Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 163
1.
Article En | MEDLINE | ID: mdl-37531787

Preeclampsia (PE) is a pregnancy disorder that may be associated with inadequate maternal nutrition. Fatty acids are vital for placental and fetal growth. Fatty acid desaturases, key enzymes influencing the metabolism of polyunsaturated fatty acids, are reported to be associated with cardiometabolic risk. Any imbalance in the levels of omega-3 and omega-6 fatty acids can result in increased inflammatory response. The current study reports the levels of erythrocyte fatty acids and desaturase index across gestation in women who develop PE (n = 108) and compares them with non-PE women (n = 216). Maternal erythrocyte fatty acids were measured at 4 time points during pregnancy (i.e., 11-14, 18-22, 26-28 weeks and at delivery) using gas chromatography. Maternal total erythrocyte saturated fatty acids and omega-6/omega-3 fatty acid ratio was higher in the PE group as compared to the non-PE group at 11-14 weeks and 18-22 weeks respectively. Maternal Δ5 desaturase index was lower while Δ6 desaturase index was higher in the PE group at 11-14 and 18-22 weeks. Maternal stearoyl CoA desaturase-18 (SCD-18) index was lower at 11-14 weeks and at delivery. These changes were mainly observed in the early onset PE (EOP) group. Δ6 desaturase index at 11-14 weeks predicted the risk of EOP. Imbalance in fatty acid levels and desaturase indices predate the clinical diagnosis of PE, indicating their role in its pathophysiology. Measurement of fatty acids and desaturase indices in early pregnancy merits evaluation as predictors of risk of PE.


Fatty Acids, Omega-3 , Pre-Eclampsia , Female , Humans , Pregnancy , Fatty Acids/metabolism , Pre-Eclampsia/metabolism , Placenta/metabolism , Fatty Acid Desaturases/metabolism , Stearoyl-CoA Desaturase , Fatty Acids, Omega-3/metabolism , Erythrocytes/metabolism , Linoleoyl-CoA Desaturase/metabolism
2.
J Comp Physiol B ; 193(4): 401-412, 2023 08.
Article En | MEDLINE | ID: mdl-37284836

Commercially important trout species, especially rainbow trout, are under great threat due to several negative factors affecting oxygen levels in water such as global warming and eutrophication. In our study, rainbow trout (Oncorhynchus mykiss) was exposed to chronic (for 28 days) hypoxia (4.0 ± 0.5 mg/L) and hyperoxia (12 ± 1.2 mg/L) in order to evaluate the alteration of fatty acid profiles in muscle, liver and gill tissues. In addition, delta-6-desaturase and elongase gene expression profiles were measured in liver, kidney and gill tissues. The amount of saturated fatty acids increased by oxygen applications in the liver, while it decreased in the muscle and gill tissues compared to normoxia (p < 0.05). Monounsaturated fatty acids levels increased in muscle and gill (p < 0.05). Although n-3 polyunsaturated fatty acid (PUFA) decreased in muscle tissue, n-6 PUFA increased (p < 0.05). The n-3/n-6 ratio decreased in muscle tissue in response to the both exposures (p < 0.05) as well as eicosapentaenoic acid/docosahexaenoic acid ratio (p < 0.05). Hypoxia exposure generally increased delta-6-desaturase and elongase mRNA levels in all tissues (p < 0.05). However, gene expression profiles were variable in fish exposed to hyperoxia. As a result of oxygen exposures, the lipid profile of muscle tissue, which stores dense fat, was negatively affected more than that of liver and gill tissues. We determined that the change in expression levels was tissue specific.


Hyperoxia , Oncorhynchus mykiss , Animals , Fatty Acids , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , Fatty Acid Elongases/metabolism , Linoleoyl-CoA Desaturase/genetics , Linoleoyl-CoA Desaturase/metabolism , Hypoxia , Oxygen/metabolism , Gene Expression
3.
Sci Rep ; 12(1): 1888, 2022 02 03.
Article En | MEDLINE | ID: mdl-35115659

Humans and mammalian species are unable to synthesize significant amounts of polyunsaturated fatty acids (PUFA), which therefore must be introduced with the diet. In birds, lipogenesis takes place primarily in the liver, whereas adipose tissue serves as the storage site for triacylglycerols (TG, composed by 80-85% esterified fatty acids). However, both the nature (unsaturation level, n-3, or n-6 series) and the allocation (such as constituents of complexed lipids) of PUFA are very important to evaluate their function in lipid metabolism. The objective of the present investigation was to study the liver lipid metabolism, with particular attention to non-esterified fatty acids (NEFA), TG, phospholipids (PL), FADS2 gene expression, and Δ6-desaturase activity of three chicken genotypes, Leghorn (Leg), Ross 308 (Ross), and their crossbreed (LxR), by LC/MS analysis. The concentration of single fatty acids in muscle was quantified by GC-FID. The results showed that the Ross has a lipid metabolism related mainly to storage and structural roles, exhibiting higher levels of TG, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that are largely unsaturated. Meanwhile Leg showed a relevant amount of n-3 NEFA characterized by a higher phosphatidylserine (PS) unsaturation level, FADS2 gene expression and enzyme activity. The LxR seem to have a moderate trend: n-6 and n-3 NEFA showed intermediate values compared with that of the Ross and Leg and the TG trend was similar to that of the Ross, while PE and PC were largely unsaturated (mainly 6 and 7 UNS most of the metabolic energy for storage fatty acids in their tissues (TG) whereas, the Leg birds were characterized by different lipid metabolism showing in their liver a higher content of n-3 NEFA and higher unsaturation level in PS. Furthers details are needed to better attribute the lipid energy to the different metabolic portion.


