Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.337
1.
Rapid Commun Mass Spectrom ; 38(14): e9761, 2024 Jul 30.
Article En | MEDLINE | ID: mdl-38714820

RATIONALE: Himalayan marmot oil (SPO) has been used for pharmaceutical purposes for centuries, but its composition is still unclear. The bioactivity of SPO highly depends on the techniques used for its processing. This study focused on the comprehensive lipidomics of SPO, especially on the ones derived from dry rendering, wet rendering, cold pressing, and ultrasound-assisted solvent extraction. METHODS: We performed lipid profiling of SPO acquired by different extraction methods using ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry, and 17 classes of lipids (2 BMPs, 12 LysoPCs, 9 LysoPEs, 41 PCs, 24 PEs, 23 Plasmenyl-PCs, 10 Plasmenyl-PEs, 10 MGs, 63 DGs, 187 TGs, 2 MGDGs, 3 Cer[NDS]s, 22 Cer[NS]s, 2 GlcCer[NS]s, 14 SMs, 14 CEs, and 6 AcylCarnitines) were characterized. RESULTS: Fifty-five lipids were differentially altered (VIP > 1.5, p < 0.05) between the extraction techniques, which can be used as potential biomarkers to differentiate SPO extracted by various methods. Additionally, the contents of oleic acid and arachidic acid were abundant in all samples that may suggest their medicinal values and are conducive to in-depth research. CONCLUSIONS: These findings reveal the alterations of lipid profile and free fatty acid composition in SPO obtained with different extraction methods, providing a theoretical foundation for investigating its important components as functional factors in medicines and cosmetics.


Lipids , Marmota , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Lipids/chemistry , Lipids/analysis , Mass Spectrometry/methods , Plant Oils/chemistry , Plant Oils/analysis , Lipidomics/methods , Chemical Fractionation/methods
2.
Skin Res Technol ; 30(5): e13706, 2024 May.
Article En | MEDLINE | ID: mdl-38721854

BACKGROUND: The incidence rates of cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC) skin cancers are rising, while the current diagnostic process is time-consuming. We describe the development of a novel approach to high-throughput sampling of tissue lipids using electroporation-based biopsy, termed e-biopsy. We report on the ability of the e-biopsy technique to harvest large amounts of lipids from human skin samples. MATERIALS AND METHODS: Here, 168 lipids were reliably identified from 12 patients providing a total of 13 samples. The extracted lipids were profiled with ultra-performance liquid chromatography and tandem mass spectrometry (UPLC-MS-MS) providing cSCC, BCC, and healthy skin lipidomic profiles. RESULTS: Comparative analysis identified 27 differentially expressed lipids (p < 0.05). The general profile trend is low diglycerides in both cSCC and BCC, high phospholipids in BCC, and high lyso-phospholipids in cSCC compared to healthy skin tissue samples. CONCLUSION: The results contribute to the growing body of knowledge that can potentially lead to novel insights into these skin cancers and demonstrate the potential of the e-biopsy technique for the analysis of lipidomic profiles of human skin tissues.


Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Electroporation , Lipidomics , Skin Neoplasms , Skin , Humans , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/diagnosis , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/chemistry , Lipidomics/methods , Biopsy , Skin/pathology , Skin/metabolism , Skin/chemistry , Female , Male , Electroporation/methods , Middle Aged , Aged , Lipids/analysis , Tandem Mass Spectrometry/methods
3.
Food Res Int ; 186: 114317, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729709

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Digestion , Infant Formula , Infant, Premature , Milk, Human , Milk, Human/chemistry , Milk, Human/metabolism , Humans , Infant Formula/chemistry , Infant, Newborn , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Lipid Metabolism , Gastrointestinal Tract/metabolism , Models, Biological , Monoglycerides/metabolism , Monoglycerides/analysis , Dietary Fats/metabolism , Dietary Fats/analysis
4.
Metabolomics ; 20(3): 57, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773045

