Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 125.396
1.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Article En | MEDLINE | ID: mdl-38708178

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Anti-Bacterial Agents , Biofilms , Chitosan , Liposomes , Nanoparticles , Pseudomonas Infections , Pseudomonas aeruginosa , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Humans , Pseudomonas Infections/drug therapy , Nanoparticles/chemistry , Chitosan/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Drug Carriers/chemistry , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Lipids/chemistry , Lipids/pharmacology , Quorum Sensing/drug effects , A549 Cells , Alginates/chemistry
2.
Carbohydr Polym ; 337: 122187, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710543

The effects of different electron beam irradiation doses (2, 4, 8 KGy) and various types of fatty acids (lauric acid, stearic acid, and oleic acid) on the formation, structure, physicochemical properties, and digestibility of starch-lipid complex were investigated. The complexing index of the complexes was higher than 85 %, indicating that the three fatty acids could easily form complexes with starch. With the increase of electron beam irradiation dose, the complexing index increased first and then decreased. The highest complexing index was lauric acid (97.12 %), stearic acid (96.80 %), and oleic acid (97.51 %) at 2 KGy radiation dose, respectively. Moreover, the microstructure, crystal structure, thermal stability, rheological properties, and starch solubility were analyzed. In vitro digestibility tests showed that adding fatty acids could reduce the content of hydrolyzed starch, among which the resistant starch content of the starch-oleic acid complex was the highest (54.26 %). The lower dose of electron beam irradiation could decrease the digestibility of starch and increase the content of resistant starch.


Electrons , Fatty Acids , Solubility , Starch , Starch/chemistry , Fatty Acids/chemistry , Lauric Acids/chemistry , Rheology , Hydrolysis , Oleic Acid/chemistry , Lipids/chemistry
3.
Rapid Commun Mass Spectrom ; 38(14): e9761, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38714820

RATIONALE: Himalayan marmot oil (SPO) has been used for pharmaceutical purposes for centuries, but its composition is still unclear. The bioactivity of SPO highly depends on the techniques used for its processing. This study focused on the comprehensive lipidomics of SPO, especially on the ones derived from dry rendering, wet rendering, cold pressing, and ultrasound-assisted solvent extraction. METHODS: We performed lipid profiling of SPO acquired by different extraction methods using ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry, and 17 classes of lipids (2 BMPs, 12 LysoPCs, 9 LysoPEs, 41 PCs, 24 PEs, 23 Plasmenyl-PCs, 10 Plasmenyl-PEs, 10 MGs, 63 DGs, 187 TGs, 2 MGDGs, 3 Cer[NDS]s, 22 Cer[NS]s, 2 GlcCer[NS]s, 14 SMs, 14 CEs, and 6 AcylCarnitines) were characterized. RESULTS: Fifty-five lipids were differentially altered (VIP > 1.5, p < 0.05) between the extraction techniques, which can be used as potential biomarkers to differentiate SPO extracted by various methods. Additionally, the contents of oleic acid and arachidic acid were abundant in all samples that may suggest their medicinal values and are conducive to in-depth research. CONCLUSIONS: These findings reveal the alterations of lipid profile and free fatty acid composition in SPO obtained with different extraction methods, providing a theoretical foundation for investigating its important components as functional factors in medicines and cosmetics.


Lipids , Marmota , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Lipids/chemistry , Lipids/analysis , Mass Spectrometry/methods , Plant Oils/chemistry , Plant Oils/analysis , Lipidomics/methods , Chemical Fractionation/methods
4.
J Coll Physicians Surg Pak ; 34(5): 518-521, 2024 May.
Article En | MEDLINE | ID: mdl-38720209