Chickens/metabolism , Fatty Acids, Unsaturated/metabolism , Lipid Metabolism , Lipidomics , Liver/metabolism , Muscle, Skeletal/metabolism , Nutritive Value , Poultry Products/analysis , Animals , Chickens/genetics , Chickens/growth & development , Energy Metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Genotype , Hybridization, Genetic , Linoleoyl-CoA Desaturase/genetics , Linoleoyl-CoA Desaturase/metabolism , Muscle, Skeletal/growth & development , Phenotype
4.
Biochem Cell Biol ; 99(6): 725-734, 2021 12.
Article En | MEDLINE | ID: mdl-34738827

Delta-6-desaturase (D6D) activity is deficient in MCF-7 and other cancer cell lines, but it is not explained by FADS2 gene mutations. This deficient activity was not ameliorated by induction of the FADS2 gene; therefore, we hypothesized that some of the induced FADS2 transcript variants (tv) may play a negative regulatory role. FADS2_tv1 is the reference FADS2 tv, coding for full-length D6D isoform 1 (D6D-iso1), and alternative transcriptional start sites result in FADS2_tv2 and FADS2_tv3 variants encoding D6D-iso2 and D6D-iso3 isoforms, respectively, which lack the catalytically critical N-terminal domain. In MCF-7 cells, FADS2_tv2 and FADS2_tv3 were expressed at significantly higher levels than FADS2_tv1. Overexpression of FADS2_tv2 in HEK293 cells confirmed that D6D-iso2 is non-functional, and co-transfection demonstrated a dominant-negative role for D6D-iso2 in D6D-iso1 activity regulation. FADS2_tv2 was expressed at higher levels than FADS2_tv1 in HeLa, MDA-MB-435, MCF-10 A, and HT-29 cells, but at lower levels in A549, MDA-MB-231, and LNCaP cells. Overexpression studies indicated roles for FADS2 variants in proliferation and apoptosis regulation, which were also cell-line specific. Increased FADS2_tv2 expression provides a new mechanism to help explain deficient D6D activity in MCF-7 and other cancer cell lines, but it is not a hallmark of malignant cells.


Fatty Acid Desaturases , Linoleoyl-CoA Desaturase/metabolism , Fatty Acid Desaturases/genetics , HEK293 Cells , Humans , Protein Isoforms
5.
Food Funct ; 12(23): 11819-11828, 2021 Nov 29.
Article En | MEDLINE | ID: mdl-34787162

Obesity is associated with an increased risk of an iron deficiency; however, a synergistic relationship between iron and lipid homeostasis was also observed. The aim of this study was to investigate the effects of pharmacological doses of iron supplementation on omega 3 (n-3) and omega 6 (n-6) polyunsaturated fatty acids (PUFAs). Sprague-Dawley (SD) rats were fed a normal diet or a 50% high-fat diet (HFD) without or with pharmacological doses of ferric citrate (0.25, 1, or 2 g ferric iron per kg diet) for 12 weeks, and erythrocyte profiles of n-3 and n-6 PUFAs were quantitated. Ferric citrate supplementation showed dose-related effects on liver inflammation, liver iron accumulation, and increasing circulating levels of iron, erythrocyte degradation biomarkers LVV-hemorphin-7, malondialdehyde (MDA), and insulin. Obese rats supplemented with 2 g ferric iron per kg diet also had decreased levels of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and total n-3 PUFAs compared to rats fed a normal diet or HFD alone. A western blotting analysis revealed that iron-mediated downregulation of n-3 PUFA-converting enzymes (Δ5 and Δ6 desaturases) only occurred at high dosages (≥1 g ferric iron per kg diet). A Spearman correlation analysis showed that total liver iron and serum LVV-hemorphin-7 and MDA were negatively correlated with n-3 PUFAs and their converting enzymes (Δ5 and Δ6 desaturases) (all p < 0.05). In conclusion, obese rats that received high-dose ferric citrate supplementation (>1 g of ferric iron per kg diet) exhibited decreased n-3 PUFA levels via downregulation of expressions of Δ5 and Δ6 desaturase enzymes.