BACKGROUND: Despite the clear clinical diagnostic criteria for necrozoospermia in andrology, the fundamental mechanisms underlying it remain elusive. This study aims to profile the lipid composition in seminal plasma systematically and to ascertain the potential of lipid biomarkers in the accurate diagnosis of necrozoospermia. It also evaluates the efficacy of a lipidomics-based random forest algorithm model in identifying necrozoospermia. METHODS: Seminal plasma samples were collected from patients diagnosed with necrozoospermia (n = 28) and normozoospermia (n = 28). Liquid chromatography-mass spectrometry (LC-MS) was used to perform lipidomic analysis and identify the underlying biomarkers. A lipid functional enrichment analysis was conducted using the LION lipid ontology database. The top 100 differentially significant lipids were subjected to lipid biomarker examination through random forest machine learning model. RESULTS: Lipidomic analysis identified 46 lipid classes comprising 1267 lipid metabolites in seminal plasma. The top five enriched lipid functions as follows: fatty acid (FA) with ≤ 18 carbons, FA with 16-18 carbons, monounsaturated FA, FA with 18 carbons, and FA with 16 carbons. The top 100 differentially significant lipids were subjected to machine learning analysis and identified 20 feature lipids. The random forest model identified lipids with an area under the curve > 0.8, including LPE(20:4) and TG(4:0_14:1_16:0). CONCLUSIONS: LPE(20:4) and TG(4:0_14:1_16:0), were identified as differential lipids for necrozoospermia. Seminal plasma lipidomic analysis could provide valuable biochemical information for the diagnosis of necrozoospermia, and its combination with conventional sperm analysis may improve the accuracy and reliability of the diagnosis.


Algorithms , Lipidomics , Semen , Male , Humans , Semen/metabolism , Semen/chemistry , Lipidomics/methods , Adult , Lipids/analysis , Lipids/blood , Biomarkers/blood , Machine Learning , Chromatography, Liquid/methods , Infertility, Male/diagnosis , Infertility, Male/metabolism , Mass Spectrometry/methods , Random Forest
5.
Trop Anim Health Prod ; 56(4): 149, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691179

Egg preference as a source of protein also provides beneficial fatty acids, vital for human consumption. However, rich in lipid products are prone to oxidative damage. The study aims to determine the effect of supplementing biogenic selenium (Se) from Stenotrophomonas maltophilia, ADS18 (ADS18) in laying hens' diet on yolk lipid oxidation status (MDA), beta-carotene (ß-carotene) content, cholesterol, fatty acids, Se, and vitamin E (VE) level. A total of one hundred and twenty (120) laying hens of Lohmann Brown strains aged 50 weeks, weighing 1500 to 2000 g were reared individually in A-shape two-tier stainless-steel cages sized 30 cm x 50 cm x 40 cm (width, depth height). The hens were randomly allotted into four treatments with six replications in a complete randomised design for the period of 12 weeks. The basal diet contains 100 mg/kg VE. Treatment diets consist of basal diet as control, SS containing 0.3 mg/kg sodium selenite, Se-yeast containing 0.3 mg/kg selenised yeast, and VADS18 containing 0.3 mg/kg of ADS18. Forty-eight eggs were collected and freeze-dried biweekly for analysis. The results of the present study showed that hens supplemented ADS18 had significantly (P < 0.05) lower MDA and cholesterol levels while their egg yolks had higher levels of Se and mono-unsaturated fatty acids (MUFA). The control group had significantly (P < 0.05) higher saturated fatty acid (SFA) contents than the VE and dietary Se-supplemented groups, while the ADS18 group had the lowest SFA contents. Conversely, in comparison to the inorganic and control groups, the VE content of the egg yolk was significantly (P < 0.05) higher in organic Se-supplemented (Se-yeast and VADS18) groups. Hens with SS supplementation had significantly (P < 0.05) higher egg yolk ß-carotene content. When compared to other treatment groups, the control group had higher (P < 0.05) polyunsaturated fatty acids (PUFA) content. The ADS18 is therefore deemed comparable to other Se sources. To prevent Se toxicity, however, a better understanding of the levels of ADS18 incorporation in poultry diets is required.