OBJECTIVE: To determine the isotretinoin's effect on fasting lipid profile in patients with acne. STUDY DESIGN: Observational study. Place and Duration of the Study: Outpatient Department of Dermatology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan, from 22nd June to 21st December 2022. METHODOLOGY: Patients of clinically moderate and severe acne were selected and prescribed a dose of 0.5mg /kg cap isotretinoin for 6 months. They were advised to get a fasting lipid profile at the baseline and then after two months of isotretinoin therapy. National Cancer Institute Common Terminology Criteria for Adverse Events v5.0 grading system and Adult Treatment Panel III were used for the grading of abnormalities. McNemar Bowker test was used to assess the difference in variables [serum triglycerides (TGs), cholesterol, high-density lipoproteins (HDL), and low-density lipoproteins (LDL)] at the baseline and after 2 months follow-up. RESULTS: A total of 214 patients were evaluated. After 2 months of isotretinoin therapy, TGs and cholesterol levels were elevated to higher grade in 2% of the patients. Likewise in 1% of patients, LDL levels rised to higher grade. Moreover, HDL levels declined to lower grade in 2% of the patients taking isotretinoin. CONCLUSION: Insignificant alterations in the various serum lipid parameters were observed in acne patients during isotretinoin therapy. It is advisable to obtain a baseline fasting lipid profile in all acne patients on isotretinoin and repeated in those with baseline abnormal levels and in patients with a clinical sign of metabolic syndrome and a family history of dyslipidemias. KEY WORDS: Acne, Hyperlipidemias, Isotretinoin, Laboratory monitoring.


Acne Vulgaris , Dermatologic Agents , Fasting , Isotretinoin , Lipids , Humans , Isotretinoin/therapeutic use , Isotretinoin/adverse effects , Acne Vulgaris/drug therapy , Acne Vulgaris/blood , Male , Female , Adult , Dermatologic Agents/therapeutic use , Dermatologic Agents/adverse effects , Lipids/blood , Fasting/blood , Young Adult , Adolescent , Pakistan , Triglycerides/blood , Cholesterol/blood
5.
J Int Med Res ; 52(5): 3000605241252115, 2024 May.
Article En | MEDLINE | ID: mdl-38713460

OBJECTIVE: To assess the predictive value of the serum lipid profile for initial intravenous immunoglobulin (IVIG) resistance and coronary artery lesions (CALs) in patients with Kawasaki disease (KD). METHODS: This retrospective cohort study enrolled patients with KD and divided them into IVIG-responsive and IVIG-resistant groups. They were also stratified based on the presence of CALs (CALs and non-CALs groups). Clinical, echocardiographic and biochemical values were evaluated. A subgroup analysis was performed on complete and incomplete KD. Predictors of initial IVIG resistance and CALs were determined by multivariate logistic regression analysis. RESULTS: A total of 649 KD patients were enrolled: 151 had CALs and 76 had initial IVIG resistance. Low-density lipoprotein cholesterol (LDL-C) was significantly lower in the IVIG-resistant group than in the IVIG-responsive group. LDL-C and apolipoprotein (Apo) B were significantly lower in the CALs group compared with the non-CALs group. Multivariate logistic regression failed to identify the serum lipid profile (LDL-C, Apo A or Apo B) as an independent risk factor for initial IVIG resistance or CALs in KD patients. CONCLUSION: KD patients might have dyslipidaemia in the acute phase, but the serum lipid profile might not be suitable as a single predictor for initial IVIG resistance or CALs.


Coronary Artery Disease , Immunoglobulins, Intravenous , Mucocutaneous Lymph Node Syndrome , Humans , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnosis , Immunoglobulins, Intravenous/therapeutic use , Male , Female , Coronary Artery Disease/blood , Coronary Artery Disease/drug therapy , Coronary Artery Disease/diagnosis , Coronary Artery Disease/immunology , Child, Preschool , Retrospective Studies , Infant , Cholesterol, LDL/blood , Drug Resistance , Lipids/blood , Child , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Risk Factors , Apolipoproteins B/blood , Prognosis
6.
Skin Res Technol ; 30(5): e13706, 2024 May.
Article En | MEDLINE | ID: mdl-38721854

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Electroporation , Lipidomics , Skin Neoplasms , Skin , Humans , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/chemistry , Lipidomics/methods , Biopsy , Skin/pathology , Skin/metabolism , Skin/chemistry , Female , Male , Electroporation/methods , Middle Aged , Aged , Lipids/analysis , Tandem Mass Spectrometry/methods
7.
Food Res Int ; 186: 114365, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729700

