Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 968
Filter
1.
Virology ; 597: 110152, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968676

ABSTRACT

Cobalt-porphyrin phospholipid displays recombinant protein antigens on liposome surfaces via antigen polyhistidine-tag (His-tag), and when combined with monophosphorylated lipid A and QS-21 yields the "CPQ" vaccine adjuvant system. In this proof of principle study, CPQ was used to generate vaccine prototypes that elicited antibodies for two different alphaviruses (AV). Mice were immunized with computationally designed, His-tagged, physicochemical property consensus (PCPcon) protein antigens representing the variable B-domain of the envelope protein 2 (E2) from the serotype specific Venezuelan Equine Encephalitis Virus (VEEVcon) or a broad-spectrum AV-antigen termed EVCcon. The CPQ adjuvant enhanced the antigenicity of both proteins without eliciting detectable anti-His-tag antibodies. Antibodies elicited from mice immunized with antigens admixed with CPQ showed orders-of-magnitude higher levels of antigen-specific IgG compared to alternative control adjuvants. The ELISA results correlated with antiviral activity against VEEV strain TC83 and more weakly to Chikungunya virus 118/25. Thus, display of E.coli-produced His-tagged E2 protein segments on the surface of immunogenic liposomes elicits high levels of antigen-specific and AV neutralizing antibodies in mice with vaccination, while facilitating vaccine preparation and providing dose-sparing potential.


Subject(s)
Adjuvants, Immunologic , Alphavirus , Antibodies, Viral , Antigens, Viral , Liposomes , Viral Envelope Proteins , Viral Vaccines , Animals , Antibodies, Viral/immunology , Mice , Liposomes/immunology , Alphavirus/immunology , Antigens, Viral/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Encephalitis Virus, Venezuelan Equine/immunology , Female , Antibodies, Neutralizing/immunology , Chikungunya virus/immunology , Mice, Inbred BALB C , Immunoglobulin G/immunology , Immunoglobulin G/blood
2.
Microbes Infect ; 26(5-6): 105346, 2024.
Article in English | MEDLINE | ID: mdl-38670217

ABSTRACT

Vaccine adjuvants, such as liposome-based cationic adjuvant formulations (CAFs), are able to boost immune responses and, by incorporation of distinct immunomodulators, steer immunity towards a desired direction in mice, non-human primates and humans, while less studied in pigs. Here we used commercial pigs to investigate polarizing adjuvant effects of CAFs with immunomodulators: C-type lectin receptor ligands trehalose-6,6'-dibehenate and monomycolyl glycerol, toll-like receptor 3 ligand Poly(I:C) or retinoic acid. Vaccines were formulated with a recombinant Chlamydia model protein antigen and administered via three injection routes. All adjuvants significantly increased antigen-specific IgG in serum, compared to non-adjuvanted antigen. Administering the vaccines through intramuscular and intraperitoneal routes induced significantly higher antigen-specific IgG and IgA serum antibodies, than the perirectal route. Although immunizations triggered cell-mediated immunity, no significant differences between adjuvants or injection sites were detected. Genes depicting T cell subtypes revealed only minor differences. Our findings suggest that specific signatures of the tested adjuvant immunomodulation do not translate well from mice to pigs in standard two-dose immunizations. This study provides new insights into immune responses to CAFs in pigs, and highlights that adjuvant development should ideally be carried out in the intended species of interest or in models with high predictive validity/translational value.


Subject(s)
Adjuvants, Immunologic , Immunoglobulin G , Liposomes , Animals , Liposomes/immunology , Liposomes/administration & dosage , Swine , Adjuvants, Immunologic/administration & dosage , Immunoglobulin G/blood , Immunoglobulin A/blood , Immunoglobulin A/immunology , Antibodies, Bacterial/blood , Adjuvants, Vaccine/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Poly I-C/administration & dosage , Poly I-C/immunology , Chlamydia/immunology , Tretinoin/administration & dosage , Tretinoin/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/administration & dosage , Immunomodulating Agents/administration & dosage , Immunomodulating Agents/pharmacology , Immunomodulating Agents/immunology , Immunity, Cellular , Glycolipids
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835479