Delta-5 Fatty Acid Desaturase/metabolism , Fatty Acids, Omega-3/metabolism , Ferric Compounds , Linoleoyl-CoA Desaturase/metabolism , Obesity/metabolism , Animals , Diet, High-Fat/adverse effects , Dietary Supplements , Down-Regulation/drug effects , Ferric Compounds/administration & dosage , Ferric Compounds/pharmacology , Male , Rats , Rats, Sprague-Dawley
6.
J Cancer Res Ther ; 16(6): 1382-1386, 2020.
Article En | MEDLINE | ID: mdl-33342801

INTRODUCTION: Fatty acids (FAs) are the vital constituents of membrane structures. De novo synthesis of FAs includes an enzymatic complex of FA synthase and delta desaturases. These enzymes are overexpressed in tumors, and inhibition of these enzymes is gaining interest. Our aim was to determine if delta desaturase activities are altered in breast cancer (BC) cases and if altered whether delta desaturase activities differ among BC genotypes. MATERIALS AND METHODS: In this observational comparative study, 50 women with BC and 30 control women were recruited for the study. Gas chromatography-flame ionization detector was used to measure the plasma FA levels. Desaturase activities were assessed as product-to-precursor FA ratios. The Wilcoxon signed-rank test was used to compare between two groups, and P ≤ 0.05 was considered as statistically significant. RESULTS: The FA analysis revealed higher levels of monounsaturated FAs (MUFAs) and linolenic acid metabolites (C18:3n-6, C20:4n-6) in BC patients, whereas C20:5n-3 was higher in controls. The Delta 9 desaturase (D9D) and D6D were higher in BC cases suggesting greater conversion saturated FA to MUFA and linoleic acid to its metabolites. D9D-16 activity was statistically significant (P = 0.03) in BC women, particularly in estrogen-receptor-positive patients. CONCLUSION: There is limited evidence to substantiate the link between diet and cancer. The current study showed there is an altered lipid desaturase activity. Nutritional intervention and drugs that target the FA pathway may provide a new approach to prevent and treat BC.


Breast Neoplasms/blood , Fatty Acids, Monounsaturated/blood , Linoleic Acid/blood , Linoleoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/metabolism , Adult , Breast/enzymology , Breast/pathology , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Case-Control Studies , Fatty Acids, Monounsaturated/metabolism , Female , Humans , Linoleic Acid/metabolism , Male , Middle Aged , Receptors, Estrogen/analysis , Receptors, Estrogen/metabolism
7.
PLoS One ; 15(7): e0236601, 2020.
Article En | MEDLINE | ID: mdl-32730353

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exhibit antibacterial and anti-inflammatory activities. Furthermore, diets rich in n-3 PUFAs are known to improve disease resistance and limit pathogen infection in commercial aquaculture fishes. In this study, we examined the effects of transgenic overexpression of n-3 PUFA biosynthesis genes on the physiological response to bacterial infection in tilapia. We first established tilapia strains with single or dual expression of salmon delta-5 desaturase and/or delta-6 desaturase and then challenged the fish with Vibrio vulnificus infection. Interestingly, our data suggest that n-3 PUFA-mediated alterations in gut microbiota may be important in determining disease outcome via effects on immune response of the host. Both liver- and muscle-specific single and dual expression of delta-5 desaturase and delta-6 desaturase resulted in higher n-3 PUFA content in transgenic fish fed with a LO basal diet. The enrichment of n-3 PUFAs in dual-transgenic fish is likely responsible for their improved survival rate and comparatively reduced expression of inflammation- and immune-associated genes after V. vulnificus infection. Gut microbiome analysis further revealed that dual-transgenic tilapia had high gut microbiota diversity, with low levels of inflammation-associated microbiota (i.e., Prevotellaceae). Thus, our findings indicate that dual expression of transgenic delta-5 and delta-6 desaturase in tilapia enhances disease resistance, an effect that is associated with increased levels of n-3 PUFAs and altered gut microbiota composition.


Disease Resistance , Fatty Acid Desaturases/metabolism , Fish Proteins/metabolism , Gastrointestinal Microbiome , Linoleoyl-CoA Desaturase/metabolism , Tilapia/microbiology , Vibrio vulnificus/pathogenicity , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/microbiology , Delta-5 Fatty Acid Desaturase , Diet/veterinary , Discriminant Analysis , Disease Resistance/genetics , Docosahexaenoic Acids/metabolism , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-3/metabolism , Fish Diseases/microbiology , Fish Diseases/pathology , Fish Proteins/genetics , Gene Expression , Least-Squares Analysis , Linoleoyl-CoA Desaturase/genetics , Tilapia/genetics , Vibrio Infections/pathology , Vibrio Infections/veterinary
8.
Biochemistry ; 59(14): 1398-1409, 2020 04 14.
Article En | MEDLINE | ID: mdl-32208646

Marine algae are a major source of ω-3 long-chain polyunsaturated fatty acids (ω3-LCPUFAs), which are conditionally essential nutrients in humans and a target for industrial production. The biosynthesis of these molecules in marine algae requires the desaturation of fatty acids by Δ6-desaturases, and enzymes from different species display a range of specificities toward ω3- and ω6-LCPUFA precursors. In the absence of a molecular structure, the structural basis for the variable substrate specificity of Δ6-desaturases is poorly understood. Here we have conducted a consensus mutagenesis and ancestral protein reconstruction-based analysis of the Δ6-desaturase family, focusing on the ω3-specific Δ6-desaturase from Micromonas pusilla (MpΔ6des) and the bispecific (ω3/ω6) Δ6-desaturase from Ostreococcus tauri (OtΔ6des). Our characterization of consensus amino acid substitutions in MpΔ6des revealed that residues in diverse regions of the protein, such as the N-terminal cytochrome b5 domain, can make important contributions to determining substrate specificity. Ancestral protein reconstruction also suggests that some extant Δ6-desaturases, such as OtΔ6des, could have adapted to different environmental conditions by losing specificity for ω3-LCPUFAs. This data set provides a map of regions within Δ6-desaturases that contribute to substrate specificity and could facilitate future attempts to engineer these proteins for use in biotechnology.


