). The abnormal intrinsic functional patterns extracted from SDM were mapped onto the brain functional network atlas to determine brain abnormalities at a network level. RESULTS: Twelve studies evaluating fifteen datasets were included in this meta-analysis, comprising 572 SLE patients and 436 healthy controls (HCs). Compared with HCs, SLE patients showed increased brain activity in the bilateral hippocampus and right superior temporal gyrus, and decreased brain activity in the left superior frontal gyrus, left middle temporal gyrus, bilateral thalamus, left inferior frontal gyrus and right cerebellum. Mapping the abnormal patterns to the network atlas revealed the default mode network and the limbic system as core neural systems commonly affected in SLE. LIMITATIONS: The number of included studies is relatively small, with heterogeneous analytic methods and a risk of publication bias. CONCLUSIONS: Brain functional alterations in SLE are predominantly found in the default mode network and the limbic system. These findings uncovered a consistent pattern of resting-state functional network abnormalities in SLE which may serve as a potential objective neuroimaging biomarker.


Subject(s)
Brain Diseases , Lupus Erythematosus, Systemic , Humans , Magnetic Resonance Imaging/methods , Default Mode Network , Limbic System/diagnostic imaging , Brain/diagnostic imaging , Lupus Erythematosus, Systemic/diagnostic imaging , Brain Mapping
17.
Brain Struct Funct ; 229(4): 897-907, 2024 May.
Article in English | MEDLINE | ID: mdl-38478052

ABSTRACT

We aimed to elucidate the neurobiological basis of depression in Parkinson's disease and identify potential imaging markers for depression in patients with Parkinson's disease. We recruited 43 normal controls (NC), 46 depressed Parkinson's disease patients (DPD) and 56 non-depressed Parkinson's disease (NDPD). All participants underwent routine T2-weighted, T2Flair, and resting-state scans on the same 3.0 T magnetic resonance imaging (MRI) scanner at our hospital. Pre-processing includes calculating surface-based Regional Homogeneity (2DReHo) and cortical thickness. Then we defined the correlation coefficient between 2DReHo and cortical thickness as the functional-structural coupling index. Between-group comparisons were conducted on the Fisher's Z-transformed correlation coefficients. To identify specific regions of decoupling, the 2DReHo for each participant were divided by cortical thickness at each vertex, followed by threshold-free cluster enhancement (TFCE) multiple comparison correction. Binary logistic regression analysis was performed with DPD as the dependent variable, and significantly altered indicators as the independent variables. Receiver operating characteristic curves were constructed to compare the diagnostic performance of individual predictors and combinations using R and MedCalc software. DPD patients exhibited a significantly lower whole-brain functional-structural coupling index than NDPD patients and NC. Abnormal functional-structural coupling was primarily observed in the left inferior parietal lobule and right primary and early visual cortices in DPD patients. Receiver operating characteristic analysis revealed that the combination of cortical functional-structural coupling, surface-based ReHo, and thickness had the best diagnostic performance, achieving a sensitivity of 65% and specificity of 77.7%. This is the first study to explore the relationship between functional and structural changes in DPD patients and evaluate the diagnostic performance of these altered correlations to predict depression in Parkinson's disease patients. We posit that these changes in functional-structural relationships may serve as imaging biomarkers for depression in Parkinson's disease patients, potentially aiding in the classification and diagnosis of Parkinson's disease. Additionally, our findings provide functional and structural imaging evidence for exploring the neurobiological basis of depression in Parkinson's disease.


Subject(s)
Depression , Parkinson Disease , Humans , Depression/diagnostic imaging , Depression/etiology , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Brain/diagnostic imaging , Limbic System , Magnetic Resonance Imaging/methods
18.
Hum Brain Mapp ; 45(3): e26627, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38376166

ABSTRACT

The hippocampus and parahippocampal gyrus have been implicated as part of a tinnitus network by a number of studies. These structures are usually considered in the context of a "limbic system," a concept typically invoked to explain the emotional response to tinnitus. Despite this common framing, it is not apparent from current literature that this is necessarily the main functional role of these structures in persistent tinnitus. Here, we highlight a different role that encompasses their most commonly implicated functional position within the brain-that is, as a memory system. We consider tinnitus as an auditory object that is held in memory, which may be made persistent by associated activity from the hippocampus and parahippocampal gyrus. Evidence from animal and human studies implicating these structures in tinnitus is reviewed and used as an anchor for this hypothesis. We highlight the potential for the hippocampus/parahippocampal gyrus to facilitate maintenance of the memory of the tinnitus percept via communication with auditory cortex, rather than (or in addition to) mediating emotional responses to this percept.