ABSTRACT

The worldwide spread of COVID-19 continues to impact our lives and has led to unprecedented damage to global health and the economy. This highlights the need for an efficient approach to rapidly develop therapeutics and prophylactics against SARS-CoV-2. We modified a single-domain antibody, SARS-CoV-2 VHH, to the surface of the liposomes. These immunoliposomes demonstrated a good neutralizing ability, but could also carry therapeutic compounds. Furthermore, we used the 2019-nCoV RBD-SD1 protein as an antigen with Lip/cGAMP as the adjuvant to immunize mice. Lip/cGAMP enhanced the immunity well. It was demonstrated that the combination of RBD-SD1 and Lip/cGAMP was an effective preventive vaccine. This work presented potent therapeutic anti-SARS-CoV-2 drugs and an effective vaccine to prevent the spread of COVID-19.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Animals , Mice , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , COVID-19/therapy , Liposomes/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/therapeutic use
4.
J Med Chem ; 65(4): 3563-3574, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35108485

ABSTRACT

Safe and effective vaccines are the best method to defeat worldwide SARS-CoV-2 and its circulating variants. The SARS-CoV-2 S protein and its subunits are the most attractive targets for the development of protein-based vaccines. In this study, we evaluated three lipophilic adjuvants, monophosphoryl lipid A (MPLA), Toll-like receptor (TLR) 1/2 ligand Pam3CSK4, and α-galactosylceramide (α-GalCer), in liposomal and nonliposomal vaccines. The immunological results showed that the MPLA-adjuvanted liposomal vaccine induced the strongest humoral and cellular immunity. Therefore, we further performed a systematic comparison of S-trimer, S-ECD, S1, and RBD as antigens in MPLA-adjuvanted liposomes and found that, although these four vaccines all induced robust specific antibody responses, only S-trimer, S1, and RBD liposomes, but not S-ECD, elicited potent neutralizing antibody responses. Moreover, RBD, S-trimer, and S1 liposomes effectively neutralized variants (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results provide important information for the subunit vaccine design against SARS-CoV-2 and its variants.


Subject(s)
Antibodies, Viral/immunology , Lipid A/analogs & derivatives , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Female , Lipid A/chemistry , Lipid A/immunology , Liposomes/immunology , Mice , Mice, Inbred BALB C , Molecular Structure , Vaccination , Vaccines, Subunit/chemistry
5.
Molecules ; 27(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35056718

ABSTRACT

The advancements in the field of nanotechnology have provided a great platform for the development of effective antiviral vaccines. Liposome-mediated delivery of antigens has been shown to induce the antigen-specific stimulation of the humoral and cell-mediated immune responses. Here, we prepared dried, reconstituted vesicles (DRVs) from DPPC liposomes and used them as the vaccine carrier system for the Middle East respiratory syndrome coronavirus papain-like protease (DRVs-MERS-CoV PLpro). MERS-CoV PLpro emulsified in the Incomplete Freund's Adjuvant (IFA-MERS-CoV PLpro) was used as a control. Immunization of mice with DRVs-MERS-CoV PLpro did not induce any notable toxicity, as revealed by the levels of the serum alanine transaminase (ALT), aspartate transaminase (AST), blood urea nitrogen (BUN) and lactate dehydrogenase (LDH) in the blood of immunized mice. Immunization with DRVs-MERS-CoV PLpro induced greater antigen-specific antibody titer and switching of IgG1 isotyping to IgG2a as compared to immunization with IFA-MERS-CoV PLpro. Moreover, splenocytes from mice immunized with DRVs-MERS-CoV PLpro exhibited greater proliferation in response to antigen stimulation. Moreover, splenocytes from DRVs-MERS-CoV PLpro-immunized mice secreted significantly higher IFN-γ as compared to splenocytes from IFA-MERS-CoV PLpro mice. In summary, DRVs-MERS-CoV PLpro may prove to be an effective prophylactic formulation to prevent MERS-CoV infection.