Animal Feed , Chickens , Diet , Dietary Supplements , Egg Yolk , Selenium , Vitamin E , Animals , Female , Dietary Supplements/analysis , Animal Feed/analysis , Selenium/administration & dosage , Selenium/analysis , Egg Yolk/chemistry , Vitamin E/administration & dosage , Vitamin E/analysis , Diet/veterinary , Random Allocation , Fatty Acids/analysis , Fatty Acids/metabolism , Lipids/analysis , beta Carotene/analysis , beta Carotene/administration & dosage , beta Carotene/metabolism
6.
Anal Chem ; 96(19): 7380-7385, 2024 May 14.
Article En | MEDLINE | ID: mdl-38693701

Ion mobility-mass spectrometry (IM-MS) offers benefits for lipidomics by obtaining IM-derived collision cross sections (CCS), a conditional property of an ion that can enhance lipid identification. While drift tube (DT) IM-MS retains a direct link to the primary experimental method to derive CCS values, other IM technologies rely solely on external CCS calibration, posing challenges due to dissimilar chemical properties between lipids and calibrants. To address this, we introduce MobiLipid, a novel tool facilitating the CCS quality control of IM-MS lipidomics workflows by internal standardization. MobiLipid utilizes a newly established DTCCSN2 library for uniformly (U)13C-labeled lipids, derived from a U13C-labeled yeast extract, containing 377 DTCCSN2 values. This automated open-source R Markdown tool enables internal monitoring and straightforward compensation for CCSN2 biases. It supports lipid class- and adduct-specific CCS corrections, requiring only three U13C-labeled lipids per lipid class-adduct combination across 10 lipid classes without requiring additional external measurements. The applicability of MobiLipid is demonstrated for trapped IM (TIM)-MS measurements of an unlabeled yeast extract spiked with U13C-labeled lipids. Monitoring the CCSN2 biases of TIMCCSN2 values compared to DTCCSN2 library entries utilizing MobiLipid resulted in mean absolute biases of 0.78% and 0.33% in positive and negative ionization mode, respectively. By applying the CCS correction integrated into the tool for the exemplary data set, the mean absolute CCSN2 biases of 10 lipid classes could be reduced to approximately 0%.


Lipidomics , Lipids , Mass Spectrometry , Lipidomics/methods , Lipids/chemistry , Lipids/analysis , Ion Mobility Spectrometry/methods , Quality Control , Reference Standards , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism
7.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731536

The quality of fat in infant milk is determined by the fatty acid profile and selected indices describing nutritional value. The aim of this study was to analyze the fatty acid profile and lipid quality indices of infant formulas and compare these data with breast milk. The study material included seven types of cow's milk-based follow-on infant formulas and samples of mature breast milk. The determination of fatty acids was performed using the gas chromatography (GC) technique. Lipid quality indices were calculated based on the relevant equations. Infant formulas contained more medium-chain fatty acids (MCFAs) and oleic acid. Moreover, they contained more than 30% more linoleic acid and more than twice as much α-linolenic acid and docosahexaenoic acid. In contrast, significant amounts of trans fatty acids (TFAs) were noted in breast milk, while infant formulas contained trace amounts. Infant formulas were characterized by a lower AI (Index of Atherogenicity) (0.49-0.98) and TI (Index of Thrombogenicity) (0.48-0.60) and a higher H/H (hypocholesterolemic/hypercholesterolemic) ratio (1.93-2.30) compared with breast milk (1.47, 1.60, and 1.21, respectively). The composition of infant formulas depended on the type of fat added at the production stage and differed significantly from breast milk, particularly in terms of polyunsaturated fatty acids and lipid quality indices.


Fatty Acids , Infant Formula , Lipids , Milk, Human , Infant Formula/chemistry , Infant Formula/analysis , Humans , Fatty Acids/analysis , Milk, Human/chemistry , Infant , Lipids/analysis , Female , Nutritive Value , Animals
8.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734619

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Hydroquinones , Lipidomics , Melanosis , Quality of Life , Humans , Melanosis/drug therapy , Female , Adult , Hydroquinones/therapeutic use , Hydroquinones/administration & dosage , Tranexamic Acid/therapeutic use , Middle Aged , Melanins/metabolism , Male , Lipids/blood , Lipids/analysis , Epidermis/metabolism , Epidermis/drug effects , Epidermis/pathology , Phosphatidylethanolamines/metabolism , Phosphatidylcholines/metabolism , Skin/pathology , Skin/drug effects , Skin/metabolism , Lipid Metabolism/drug effects
9.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Article En | MEDLINE | ID: mdl-38695399