Chlorophyta/enzymology , Linoleoyl-CoA Desaturase/chemistry , Linoleoyl-CoA Desaturase/genetics , Chlorophyta/chemistry , Chlorophyta/classification , Chlorophyta/genetics , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/chemistry , Fatty Acids, Omega-6/metabolism , Linoleoyl-CoA Desaturase/metabolism , Multigene Family , Mutagenesis , Phylogeny , Protein Conformation , Substrate Specificity
9.
J Biotechnol ; 308: 130-140, 2020 Jan 20.
Article En | MEDLINE | ID: mdl-31843519

Buglossoides arvensis seed oil is the richest natural source of stearidonic acid (SDA), an ω-3 fatty acid with nutraceutical potential superior to α-linolenic acid (ALA). The molecular basis of polyunsaturated fatty acid synthesis in B. arvensis is unknown. Here, we describe the identification of B. arvensis fatty acid desaturase2 (BaFAD2), fatty acid desaturase3 (BaFAD3), and Delta-6-desaturase (BaD6D-1 and BaD6D-2) genes by mining the transcriptome of developing seeds and their functional characterization by heterologous expression in Saccharomyces cerevisiae. In silico analysis of their encoded protein sequences showed conserved histidine-boxes and signature motifs essential for desaturase activity. Expression profiling of these genes showed higher transcript abundance in reproductive tissues than in vegetative tissues, and their expression varied with temperature stress treatments. Yeast expressing BaFAD2 was found to desaturate both oleic acid and palmitoleic acid into linoleic acid (LA) and hexadecadienoic acid, respectively. Fatty acid supplementation studies in yeast expressing BaFAD3 and BaD6D-1 genes revealed that the encoded enzyme activities of BaFAD3 efficiently converted LA to ALA, and BaD6D-1 converted LA to γ-linolenic acid and ALA to SDA, but with an apparent preference to LA. BaD6D-2 did not show the encoded enzyme activity and is not a functional D6D. Our results provide an insight into SDA biosynthesis in B. arvensis and expand the repository of fatty acid desaturase targets available for biotechnological production of SDA in traditional oilseed crops.


Biosynthetic Pathways , Boraginaceae/genetics , Fatty Acids, Unsaturated/metabolism , Gene Expression Profiling/methods , Boraginaceae/metabolism , Computer Simulation , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Linoleoyl-CoA Desaturase/genetics , Linoleoyl-CoA Desaturase/metabolism , Microsomes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Stress, Physiological , Temperature
10.
PLoS Biol ; 17(8): e3000364, 2019 08.
Article En | MEDLINE | ID: mdl-31430281

Many eukaryotic microbes have complex life cycles that include both sexual and asexual phases with strict species specificity. Whereas the asexual cycle of the protistan parasite Toxoplasma gondii can occur in any warm-blooded mammal, the sexual cycle is restricted to the feline intestine. The molecular determinants that identify cats as the definitive host for T. gondii are unknown. Here, we defined the mechanism of species specificity for T. gondii sexual development and break the species barrier to allow the sexual cycle to occur in mice. We determined that T. gondii sexual development occurs when cultured feline intestinal epithelial cells are supplemented with linoleic acid. Felines are the only mammals that lack delta-6-desaturase activity in their intestines, which is required for linoleic acid metabolism, resulting in systemic excess of linoleic acid. We found that inhibition of murine delta-6-desaturase and supplementation of their diet with linoleic acid allowed T. gondii sexual development in mice. This mechanism of species specificity is the first defined for a parasite sexual cycle. This work highlights how host diet and metabolism shape coevolution with microbes. The key to unlocking the species boundaries for other eukaryotic microbes may also rely on the lipid composition of their environments as we see increasing evidence for the importance of host lipid metabolism during parasitic lifecycles. Pregnant women are advised against handling cat litter, as maternal infection with T. gondii can be transmitted to the fetus with potentially lethal outcomes. Knowing the molecular components that create a conducive environment for T. gondii sexual reproduction will allow for development of therapeutics that prevent shedding of T. gondii parasites. Finally, given the current reliance on companion animals to study T. gondii sexual development, this work will allow the T. gondii field to use of alternative models in future studies.


Linoleoyl-CoA Desaturase/metabolism , Toxoplasma/enzymology , Animals , Cats , Host Specificity , Host-Parasite Interactions , Intestines/parasitology , Life Cycle Stages/physiology , Linoleic Acid/pharmacology , Mice , Mice, Inbred C57BL , Parasites/metabolism , Sexual Development/physiology , Species Specificity , Toxoplasma/growth & development , Toxoplasma/pathogenicity
11.
Asian Pac J Cancer Prev ; 20(4): 1005-1018, 2019 Apr 29.
Article En | MEDLINE | ID: mdl-31030467