Subject(s)
Coronavirus Papain-Like Proteases/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , Cell Proliferation , Coronavirus Infections/prevention & control , Female , Immunity, Cellular , Immunity, Humoral , Immunization/methods , Immunoglobulin G/blood , Interferon-gamma/metabolism , Liposomes/administration & dosage , Liposomes/chemistry , Liposomes/immunology , Liposomes/toxicity , Lymphocytes/metabolism , Mice , Viral Vaccines/chemistry , Viral Vaccines/toxicity
6.
PLoS Pathog ; 18(1): e1010255, 2022 01.
Article in English | MEDLINE | ID: mdl-35073387

ABSTRACT

Nucleoside modified mRNA combined with Acuitas Therapeutics' lipid nanoparticles (LNPs) has been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs' ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper (Tfh) cells and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, these mice remained protected from lethal influenza and SARS-CoV-2 challenges. We further found that IL-6, unlike neutrophils, was required to generate normal Tfh cells and antibody responses, but not for protection from influenza challenge. In summary, here we bring evidence that the mRNA-LNP platform can support the induction of protective immune responses in the absence of certain innate immune cells and cytokines.


Subject(s)
COVID-19 Vaccines/immunology , Dendritic Cells/immunology , Influenza Vaccines/immunology , Langerhans Cells/immunology , Liposomes/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , COVID-19/immunology , Mice , Nanoparticles , Orthomyxoviridae Infections/immunology , SARS-CoV-2/immunology
7.
J Med Chem ; 65(3): 2558-2570, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35073081

ABSTRACT

Safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are the best approach to successfully combat the COVID-19 pandemic. The receptor-binding domain (RBD) of the viral spike protein is a major target to develop candidate vaccines. α-Galactosylceramide (αGalCer), a potent invariant natural killer T cell (iNKT) agonist, was site-specifically conjugated to the N-terminus of the RBD to form an adjuvant-protein conjugate, which was anchored on the liposome surface. This is the first time that an iNKT cell agonist was conjugated to the protein antigen. Compared to the unconjugated RBD/αGalCer mixture, the αGalCer-RBD conjugate induced significantly stronger humoral and cellular responses. The conjugate vaccine also showed effective cross-neutralization to all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results suggest that the self-adjuvanting αGalCer-RBD has great potential to be an effective COVID-19 vaccine candidate, and this strategy might be useful for designing various subunit vaccines.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/therapy , Galactosylceramides/therapeutic use , Peptide Fragments/therapeutic use , SARS-CoV-2/immunology , Vaccines, Conjugate/therapeutic use , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Female , Galactosylceramides/chemistry , Galactosylceramides/immunology , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Interferon-gamma/metabolism , Liposomes/chemistry , Liposomes/immunology , Liposomes/therapeutic use , Mice, Inbred BALB C , Peptide Fragments/chemistry , Peptide Fragments/immunology , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/therapeutic use , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/immunology
8.
Drug Metab Pharmacokinet ; 41: 100424, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34757287

ABSTRACT

Nucleic acid therapeutics are developing into precise medicines that can manipulate specific genes. However, the development of safe and effective delivery system for the target cells has remained a challenge. Lipid nanoparticles (LNPs) have provided a revolutionary delivery system that can ensure multiple clinical translation of RNA-based candidates. In 2018, Patisiran (Onpattro) was first approved as an LNP-based siRNA drug. In 2020, during the coronavirus disease 2019 (COVID-19) outbreak, LNPs have enabled the development of two SARS-CoV-2 mRNA vaccines, Tozinameran (Comirnaty or Pfizer-BioNTech COVID-19 vaccine) and Elasomeran (Spikevax or COVID-19 vaccine Moderna) for conditional approval. Here, we reviewed the state-of-the-art LNP technology employed in three approved drugs (one siRNA-based and two mRNA-based drugs) and discussed the differences in their mode of action, formulation design, and biodistribution.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Liposomes/immunology , RNA, Small Interfering/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Animals , Humans , Nanoparticles , Technology/methods
9.
Int Immunopharmacol ; 101(Pt A): 108280, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34710845