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Buttermilk , Cheese , Goats , Lipidomics , Whey , Animals , Buttermilk/analysis , Cheese/analysis , Whey/chemistry , Phospholipids/analysis , Phospholipids/chemistry , Glycolipids/chemistry , Milk/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Lipids/chemistry , Lipids/analysis
10.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731998

Meibomian Glands (MG) are sebaceous glands responsible for the production of meibum, the main component of the Tear Film Lipid Layer (TFLL). The TFLL facilitates the spread of the tear film over the ocular surface, provides stability and reduces tear evaporation. Alterations in meibum composition lead to different ocular alterations like Meibomian Gland Dysfunction (MGD) and subsequent Evaporative Dry Eye (EDE). The aim of the present study was to investigate the composition and abundance of meibum lipids and their relationship with eyelid margin abnormalities, lipid layer patterns and MG status. The study utilizes a lipidomic approach to identify and quantify lipids in meibum samples using an Elute UHPLC system. This system considered all four dimensions (mass/charge, retention time, ion mobility and intensity) to provide the accurate identification of lipid species. Samples were categorized as healthy or low/no signs of alteration (group 1) or severe signs of alteration or EDE/MGD (group 2). The current investigation found differences in Variable Importance in Projection lipid abundance between both groups for the MGD signs studied. Changes in meibum composition occur and are related to higher scores in eyelid margin hyperaemia, eyelid margin irregularity, MG orifice plugging, MG loss and lipid layer pattern.


Dry Eye Syndromes , Lipidomics , Lipids , Meibomian Gland Dysfunction , Meibomian Glands , Tears , Humans , Lipidomics/methods , Meibomian Glands/metabolism , Dry Eye Syndromes/metabolism , Tears/metabolism , Tears/chemistry , Lipids/analysis , Female , Male , Middle Aged , Meibomian Gland Dysfunction/metabolism , Adult , Aged , Lipid Metabolism
11.
J Agric Food Chem ; 72(20): 11438-11451, 2024 May 22.
Article En | MEDLINE | ID: mdl-38728027

The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 µmol/g of DW, respectively), followed by flax (ca. 20 and 3 µmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. ß-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.


Gas Chromatography-Mass Spectrometry , Lipidomics , Gas Chromatography-Mass Spectrometry/methods , Lipidomics/methods , Lipids/analysis , Lipids/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Flax/chemistry , Vegetables/chemistry , Mass Spectrometry/methods , Triglycerides/analysis , Triglycerides/chemistry
13.
BMC Oral Health ; 24(1): 608, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796419

BACKGROUND: The oral microbiome plays an essential role in maintaining oral homeostasis and health; smoking significantly affects it, leading to microbial dysbiosis. The study aims to investigate changes in the oral microbiome composition of smokers in the Qatari population and establish a correlation with lipid biomarkers. METHODS: The oral microbiota was profiled from saliva samples of 200 smokers and 100 non-smokers in the Qatari population, and 16s rRNA V3-V4 region were sequenced using the Illumina MiSeq platform. The operational taxonomic units (OTUs) were clustered using QIIME and the statistical analysis was performed by R. RESULTS: Non-smokers exhibited a more diverse microbiome, with significant alpha and beta diversity differences between the non-smoker and smoker groups. Smokers had a higher abundance of Firmicutes, Bacteroidota, Actinobacteriota, Patescibacteria, and Proteobacteria at the phylum level and of Streptococcus, Prevotella, Veillonella, TM7x, and Porphyromonas at the genus level. In contrast, non-smokers had more Bacteroidota, Firmicutes, Proteobacteria, Fusobacteriota, and Patescibacteria at the phylum level, and Prevotella, Streptococcus, Veillonella, Porphromonas, and Neisseria at the genus level. Notably, Streptococcus was significantly positively correlated with LDL and negatively correlated with HDL. Additionally, Streptococcus salivarius, within the genus Streptococcus, was substantially more abundant in smokers. CONCLUSION: This study highlights the significant influence of smoking on the composition of the oral microbiome by enriching anaerobic microbes and depleting aerobic microbes. Moreover, the observed correlation between Streptococcus abundance and the lipid biomarkers suggests a potential link between smokers-induced salivary microbiome dysbiosis and lipid metabolism. Understanding the impact of smoking on altering the oral microbiome composition and its correlation with chemistry tests is essential for developing targeted interventions and strategies to improve oral health and reduce the risk of diseases.