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Antioxidants , Catechin , Chenopodium quinoa , Emulsions , Hydrophobic and Hydrophilic Interactions , Oxidation-Reduction , Protein Hydrolysates , Chenopodium quinoa/chemistry , Hydrogen-Ion Concentration , Emulsions/chemistry , Protein Hydrolysates/chemistry , Catechin/chemistry , Catechin/analogs & derivatives , Antioxidants/chemistry , Hydrogen Bonding , Plant Proteins/chemistry , Lipids/chemistry
8.
Food Res Int ; 186: 114410, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729706

Protein and lipid are two major components that undergo significant changes during processing of aquatic products. This study focused on the protein oxidation, protein conformational states, lipid oxidation and lipid molecule profiling of salted large yellow croaker during storage, and their correlations were investigated. The degree of oxidation of protein and lipid was time-dependent, leading to an increase in carbonyl content and surface hydrophobicity, a decrease in sulfhydryl groups, and an increase in conjugated diene, peroxide value and thiobarbituric acid reactive substances value. Oxidation caused protein structure denaturation and aggregation during storage. Lipid composition and content changed dynamically, with polyunsaturated phosphatidylcholine (PC) was preferentially oxidized compared to polyunsaturated triacylglycerol. Correlation analysis showed that the degradation of polyunsaturated key differential lipids (PC 18:2_20:5, PC 16:0_22:6, PC 16:0_20:5, etc.) was closely related to the oxidation of protein and lipid. The changes in protein conformation and the peroxidation of polyunsaturated lipids mutually promote each other's oxidation process.


Fish Proteins , Food Storage , Oxidation-Reduction , Perciformes , Animals , Perciformes/metabolism , Fish Proteins/chemistry , Lipid Peroxidation , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Protein Conformation , Thiobarbituric Acid Reactive Substances/analysis , Seafood/analysis
9.
Food Res Int ; 186: 114317, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729709

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Digestion , Infant Formula , Infant, Premature , Milk, Human , Milk, Human/chemistry , Milk, Human/metabolism , Humans , Infant Formula/chemistry , Infant, Newborn , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Lipid Metabolism , Gastrointestinal Tract/metabolism , Models, Biological , Monoglycerides/metabolism , Monoglycerides/analysis , Dietary Fats/metabolism , Dietary Fats/analysis
10.
BMC Public Health ; 24(1): 1256, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714969

OBJECTIVES: Exposure to cigarette smoke introduces a large amount of nicotine into the bloodstream through the lungs. So, smoking can be a risk factor for many diseases. The present study was conducted to investigate the effect of active and passive cigarette smoke on the blood lipid profile and dyslipidemia. METHODS: This cross-sectional study was performed on 5052 individuals who participated in the recruitment phase of the Shahedieh cohort study. A logistic regression model was used to investigate the relationship between smoking exposure status and lipid profiles. RESULTS: The prevalence of abnormal low-density lipoprotein-cholesterol (LDL-C), abnormal HDL-C, abnormal total cholesterol (TC), abnormal triglyceride (TG), and dyslipidemia were 254 (5.00%), 562 (11.10%), 470 (9.30%), 1008 (20.00%), and 1527 (30.20%), respectively. Adjusting for confounders, it was observed that current smokers had higher odds of having abnormal HDL-C [OR (95% CI), 2.90 (2.28-3.69)], abnormal TG [OR (95% CI), 1.71 (1.38-2.13)] and dyslipidemia [OR (95% CI), 1.86 (1.53-2.25)]. Ex-smokers also had greater odds of abnormal HDL-C [OR (95% CI), 1.51 (1.06-2.16)] compared to non-smokers who were not exposed to cigarette smoke. CONCLUSIONS: The findings indicated that current smokers had higher TG and lower HDL. So, necessary measures should be taken to reduce smoking. The findings also showed that the prevalence of abnormal TG and HDL in ex-smokers was lower than in current smokers. Therefore, the existence of incentive policies to quit smoking seems necessary.