Background: The phosphatidylinositol 3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/ mTOR) signaling regulates multiple cellular processes and organizes cell proliferation, survival, and differentiation with the available nutrients, in particular, fatty acids. Polyunsaturated fatty acids (PUFAs) are cytotoxic to cancer cells and play a critical role in the treatment of multiple sclerosis (MS) and diabetes mellitus (DM). PUFAs are produced in the body by desaturases and elongases from dietary essential fatty acids (EFAs), primarily involving delta-6-desaturase (D6D). D6D is a rate-limiting enzyme for maintaining many aspects of lipid homeostasis and normal health. D6D is important to recognize the mechanisms that regulate the expression of this enzyme in humans. A lower level of D6D was seen in breast tumors compared to normal tissues. Interestingly, the elevated serum level of D6D was seen in MS and DM, which explains the critical role of D6D in inflammatory diseases. Methods: We searched databases of PubMed, Web of Science (WOS), Google Scholar, Scopus and related studies by predefined eligibility criteria. We assessed their quality and extracted data. Results: Regarding the mTOR signaling pathway, there is remarkable contributions of many inflammatory diseases to attention to common metabolic pathways are depicted. Of course, we need to have the insights into each disorder and their pathological process. The first step in balancing the intake of EFAs is to prevent the disruption of metabolism and expression of the D6D enzyme. Conclusions: The ω6 and ω3 pathways are two major pathways in the biosynthesis of PUFAs. In both of these, D6D is a vital bifunctional enzyme desaturating linoleic acid or alpha-linolenic acid. Therefore, if ω6 and ω3 EFAs are given together in a ratio of 2: 1, the D6D expression will be down-regulated and normalized.


Diabetes Mellitus/pathology , Linoleoyl-CoA Desaturase/metabolism , Multiple Sclerosis/pathology , Neoplasms/pathology , Diabetes Mellitus/enzymology , Humans , Multiple Sclerosis/enzymology , Neoplasms/enzymology , Prognosis
12.
Animal ; 13(9): 1934-1942, 2019 Sep.
Article En | MEDLINE | ID: mdl-30774049

Standard feeds are imbalanced in term of n-6/n-3 polyunsaturated fatty acids (PUFA) ratio, with a low proportion of the latter. The reproductive system appears to be strongly affected by administration of n-3 PUFA, and ingredients rich in α-linolenic acid (ALA; i.e. vegetable sources) or EPA and DHA acids (i.e. fish oil) can be included in animal diets to balance PUFA intake. The aim of this study was to evaluate the effect of dietary supplementation with flaxseed (ALA) or fish oil (EPA and DHA) on PUFA metabolism in rabbit does. A total of 60 New Zealand White female rabbits were assigned to three experimental groups: control group, FLAX group fed 10% extruded flaxseed and FISH group fed 3% fish oil. Blood, milk, liver and ovaries were collected from the does to assess the lipid composition; furthermore, FADS2 gene expression was assessed in liver and ovary tissues. Reproductive performance of does was also recorded. The fertility rate and number of weaned rabbits improved with n-3 dietary supplementation: does at first parity showed the lowest reproductive results, but the administration of n-3 reduced the gap between primiparous and multiparous does. Feed consumption and milk production were not affected by the feeding regime. The fatty acid composition of milk, plasma, liver and ovaries were widely influenced by diet, showing higher concentrations of n-3 long-chain PUFA (LCP) in does fed with n-3 enriched diets. FISH diet resulted in the highest n-3 LCP enrichment, whereas in the FLAX group, this increase was lower. Blood and milk showed low levels of LCP, whereas liver and ovaries were the main sites of n-3 LCP synthesis and accumulation. Accordingly, although the liver is the main metabolic centre for LCP synthesis, ovaries also have a prominent role in LCP generation. FADS2 expression in liver and ovary tissue was downregulated by FISH administration. In conclusion, the enrichment of diets with n-3 PUFA could be an effective strategy for improving the reproductive performance of does.


Animal Feed/analysis , Dietary Supplements , Fatty Acids, Unsaturated/metabolism , Fish Oils/administration & dosage , Flax , Rabbits/physiology , Animals , Diet/veterinary , Fatty Acids/metabolism , Fatty Acids, Omega-3/metabolism , Female , Linoleoyl-CoA Desaturase/genetics , Linoleoyl-CoA Desaturase/metabolism , Liver/metabolism , Milk/chemistry , Ovary/metabolism , Rabbits/blood , alpha-Linolenic Acid/metabolism
13.
Article En | MEDLINE | ID: mdl-30118764

Silver barb (Puntius gonionotus) is considered as a promising medium-sized carp species for freshwater aquaculture in Asia. This study in silver barb was carried out to evaluate the effects of increasing dietary levels of lipid on growth, nutrient utilization, whole-body composition, tissue fatty acid composition and Δ6 fatty acyl desaturase (Δ6 fad) gene expression. Fish (11.3 ±â€¯0.23 g of initial body weight) was fed for 60 days with five experimental diets: FO-0 (control feed); FO-30; FO-60; FO-90 and FO-120 containing 0, 30, 60, 90 and 120 g fish oil kg-1 diet, respectively. Among the diets, the highest specific growth rate (SGR), protein efficiency ratio (PER) and whole-body lipid content, and the lowest feed conversion ratio (FCR) were recorded with FO-120 diet. The saturated fatty acids (SFA) level in the muscle was significantly (P < .05) increased with the enhanced FO supplementation, whereas monounsaturated fatty acids (MUFA) level decreased. Increased level of fish oil in the diet also enhanced the n-3 PUFA and n-3 LC-PUFA (long-chain polyunsaturated fatty acid) in the muscle and liver. The expression of Δ6 fad gene was downregulated, whereas the serum biochemical constituents were either remain unchanged or enhanced with increased FO supplementation in the diets of silver barb.