Biomarkers , Dysbiosis , Microbiota , Saliva , Smoking , Humans , Saliva/microbiology , Saliva/chemistry , Dysbiosis/microbiology , Male , Female , Biomarkers/analysis , Adult , Lipids/analysis , Middle Aged , RNA, Ribosomal, 16S/analysis
14.
Lipids Health Dis ; 23(1): 154, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796445

Cancer prognosis remains a critical clinical challenge. Lipidomic analysis via mass spectrometry (MS) offers the potential for objective prognostic prediction, leveraging the distinct lipid profiles of cancer patient-derived specimens. This review aims to systematically summarize the application of MS-based lipidomic analysis in prognostic prediction for cancer patients. Our systematic review summarized 38 studies from the past decade that attempted prognostic prediction of cancer patients through lipidomics. Commonly analyzed cancers included colorectal, prostate, and breast cancers. Liquid (serum and urine) and tissue samples were equally used, with liquid chromatography-tandem MS being the most common analytical platform. The most frequently evaluated prognostic outcomes were overall survival, stage, and recurrence. Thirty-eight lipid markers (including phosphatidylcholine, ceramide, triglyceride, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, diacylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylethanolamine, lysophosphatidic acid, dihydroceramide, prostaglandin, sphingosine-1-phosphate, phosphatidylinosito, fatty acid, glucosylceramide and lactosylceramide) were identified as prognostic factors, demonstrating potential for clinical application. In conclusion, the potential for developing lipidomics in cancer prognostic prediction was demonstrated. However, the field is still nascent, necessitating future studies for validating and establishing lipid markers as reliable prognostic tools in clinical practice.


Lipidomics , Neoplasms , Humans , Prognosis , Neoplasms/metabolism , Neoplasms/diagnosis , Neoplasms/mortality , Lipidomics/methods , Biomarkers, Tumor/metabolism , Mass Spectrometry/methods , Female , Lipids/blood , Lipids/analysis , Male , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/diagnosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/diagnosis , Lysophospholipids/metabolism , Lysophospholipids/analysis , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality
15.
Nat Commun ; 15(1): 4455, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796479

Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain's structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.


Brain , Lipidomics , Lipids , Humans , Animals , Brain/metabolism , Mice , Adult , Lipids/chemistry , Lipids/analysis , Male , Lipid Metabolism , Macaca , Neurons/metabolism , Female , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Myelin Sheath/metabolism , Middle Aged
16.
mSphere ; 9(5): e0005424, 2024 May 29.
Article En | MEDLINE | ID: mdl-38712970

Cutibacterium are part of the human skin microbiota and are opportunistic microorganisms that become pathogenic in immunodeficient states. These lipophilic bacteria willingly inhabit areas of the skin where sebaceous glands are abundant; hence, there is a need to thoroughly understand their metabolism. Lipids are no longer considered only structural elements but also serve as signaling molecules and may have antigenic properties. Lipidomics remains a major research challenge, mainly due to the diverse physicochemical properties of lipids. Therefore, this study aimed to perform a large comparative lipidomic analysis of eight representatives of the Cutibacterium genus, including four phylotypes of C. acnes and two strains of C. granulosum, C. avidum, and C. namnetense. Lipidomic analysis was performed by liquid chromatography‒mass spectrometry (LC-MS) in both positive and negative ion modes, allowing the detection of the widest range of metabolites. Fatty acid analysis by gas chromatography‒mass spectrometry (GC-MS) corroborated the lipidomic data. As a result, 128 lipids were identified, among which it was possible to select marker compounds, some of which were characteristic even of individual C. acnes phylotypes. These include phosphatidylcholine PC 30:0, sphingomyelins (SM 33:1, SM 35:1), and phosphatidylglycerol with an alkyl ether substituent PG O-32:0. Moreover, cardiolipins and fatty acid amides were identified in Cutibacterium spp. for the first time. This comparative characterization of the cutibacterial lipidome with the search for specific molecular markers reveals its diagnostic potential for clinical microbiology. IMPORTANCE: Cutibacterium (previously Propionibacterium) represents an important part of the human skin microbiota, and its role in clinical microbiology is growing due to opportunistic infections. Lipidomics, apart from protein profiling, has the potential to prove to be a useful tool for defining the cellular fingerprint, allowing for precise differentiation of microorganisms. In this work, we presented a comparative analysis of lipids found in eight strains of the genus Cutibacterium, including a few C. acnes phylotypes. Our results are one of the first large-scale comprehensive studies regarding the bacterial lipidome, which also enabled the selection of C. acnes phylotype-specific lipid markers. The increased role of lipids not only as structural components but also as diagnostic markers or potential antigens has led to new lipid markers that can be used as diagnostic tools for clinical microbiology. We believe that the findings in our paper will appeal to a wide range of researchers.