Dyslipidemias , Lipids , Tobacco Smoke Pollution , Humans , Male , Female , Cross-Sectional Studies , Adult , Middle Aged , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/statistics & numerical data , Tobacco Smoke Pollution/analysis , Dyslipidemias/epidemiology , Lipids/blood , Iran/epidemiology , Cohort Studies , Risk Factors , Cigarette Smoking/epidemiology , Smoking/epidemiology , Triglycerides/blood , Cholesterol, HDL/blood , Prevalence
11.
Sci Rep ; 14(1): 10127, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698075

Analyzing blood lipid and bile acid profile changes in colorectal cancer (CRC) patients. Evaluating the integrated model's diagnostic significance for CRC. Ninety-one individuals with colorectal cancer (CRC group) and 120 healthy volunteers (HC group) were selected for comparison. Serum levels of total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoproteins (Apo) A1, ApoA2, ApoB, ApoC2, and ApoC3 were measured using immunoturbidimetric and colorimetric methods. Additionally, LC-MS/MS was employed to detect fifteen bile acids in the serum, along with six tumor markers: carcinoembryonic antigen (CEA), carbohydrate antigens (CA) 125, CA19-9, CA242, CA50, and CA72-4. Group comparisons utilized independent sample t-tests and Mann-Whitney U tests. A binary logistic regression algorithm was applied to fit the indicators and establish a screening model; the diagnostic accuracy of individual Indicators and the model was analyzed using receiver operating characteristic (ROC) curves. The CRC group showed significantly lower levels in eight serum lipid indicators and eleven bile acids compared to the HC group (P < 0.05). Conversely, serum levels of TG, CA19-9, and CEA were elevated (P < 0.05). Among the measured parameters, ApoA2 stands out for its strong correlation with the presence of CRC, showcasing exceptional screening efficacy with an area under the curve (AUC) of 0.957, a sensitivity of 85.71%, and a specificity of 93.33%. The screening model, integrating ApoA1, ApoA2, lithocholic acid (LCA), and CEA, attained an impressive AUC of 0.995, surpassing the diagnostic accuracy of individual lipids, bile acids, and tumor markers. CRC patients manifest noteworthy alterations in both blood lipids and bile acid profiles. A screening model incorporating ApoA1, ApoA2, LCA, and CEA provides valuable insights for detecting CRC.


Bile Acids and Salts , Biomarkers, Tumor , Colorectal Neoplasms , Early Detection of Cancer , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Male , Female , Middle Aged , Biomarkers, Tumor/blood , Early Detection of Cancer/methods , Bile Acids and Salts/blood , Aged , ROC Curve , Case-Control Studies , Apolipoproteins/blood , Carcinoembryonic Antigen/blood , Adult , Lipids/blood
12.
BMC Pregnancy Childbirth ; 24(1): 347, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711000

BACKGROUND: This study investigates the causal relationship between lipid traits and GDM in an effort to better understand the aetiology of GDM. METHODS: Employing a two-sample Mendelian Randomization (MR) framework, we used Single Nucleotide Polymorphisms (SNPs) as instrumental variables to examine the impact of lipids and apolipoproteins on GDM. The research comprised univariable and multivariable MR analyses, with a prime focus on individual and combined effects of lipid-related traits. Statistical techniques included the fixed-effect inverse variance weighted (IVW) method and supplementary methods such as MR-Egger for comprehensive assessment. RESULTS: Our findings revealed the following significant associations: apoA-I and HDL cholesterol were inversely correlated with GDM risk, while triglycerides showed a positive correlation. In multivariable analysis, apoA-I consistently exhibited a strong causal link with GDM, even after adjusting for other lipids and Body Mass Index (BMI). CONCLUSION: The study demonstrates a significant causal relationship between apoA-I and GDM risk.


Apolipoprotein A-I , Cholesterol, HDL , Diabetes, Gestational , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Triglycerides , Humans , Female , Pregnancy , Diabetes, Gestational/genetics , Diabetes, Gestational/blood , Triglycerides/blood , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Cholesterol, HDL/blood , Apolipoproteins/blood , Apolipoproteins/genetics , Body Mass Index , Lipids/blood , Risk Factors
13.
Clin Interv Aging ; 19: 891-900, 2024.
Article En | MEDLINE | ID: mdl-38779379