Animal Feed , Carps/physiology , Fatty Acids/metabolism , Fish Oils/administration & dosage , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Linoleoyl-CoA Desaturase/metabolism , Animals , Aquaculture , Carps/growth & development , Energy Intake , Fatty Acids, Omega-3/metabolism , Fish Oils/metabolism , Fish Proteins/genetics , Humans , India , Linoleoyl-CoA Desaturase/genetics , Lipid Metabolism , Liver/enzymology , Liver/growth & development , Liver/metabolism , Muscle, Skeletal/enzymology , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Nutritive Value , Organ Specificity , Random Allocation , Seafood/analysis , Weight Gain
14.
Article En | MEDLINE | ID: mdl-30103919

Dietary fatty acids are associated with the development of many chronic diseases, such as obesity, diabetes, cardiovascular disease, metabolic syndrome, and several cancers. This review explores the literature surrounding the combined and individual roles of n-6 PUFAs linoleic acid (LA) and arachidonic acid (AA) as they relate to immune and inflammatory response, cardiovascular health, liver health, and cancer. The evidence suggests that a pro-inflammatory view of LA and AA may be over simplified. Overall, this review highlights gaps in our understanding of the biological roles of LA, AA and their complex relationship with n-3 PUFA and the need for future studies that examine the roles of individual fatty acids, rather than groups.


Arachidonic Acid/adverse effects , Arachidonic Acid/metabolism , Linoleic Acid/adverse effects , Linoleic Acid/metabolism , Animals , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Dietary Fats, Unsaturated/adverse effects , Dietary Fats, Unsaturated/metabolism , Gene Knockout Techniques , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Linoleoyl-CoA Desaturase/genetics , Linoleoyl-CoA Desaturase/metabolism , Liver Diseases/etiology , Liver Diseases/genetics , Liver Diseases/metabolism , Neoplasms/chemically induced , Neoplasms/genetics , Neoplasms/metabolism
15.
Article En | MEDLINE | ID: mdl-30103922

BACKGROUND: Diabetes and pregnancy are both associated with oxidative stress, characterized by an increase of F2-isoprostanes from the non-enzymatic oxidation of arachidonic acid, a n - 6 polyunsaturated fatty acid (PUFA). We hypothesized that pregnant women with pre-existing diabetes will be characterized by elevated levels of specific F2-isoPs isomers and altered PUFA composition in plasma early pregnancy when compared to normoglycemic controls. METHODS: Plasma samples from 23 women with uncomplicated pregnancies and 11 women with pre-existing diabetes in pregnancy were collected between 12 and 18 weeks of pregnancy (MIROS cohort). Six F2-isoprostanes isomers were measured by high-performance liquid chromatography coupled to tandem mass spectrometry. Fatty acids concentrations in plasmatic phospholipids were measured by gas chromatography coupled to a flame ionization detector. RESULTS: F2-isoprostanes, specifically the 8-iso-15(R)-PGF2α levels, were 67% higher in diabetic than normoglycemic pregnancies (p = 0.026). The total n - 6 PUFA and arachidonic acid level did not differ between study groups. In contrast, total n - 3 level was 32% lower in diabetic pregnancies than in controls (p = 0.002); EPA(20:5) and DHA(22:6) being specifically reduced (p = 0.035 and p = 0.003 respectively). Delta-6-desaturase (D6D) activity index, calculated using fatty acid ratios, was 9% lower in pre-existing diabetes than in controls (p = 0.042). CONCLUSIONS: Pre-existing diabetes in early pregnancy displays a distinctive F2-isoprostanes profile when compared to other pathologies of pregnancy, such as preeclampsia, as previously assessed in the same cohort.


Diabetes Mellitus/blood , F2-Isoprostanes/analysis , Fatty Acids/analysis , Pregnancy Trimester, First/blood , Pregnancy Trimester, Second/blood , Adult , Chromatography, High Pressure Liquid/methods , F2-Isoprostanes/blood , Fatty Acids/blood , Female , Gestational Age , Humans , Linoleoyl-CoA Desaturase/metabolism , Oxidative Stress , Phospholipids/chemistry , Pregnancy , Tandem Mass Spectrometry/methods
16.
Article En | MEDLINE | ID: mdl-30030191

Desaturase enzymes play an important role in the synthesis of unsaturated fatty acids. In this study, a complete cDNA sequence of a Δ6 desaturase-like gene was cloned from the hepatopancreas of the red claw crayfish, Cherax quadricarinatus. The full-length 1885 bp sequence comprises a 5' UTR of 254 bp, 3' UTR of 234 bp, and an open reading frame (ORF) of 1377 bp encoding a 458 amino acid polypeptide (GenBank accession no. MF497442). Bioinformatics analysis revealed three conserved histidine-rich regions, a cytochrome b5 domain at the N-terminus, and a haem binding site (HPGG) in the cytochrome b5 domain, all of which are typical of Δ6 desaturases. Quantitative real-time PCR demonstrated significantly higher expression in the hepatopancreas than other tissues. After feeding crayfish four formulated diets in which fish oil was replaced by 0, 33, 67, or 100% highly unsaturated soybean oil for 8 weeks, Δ6 desaturase-like mRNA expression and enzyme activity were higher than in the fish oil only group. Additionally, a 4-week low temperature treatment at 25, 20, 15, or 9 °C increased Δ6 desaturase mRNA expression and enzyme activity with decreasing water temperature. These results may help us better understand the biosynthesis of unsaturated fatty acids in C. quadricarinatus.