Lipidomics , Propionibacteriaceae , Humans , Propionibacteriaceae/classification , Propionibacteriaceae/chemistry , Propionibacteriaceae/isolation & purification , Propionibacteriaceae/genetics , Chromatography, Liquid , Lipids/analysis , Lipids/chemistry , Skin/microbiology , Skin/chemistry , Gas Chromatography-Mass Spectrometry , Fatty Acids/analysis , Fatty Acids/chemistry , Mass Spectrometry
17.
Talanta ; 275: 126069, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38692042

Lipid deposition has been considered one of the key factors in the occurrence of valvular heart disease (VHD) and a great potential target for the diagnosis of VHD. However, the development of lipid imaging technologies and efficient lipid specific probes is in urgent demand. In this work, we have prepared a lipid droplets (LDs) targeted fluorescence probe CPTM based on a push-pull electronic structure for the imaging of diseased aortic valves. CPTM showed obvious twisted intramolecular charge transfer (TICT) effect and its emission changed from 600 nm in water to 508 nm in oil. CPTM not only exhibited good biocompatibility and high photostability, but also impressive LDs specific imaging performance in human primary valvular interstitial cells and human diseased aortic valves. Moreover, the dynamic changes of intracellular LDs could be monitor in real-time after staining with CPTM. These results were expected to offer new ideals for the designing of novel LDs specific probes for further bioimaging applications.


Aortic Valve , Fluorescent Dyes , Humans , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Optical Imaging , Lipid Droplets/chemistry , Color , Aortic Valve Disease/diagnostic imaging , Lipids/chemistry , Lipids/analysis
18.
Open Vet J ; 14(3): 846-851, 2024 Mar.
Article En | MEDLINE | ID: mdl-38682139

Background: Healthy vision in humans and animals requires a stable tear film. The environmental factor could affect the status of the tear film. Therefore, assessing the tear film in animals is essential to avoid visual system disturbance. Aim: The current research used a noninvasive device to evaluate the tear meniscus height (TMH) and lipid layer pattern (LLP) in domestic cats. In addition, the scores were compared with those of humans with healthy eyes. Methods: Fifty-four domestic cats (28 males and 26 females; mean ± SD = 13.9 ± 18.2 months) were randomly selected and included in the study. The cats were healthy, without any ocular disorders or diseases. Fifty-four healthy eye subjects (27 males and 27 females; mean ± SD = 25.6 ± 5.1 years) were randomly recruited and took part in the study for comparison. EASYTEAR View+ was used, for the first time, to assess the tear film parameters on the right eye of each subject. The examiner allowed a 5-minute gap between the tests. Each test was performed by the same examiner three times, followed by calculating the mean scores. Results: Significant differences (Mann-Whitney U test) were found in the median scores of LLP (p = 0.009) between cats and subjects with healthy eyes. The median TMH score was higher in cats (0.18 mm) than in humans (0.14). However, no significant difference (Mann-Whitney U Test, p = 0.210) exists in the TMH scores between cats and humans. The LLP analysis indicated that a dense white-blue lipid layer (grade 4 or D; lipid layer thickness, LLT, = approximately 80 nm) was predominant in both cats (N = 24, 44.4%) and humans (N = 29, 53.7%). In comparison, variable colors lipid layer (grade 5 or E; LLT = 90-140 nm) was a minority in cats (N = 5, 9.3%) and common in humans (N = 16, 29.6%). The statistical analysis indicated medium correlations between cats' TMH and LLP scores (r = 0.431, p < 0.01) and between age and TMH scores in humans (r = 0.440, p < 0.01). In addition, it indicated a weak correlation (r = 0.291, p < 0.05) between the LLP scores in cats and humans. Conclusion: Assessing animals' tear film is essential to avoid any ocular disorders. EASYTEAR View+ is efficiently used to evaluate domestic cats' TMH and LLP. Cats have thicker lipid layers and longer TMH comparable to those reported for humans with healthy eyes.