Purpose: Lipid-lowering therapy is integral in acute ischemic stroke (AIS), yet the connection between lipid parameters and parenchymal hemorrhage (PH) after endovascular treatment (EVT) for AIS is not well-defined. This research aims to assess the association between various lipid parameters and the PH risk following EVT. Patients and Methods: We examined a database of patients who underwent EVT for AIS between September 2021 and May 2023 retrospectively. Traditional and non-traditional lipid parameters were documented. PH was identified on dual energy computed tomography images within 48 h. We employed logistic regression analysis and restricted cubic splines to examine the association between various lipid parameters and the risk of PH. The predictive capacity of the lipid parameters for PH was evaluated by comparing the area under the curve. Results: The study included 384 patients, 65 of whom (17.7%) developed PH. After adjusting for potential confounders, only triglyceride was associated with PH among the traditional lipid parameters, while all non-traditional lipid parameters were related to PH. Based on ROC curve, the ratio of remnant cholesterol to high-density lipoprotein cholesterol (RC/HDL-C) exhibited the highest predictive capability for PH. Furthermore, our analysis revealed a significant nonlinear correlation between triglyceride, non-high-density lipoprotein cholesterol, RC, RC/HDL-C and PH risk. Conclusion: In assessing the risk of PH after EVT, non-traditional lipid parameters are often superior to traditional lipid parameters. It is recommended that routine evaluation of non-traditional lipid parameters could also be conducted in clinical practice as well.


Endovascular Procedures , Ischemic Stroke , Humans , Male , Female , Aged , Retrospective Studies , Middle Aged , Triglycerides/blood , Tomography, X-Ray Computed , Aged, 80 and over , Lipids/blood , ROC Curve , Logistic Models , Cholesterol, HDL/blood , Cerebral Hemorrhage , Cholesterol/blood , Risk Factors
14.
Proc Natl Acad Sci U S A ; 121(22): e2317227121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771870

The biophysical properties of lipid vesicles are important for their stability and integrity, key parameters that control the performance when these vesicles are used for drug delivery. The vesicle properties are determined by the composition of lipids used to form the vesicle. However, for a given lipid composition, they can also be tailored by tethering polymers to the membrane. Typically, synthetic polymers like polyethyleneglycol are used to increase vesicle stability, but the use of polysaccharides in this context is much less explored. Here, we report a general method for functionalizing lipid vesicles with polysaccharides by binding them to cholesterol. We incorporate the polysaccharides on the outer membrane leaflet of giant unilamellar vesicles (GUVs) and investigate their effect on membrane mechanics using micropipette aspiration. We find that the presence of the glycolipid functionalization produces an unexpected softening of GUVs with fluid-like membranes. By contrast, the functionalization of GUVs with polyethylene glycol does not reduce their stretching modulus. This work provides the potential means to study membrane-bound meshworks of polysaccharides similar to the cellular glycocalyx; moreover, it can be used for tuning the mechanical properties of drug delivery vehicles.


Polysaccharides , Unilamellar Liposomes , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , Polyethylene Glycols/chemistry , Cholesterol/chemistry , Cholesterol/metabolism , Lipids/chemistry
15.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771877

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Nanoparticles , RNA, Messenger , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Nanoparticles/chemistry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Macrophages/drug effects , Interleukin-4/metabolism , Diabetes Mellitus, Experimental , Humans , Lipids/chemistry , Disease Models, Animal , Male , Liposomes
16.
Food Res Int ; 187: 114412, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763662

Lipid oxidation limits the shelf-life of dried microencapsulated oils (DMOs), such as infant formula. However, it is poorly understood how lipid oxidation is affected by different types of emulsifiers. To improve our understanding, we prepared DMOs with different emulsifiers (whey protein isolate (WPI), pea protein isolate (PPI), and non-proteinaceous CITREM) and studied lipid oxidation in both the free and encapsulated fat. Only a small difference in oxidation rate was observed between these fat fractions for all formulations. We ascribed this to a non-discrete distribution of the fractions and the subsequent low fractionation selectivity as shown by Raman microscopy. The DMO with PPI showed hardly any oxidation during a 7-week incubation at 40 °C, whereas the DMOs with WPI and CITREM both reached significantly higher contents of oxidation products (lipid hydroperoxides, aldehydes, and epoxides). The enhanced stability of DMO-PPI could not be ascribed to the presence of phytic acid. In conclusion, we demonstrate the potential of using PPI to produce oxidatively stable DMOs.