Astacoidea/genetics , Astacoidea/metabolism , Gene Expression Regulation , Linoleoyl-CoA Desaturase/genetics , Linoleoyl-CoA Desaturase/metabolism , Temperature , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Fatty Acids, Unsaturated/biosynthesis , Linoleoyl-CoA Desaturase/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis
17.
Article En | MEDLINE | ID: mdl-29735017

Flavonoids upregulate gene expression of PPAR-α and underregulate the gene expression of SREBP-1c, and their intake increases the plasmatic concentration of n-3 LC-PUFAs. However, the biological mechanisms underlying these effects have not been elucidated. In this work, the effect of oral supplementation of ALA from chia (Salvia hispanica L.) seed oil and anthocyanins from a purple corn extract (PCE) on gene expression of SREBP-1c, PPAR-α and Δ5 and Δ6 desaturases (Δ5D and Δ6D), the activity of these enzymes in the liver as well as the hepatic lipid profile were evaluated in thirty-six female Sprague Dawley rats whose diet was supplemented with olive oil (OL), chia oil (CH), olive oil and PCE (OL + PCE) or chia oil and PCE (CH + PCE). Gene expression of PPAR-α was significantly higher when supplemented with CH and CH + PCE, SREBP-1c gene expression was higher when supplemented with chia oil. CH supplementation enhanced Δ5D expression whereas no significant differences between treatments were observed concerning Δ6D gene expression. Activities of both desaturases were increased by including olive oil (OL + PCE and OL), and they were found to be higher in CH + PCE respect to CH for both enzymes. The ALA and n-3 LCPUFAs hepatic content was higher with CH, decreasing the levels of AA and n-6 LCPUFAs. It is concluded that the joint action of flavonoids such as anthocyanins and ALA show an anti-adipogenic effect. Desaturase activity was inhibited by ALA and kept by the anthocyanins from PCE, thus anthocyanins would exert a protective effect on the desaturase activity but they would not affect on its gene expression, however, high doses of ALA increased the production of its metabolites, masking the effect of PCE.


Dietary Supplements , Fatty Acid Desaturases/genetics , Linoleoyl-CoA Desaturase/genetics , Plant Extracts/pharmacology , Plant Oils/pharmacology , Sterol Regulatory Element Binding Protein 1/genetics , Animals , Delta-5 Fatty Acid Desaturase , Diet/methods , Fatty Acid Desaturases/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Female , Gene Expression Regulation , Linoleoyl-CoA Desaturase/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Olive Oil/pharmacology , PPAR alpha/genetics , PPAR alpha/metabolism , Plant Extracts/chemistry , Plant Oils/isolation & purification , Rats , Rats, Sprague-Dawley , Salvia/chemistry , Sterol Regulatory Element Binding Protein 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1/metabolism , Zea mays/chemistry , alpha-Linolenic Acid/pharmacology
18.
Mol Nutr Food Res ; 62(9): e1701007, 2018 05.
Article En | MEDLINE | ID: mdl-29579359

SCOPE: We investigated the interaction between streptozotocin (STZ)-induced diabetes and dietary n6/n3 ratio, and its influence on lipogenesis. METHODS AND RESULTS: The animals were treated with STZ and fed with different dietary n6/n3 ratios: 1, 7, and 60, or supplemented with DHA/EPA. Gene expression was assessed by RT-PCR and protein expression by western blotting and immunohistochemistry. Fatty acid profile was determined by GC-MS. Pancreas and liver histology were assessed by hematoxylin and eosin (H&E) staining. STZ-induced characteristic changes in all STZ treated groups, including: increased blood glucose, decreased body mass, increased lipid peroxidation and CD36 expression, decreased 16:1n7 and 18:1n7, increases in 20:3n6, decreases in phospholipid (PL) content of 20:4n6, as well as decreases in the expression of SREBP1c, Δ-9-desaturase (Δ9D), and Δ-5-desaturase (Δ5D). Additionally, other changes occurred that were dependent on the n6/n3 ratio. Among the diabetic groups, the lower n6/n3 ratio caused higher lipid peroxidation and CD36 expression, a greater decrease in 20:4n6 and decreased Δ6-desaturase (Δ6D) expression, while the higher n6/n3 ratio caused increased partitioning of 20:4n6 into hepatic neutral lipids (NL), a decrease in 20:5n3 content, and increased ß-oxidation. CONCLUSION: Presented data suggest that the n6/n3 ratio could significantly influence lipogenesis, lipid peroxidation, and ß-oxidation in STZ-induced diabetes, which could have clinical significance.