Subject(s)
Auditory Cortex , Tinnitus , Animals , Humans , Tinnitus/diagnostic imaging , Hippocampus/diagnostic imaging , Parahippocampal Gyrus/diagnostic imaging , Limbic System
19.
Brain Struct Funct ; 229(3): 775-787, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38416209

ABSTRACT

Well-practiced or learned behaviors are extremely resilient. For example, it is extremely difficult for a trained typist to forget how to use a keyboard configuration that they are familiar with. While they can be trained on a new keyboard configuration, the original skill quickly comes back when the old keyboard configuration is used again. This resiliency of learned skills is both a blessing and a curse. It makes useful skills durable, but it also makes maladaptive behaviors difficult to extinguish. Crossley et al. (2013) proposed a computational model and behavioral paradigm aimed at unlearning skills using various feedback contingency manipulations during an extinction phase. They showed that partially-valid feedback during extinction removed evidence for fast reacquisition, which they interpreted as evidence for unlearning. In this article, we replicated the Crossley et al. paradigm using fMRI. Univariate analyses showed differences in BOLD signals between the different experiment phases in the frontoparietal attention network. The superior and inferior parietal lobules (SPL and IPL, respectively) showed the largest cluster differences both between experimental phases and between extinction conditions. In contrast, the prefrontal cortex only showed differences in cluster of activities between extinction conditions. Multivariate pattern analysis was also used with seeds in the SPL and IPL. The results showed that these brain areas were critical in detecting changes in experimental phases. Overall, the fMRI results found mixed evidence for the Crossley et al. model and suggest that while unlearning prevents fast reacquisition, the absence of fast reacquisition does not necessarily implies that unlearning occurred.


Subject(s)
Learning , Parietal Lobe , Feedback , Parietal Lobe/diagnostic imaging , Prefrontal Cortex , Limbic System , Magnetic Resonance Imaging , Brain Mapping
20.
J Affect Disord ; 350: 65-77, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38199394

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) and anxiety disorders (ANX) are psychiatric disorders with high mutual comorbidity rates that might indicate some shared neurobiological pathways between them, but they retain diverse phenotypes that characterize themselves specifically. However, no consistent evidence exists for common and disorder-specific gray matter volume (GMV) alternations between them. METHODS: A systematic review and meta-analysis on voxel-based morphometry studies of patients with MDD and ANX were performed. The effect of comorbidity was explicitly controlled during disorder-specific analysis and particularly investigated in patient with comorbidity. RESULTS: A total of 45 studies with 54 datasets comprising 2196 patients and 2055 healthy participants met the inclusion criteria. Deficits in the orbitofrontal cortex, striatum, and limbic regions were found in MDD and ANX. The disorder-specific analyses showed decreased GMV in the bilateral anterior cingulate cortex, right striatum, hippocampus, and cerebellum in MDD, while decreased GMV in the left striatum, amygdala, insula, and increased cerebellar volume in ANX. A totally different GMV alternation pattern was shown involving bilateral temporal and parietal gyri and left fusiform gyrus in patients with comorbidity. LIMITATIONS: Owing to the design of included studies, only partial patients in the comorbid group had a secondary comorbidity diagnosis. CONCLUSION: Patients with MDD and ANX shared a structural disruption in the orbitofrontal-limbic-striatal system. The disorder-specific effects manifested their greatest severity in distinct lateralization and directionality of these changes that differentiate MDD from ANX. The comorbid group showed a totally different GMV alternation pattern, possibly suggesting another illness subtype that requires further investigation.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/psychology , Magnetic Resonance Imaging , Limbic System/diagnostic imaging , Gray Matter/diagnostic imaging , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/epidemiology , Arrhythmias, Cardiac , Brain
SELECTION OF CITATIONS
SEARCH DETAIL
...