Emulsifying Agents , Emulsions , Oxidation-Reduction , Emulsifying Agents/chemistry , Emulsions/chemistry , Whey Proteins/chemistry , Pea Proteins/chemistry , Spray Drying , Drug Compounding , Lipids/chemistry , Infant Formula/chemistry
17.
Carbohydr Polym ; 338: 122218, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38763705

Here, biogenic and multifunctional active food coatings and packaging with UV shielding and antimicrobial properties were structured from the aqueous dispersion of an industrial byproduct, suberin, which was stabilized with amphiphilic cellulose nanofibers (CNF). The dual-functioning CNF, synthesized in a deep eutectic solvent, functioned as an efficient suberin dispersant and reinforcing agent in the packaging design. The nanofibrillar percolation network of CNF provided a steric hindrance against the coalescence of the suberin particles. The low CNF dosage of 0.5 wt% resulted in dispersion with optimal viscosity (208.70 Pa.s), enhanced stability (instability index of <0.001), and reduced particle size (9.37 ± 2.43 µm). The dispersion of suberin and CNF was further converted into self-standing films with superior UV-blocking capability, good thermal stability, improved hydrophobicity (increase in water contact angle from 61° ± 0.15 to 83° ± 5.11), and antimicrobial properties against gram-negative bacteria. Finally, the synergistic bicomponent dispersions were demonstrated as fruit coatings for bananas and packaging for strawberries to promote their self-life. The coatings and packaging considerably mitigated fruit deterioration and improved their freshness by preventing moisture loss and microbial attack. This sustainable approach is expected to pave the way toward advanced, biogenic, and active food packaging based on widely available bioresources.


Cellulose , Food Packaging , Lipids , Nanofibers , Wood , Nanofibers/chemistry , Cellulose/chemistry , Food Packaging/methods , Wood/chemistry , Lipids/chemistry , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Viscosity , Musa/chemistry , Water/chemistry , Gram-Negative Bacteria/drug effects , Fruit/chemistry
18.
Zhongguo Zhen Jiu ; 44(5): 503-12, 2024 May 12.
Article Zh | MEDLINE | ID: mdl-38764099

OBJECTIVE: To observe the clinical effect on diabetic peripheral neuropathy (DPN) treated with acupuncture combined with medication and explore its effect mechanism. METHODS: Sixty-two patients of DPN were randomly divided into a combined therapy group (31 cases) and a medication group (31 cases, 2 cases dropped out); besides, 20 healthy subjects were recruited as a normal group. On the base of routine intervention, in the medication group, thioctic acid capsules were administrated orally, 0.2 g each time, 3 times a day. In the combined therapy group, besides the medication as the medication group, acupuncture was performed on bilateral Quchi (LI 11), Waiguan (TE 5), Hegu (LI 4), Tianshu (ST 25), Zusanli (ST 36), Sanyinjiao (SP 6) and Taichong (LR 3) and the needles were retained for 30 min, acupuncture was delivered once daily, 6 times a week. The duration of treatment was 4 weeks in the two groups. The score of Toronto clinical scoring system (TCSS), the nerve conduction velocity of median nerve (MN) and common peroneal nerve (CPN) were observed before and after treatment in the two intervention groups; and the serum lipid metabolism was detected before and after treatment in the two intervention groups and the normal group. RESULTS: Compared with that before treatment, the scores of TCSS were reduced in the combined therapy group and the medication group (P<0.05) after treatment, and the score decrease in the combined therapy group was larger than that of the medication group (P<0.001). The motor nerve conduction velocity and the sensory nerve conductive velocity of MN and CPN after treatment all increased in the combined therapy group and the medication group compared with those before treatment (P<0.05), and the improvements in the combined therapy group were larger than those of the medication group (P<0.001). Before treatment DPN patients had 365 differential lipid metabolites, including sphingosine (SPH, d18:0), involved in the inositol phosphate metabolism, compared with the subjects of the normal group. There were 103 differential lipid metabolites in the medication group before and after treatment, including lysophosphatidyl ethanolamine (LPE, 18:1/0:0), participated in glycerophospholipid metabolism. In the combined therapy group, before and after treatment, there were 99 differential lipid metabolites, including lysophosphatidylcholine (LPC, 18:0/0:0), participated in the neuroactive ligand-receptor interaction. Acupuncture greatly affected 50 lipid metabolites such as lysophosphatidic acid (LPA, 0:0/22:6), LPA(0:0/18:2) and LPC(O-18:0), which was mainly involved in glycerophospholipid metabolism. CONCLUSION: Acupuncture combined with medication ameliorates the symptoms and the nerve conduction velocity in DPN patients, which may be related to the regulation of serum lipid metabolism.