Brain/metabolism , Diabetes Mellitus, Type 1/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-6/administration & dosage , Gene Expression Regulation, Enzymologic , Liver/enzymology , Animals , Brain/pathology , Delta-5 Fatty Acid Desaturase , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/pathology , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/metabolism , Fatty Acid Desaturases/genetics , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/blood , Fatty Acids, Omega-6/metabolism , Linoleoyl-CoA Desaturase/genetics , Linoleoyl-CoA Desaturase/metabolism , Lipid Peroxidation , Liver/metabolism , Liver/pathology , Male , Neurons/metabolism , Neurons/pathology , Pancreas/metabolism , Pancreas/pathology , Random Allocation , Rats, Wistar , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Streptozocin
19.
Microb Cell Fact ; 17(1): 7, 2018 Jan 13.
Article En | MEDLINE | ID: mdl-29331150

Dunaliella salina is a unicellular green alga with a high α-linolenic acid (ALA) level, but a low eicosapentaenoic acid (EPA) level. In a previous analysis of the catalytic activity of delta 6 fatty acid desaturase (FADS6) from various species, FADS6 from Thalassiosira pseudonana (TpFADS6), a marine diatom, showed the highest catalytic activity for ALA. In this study, to enhance EPA production in D. salina, FADS6 from D. salina (DsFADS6) was identified, and substrate specificities for DsFADS6 and TpFADS6 were characterized. Furthermore, a plasmid harboring the TpFADS6 gene was constructed and overexpressed in D. salina. Our results revealed that EPA production reached 21.3 ± 1.5 mg/L in D. salina transformants. To further increase EPA production, myoinositol (MI) was used as a growth-promoting agent; it increased the dry cell weight of D. salina transformants, and EPA production reached 91.3 ± 11.6 mg/L. The combination of 12% CO2 aeration with glucose/KNO3 in the medium improved EPA production to 192.9 ± 25.7 mg/L in the Ds-TpFADS6 transformant. We confirmed that the increase in ALA was optimal at 8 °C; the EPA percentage reached 41.12 ± 4.78%. The EPA yield was further increased to 554.3 ± 95.6 mg/L by supplementation with 4 g/L perilla seed meal (PeSM), 500 mg/L MI, and 12% CO2 aeration with glucose/KNO3 at varying temperatures. EPA production and the percentage of EPA in D. salina were 343.8-fold and 25-fold higher than those in wild-type D. salina, respectively. IMPORTANCE: FADS6 from Thalassiosira pseudonana, which demonstrates high catalytic activity toward α-linolenic acid, was used to enhance EPA production by Dunaliella salina. Transformation of FADS6 from Thalassiosira pseudonana into Dunaliella salina with myoinositol, CO2, low temperatures, and perilla seed meal supplementation substantially increased EPA production in Dunaliella salina to 554.3 ± 95.6 mg/L. Accordingly, D. salina could be a potential alternative source of EPA and is suitable for its large-scale production.


Chlorophyta/enzymology , Chlorophyta/metabolism , Eicosapentaenoic Acid/biosynthesis , Linoleoyl-CoA Desaturase/metabolism , alpha-Linolenic Acid/metabolism , Carbon Dioxide/pharmacology , Chlorophyta/drug effects , Chlorophyta/genetics , Diatoms/genetics , Diatoms/metabolism , Eicosapentaenoic Acid/analysis , Eicosapentaenoic Acid/genetics , Eicosapentaenoic Acid/metabolism , Glucose/pharmacology , Inositol/pharmacology , Perilla/chemistry , Plasmids , Substrate Specificity , Temperature , alpha-Linolenic Acid/analysis
20.
Biotechnol Lett ; 40(3): 577-584, 2018 Mar.
Article En | MEDLINE | ID: mdl-29288354

OBJECTIVES: To express a Δ6-desaturase gene and produce gamma-linolenic acid (GLA) and stearidonic acid (SDA) in prokaryotic expression system (Escherichia coli), and analyze its substrate specificity in the omega-3 fatty acid biosynthetic pathway. RESULTS: Full-length ORF (1448 bp) of Δ6Des-Iso was isolated from Isochrysis sp. and characterized using multiple sequence alignment, phylogenetic analysis, transmembrane domain, and protein tertiary structure. Δ6Des-Iso is a front-end desaturase consisting of three conserved histidine domains and a cytochrome b5 domain. Δ6Des-Iso was cloned and expressed in E. coli with the production of GLA and SDA. Recombinant E. coli utilized 27 and 8% of exogenously supplied alpha-linolenic acid (ALA) and linoleic acid (LA) to produce 6.3% of SDA and 2.3% of GLA, respectively, suggesting that isolated Δ6Des-Iso is specific to the omega-3 pathway. CONCLUSION: For the first time production of GLA and SDA in a prokaryotic system was achieved.


Fatty Acids, Unsaturated/metabolism , Haptophyta/enzymology , Linoleoyl-CoA Desaturase/metabolism , Microalgae/enzymology , Recombinant Proteins/metabolism , Escherichia coli/genetics , Fatty Acids, Unsaturated/chemistry , Haptophyta/genetics , Linoleoyl-CoA Desaturase/chemistry , Linoleoyl-CoA Desaturase/genetics , Microalgae/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Substrate Specificity
...