Tears , Animals , Cats/physiology , Tears/physiology , Male , Female , Lipids/analysis , Humans
19.
Open Vet J ; 14(3): 879-884, 2024 Mar.
Article En | MEDLINE | ID: mdl-38682146

Background: Maintaining a stable tear film is crucial for having healthy human and animal vision. Animals are expected to have thicker lipid layers than humans due to living in high-temperature and humid environments. Aim: The study aimed to evaluate the lipid layer patterns (LLPs) in Arabian dogs and rabbits using a non-invasive, practical, and easy-to-use device and compare them to humans with healthy eyes. Methods: The study included 75 domestic Arabian dogs (42 males and 33 females; mean ± SD = 6.1 ± 12.7 months) and 75 rabbits (37 males and 38 females; mean ± SD = 3.1 ± 3.4 months). In addition, 75 individuals with healthy eyes (39 males and 36 females; mean ± SD = 25.7 ± 5.0 years) were included for comparison. EASYTEAR View+ assessed the LLP in each animal's and individual's right eye. Results: The median LLP grades significantly differed between dogs and humans (Mann-Whitney U test, p < 0.001). Similarly, the LLP grades differed significantly between rabbits and humans (Mann-Whitney U test, p < 0.001). No significant difference (Mann-Whitney U test) in the LLP grades between dogs and rabbits was found. The analysis indicated that most dogs had either an A (34.7%) or a B grade (37.3%). Similarly, rabbits had predominantly A or 1 (46.7%) and B (30.7%) grades. On the other hand, humans had predominantly D (53.3%) and E (30.7%) grades. Conclusion: The EASYTEAR View+ has been employed to assess LLP in dogs and rabbits, and the measurements were compared to those of humans with normal ocular health. Dogs and rabbits have thinner lipid layers than healthy humans.


Lipids , Animals , Rabbits , Dogs , Male , Female , Lipids/analysis , Tears/physiology , Humans
20.
Molecules ; 29(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675566

Drying is an inseparable part of industrial microalgae production. In this work, the impacts of eight different drying methods on the metabolome and lipidome of Arthrospira platensis were investigated. The studied drying methods were freeze drying (FD), sun drying (SD), air drying at 40 and 75 °C (AD' and AD″), infrared drying at 40 and 75 °C (IRD' and IRD″), and vacuum drying at 40 and 75 °C (VD' and VD″). Results gathered by reversed-phase liquid chromatography separation coupled with high-resolution tandem mass spectrometry with electrospray ionization (RP-LC-ESI-Orbitrap HRMS/MS) analysis allowed researchers to identify a total of 316 metabolites (including lipids) in aqueous and ethanolic extracts. The compounds identified in ethanolic extracts were mainly lipids, such as neutral and polar lipids, chlorophylls and carotenoids, while the compounds identified in the aqueous extracts were mainly amino acids and dipeptides. Among the identified compounds, products of enzymatic and chemical degradation, such as pyropheophytins, monoacylglycerols and lysophosphatidylcholines were also identified and their amounts depended on the drying method. The results showed that except for FD method, recognized as a control, the most protective method was AD'. Contrary to this, VD' and VD″, under the conditions used, promoted the most intense degradation of valuable metabolites.


Desiccation , Lipidomics , Metabolomics , Spirulina , Spirulina/metabolism , Spirulina/chemistry , Lipidomics/methods , Metabolomics/methods , Metabolome , Lipids/analysis , Tandem Mass Spectrometry/methods , Freeze Drying , Microalgae/metabolism , Microalgae/chemistry
...