Acupuncture Therapy , Diabetic Neuropathies , Lipid Metabolism , Humans , Male , Female , Middle Aged , Diabetic Neuropathies/therapy , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/blood , Aged , Lipid Metabolism/drug effects , Adult , Acupuncture Points , Combined Modality Therapy , Treatment Outcome , Lipids/blood
19.
Clin Nutr ESPEN ; 61: 168-180, 2024 Jun.
Article En | MEDLINE | ID: mdl-38777430

BACKGROUND AND AIM: Several experiments have suggested that Nigella sativa (N. sativa) supplementation may have a beneficial effect on the lipid profile. However, the results from these trials have been inconclusive. Therefore, this study aimed to explore the impact of N. sativa supplementation on the lipid profile of adult participants. METHODS: We searched Scopus, Web of Science, PubMed, Cochrane, and Web of Science databases until December 2022. Random effects models were used, and pooled data were determined as standardized mean differences with a 95% confidence interval. RESULTS: The findings of 34 studies with 2278 participants revealed that N. sativa supplementation significantly reduced total cholesterol (TC) (SMD: -1.78; 95% CI: -2.20, -1.37, p < 0.001), triglycerides (TG) (SMD: -1.2725; 95% CI: -1.67, -0.83, p < 0.001), and low-density lipoprotein cholesterol (LDL-C) (SMD: -2.45; 95% CI: -3.06, -1.85; p < 0.001) compared to control groups. However, a significant increase was found in high-density lipoprotein cholesterol (HDL-C) (SMD: 0.79; 95% CI: 0.38, 1.20, p < 0.001). CONCLUSION: N. sativa has improved effects on TG, LDL-C, TC, and HDL-C levels. Overall, N. sativa may be suggested as an adjuvant anti-hyperlipidemic agent.


Dietary Supplements , Lipids , Nigella sativa , Randomized Controlled Trials as Topic , Humans , Nigella sativa/chemistry , Lipids/blood , Adult , Triglycerides/blood , Cholesterol/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood
20.
Metabolomics ; 20(3): 57, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773045

BACKGROUND: Despite the clear clinical diagnostic criteria for necrozoospermia in andrology, the fundamental mechanisms underlying it remain elusive. This study aims to profile the lipid composition in seminal plasma systematically and to ascertain the potential of lipid biomarkers in the accurate diagnosis of necrozoospermia. It also evaluates the efficacy of a lipidomics-based random forest algorithm model in identifying necrozoospermia. METHODS: Seminal plasma samples were collected from patients diagnosed with necrozoospermia (n = 28) and normozoospermia (n = 28). Liquid chromatography-mass spectrometry (LC-MS) was used to perform lipidomic analysis and identify the underlying biomarkers. A lipid functional enrichment analysis was conducted using the LION lipid ontology database. The top 100 differentially significant lipids were subjected to lipid biomarker examination through random forest machine learning model. RESULTS: Lipidomic analysis identified 46 lipid classes comprising 1267 lipid metabolites in seminal plasma. The top five enriched lipid functions as follows: fatty acid (FA) with ≤ 18 carbons, FA with 16-18 carbons, monounsaturated FA, FA with 18 carbons, and FA with 16 carbons. The top 100 differentially significant lipids were subjected to machine learning analysis and identified 20 feature lipids. The random forest model identified lipids with an area under the curve > 0.8, including LPE(20:4) and TG(4:0_14:1_16:0). CONCLUSIONS: LPE(20:4) and TG(4:0_14:1_16:0), were identified as differential lipids for necrozoospermia. Seminal plasma lipidomic analysis could provide valuable biochemical information for the diagnosis of necrozoospermia, and its combination with conventional sperm analysis may improve the accuracy and reliability of the diagnosis.


Algorithms , Lipidomics , Semen , Male , Humans , Semen/metabolism , Semen/chemistry , Lipidomics/methods , Adult , Lipids/analysis , Lipids/blood , Biomarkers/blood , Machine Learning , Chromatography, Liquid/methods , Infertility, Male/diagnosis , Infertility, Male/metabolism , Mass Spectrometry/methods , Random Forest
...