ABSTRACT

The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3ß-N-(dimethylaminoethyl)carbamate in mice. However, the comprehensive molecular mechanism(s), especially the host soluble mediator involved in this process, by which cationic liposomes promote antigen-specific mucosal immune responses, remain to be elucidated. Herein, we show that intranasal administration of cationic liposomes elicited interleukin-6 (IL-6) expression at the site of administration. Additionally, both nasal passages and splenocytes from mice nasally immunized with cationic liposomes plus ovalbumin (OVA) were polarized to produce IL-6 when re-stimulated with OVA in vitro. Furthermore, pretreatment with anti-IL-6R antibody, which blocks the biological activities of IL-6, attenuated the production of OVA-specific nasal immunoglobulin A (IgA) but not OVA-specific serum immunoglobulin G (IgG) responses. In this study, we demonstrated that IL-6, exerted by nasally administered cationic liposomes, plays a crucial role in antigen-specific IgA induction.


Subject(s)
Immunity, Mucosal/immunology , Immunoglobulin A/metabolism , Interleukin-6/immunology , Vaccines/immunology , Administration, Intranasal , Animals , Antibody Formation/drug effects , Antigens/immunology , COVID-19/prevention & control , Cations/immunology , Cations/therapeutic use , Fatty Acids, Monounsaturated/immunology , Fatty Acids, Monounsaturated/therapeutic use , Female , Immunity, Mucosal/drug effects , Immunoglobulin G/blood , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Liposomes/immunology , Liposomes/therapeutic use , Mice , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Ovalbumin/immunology , Quaternary Ammonium Compounds/immunology , Quaternary Ammonium Compounds/therapeutic use , Spleen/metabolism , Vaccines/administration & dosage
10.
PLoS One ; 16(8): e0254628, 2021.
Article in English | MEDLINE | ID: mdl-34339430

ABSTRACT

Most current clinical vaccines work primarily by inducing the production of neutralizing antibodies against pathogens. Vaccine adjuvants that efficiently induce T cell responses to protein antigens need to be developed. In this study, we developed a new combination adjuvant consisting of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), D35, and an aluminum salt. Among the various combinations tested, the DOTAP/D35/aluminum salt adjuvant induced strong T cell and antibody responses against the model protein antigen with a single immunization. Adjuvant component and model antigen interaction studies in vitro also revealed that the strong mutual interactions among protein antigens and other components were one of the important factors for this efficient immune induction by the novel combination adjuvant. In addition, in vivo imaging of the antigen distribution suggested that the DOTAP component in the combination adjuvant formulation elicited transient antigen accumulation at the draining lymph nodes, possibly by antigen uptake DC migration. These results indicate the potential of the new combination adjuvant as a promising vaccine adjuvant candidate to treat infectious diseases and cancers.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens/immunology , Proteins/immunology , T-Lymphocytes/immunology , Aluminum/pharmacology , Animals , Antibody Formation/immunology , Cell Movement/immunology , Fatty Acids, Monounsaturated/pharmacology , Humans , Immunity/immunology , Liposomes/immunology , Lymph Nodes/immunology , Mice , Quaternary Ammonium Compounds/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Vaccination/methods , Vaccines/immunology
11.
Int Immunopharmacol ; 99: 108068, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34426114

ABSTRACT

Oligomannose-coated liposomes (OMLs) comprised of dipalmitoylphosphatidylcholine, cholesterol and Man3-DPPE at a molar ratio of 1:1:0.1 and particle diameters of about 1000 nm can induce liposome-encased antigen-specific strong Th1 immunity. In this study, we evaluated the effect of particle sizes of OMLs on induction of Th1 immune responses in mice. Spleen cells obtained from mice immunized with antigen-encapsulating OMLs with 1000- and 800-nm diameters secreted remarkably high levels of IFN-γ upon in vitro stimulation. In addition, sera of mice that received these OMLs had significantly higher titers of antigen-specific IgG2a than those of IgG1, which are commonly associated with Th1 responses. In contrast, treatment with antigen-encapsulating OMLs with 400- and 200-nm diameters failed to induce IFN-γ secretion from spleen cells, although these OMLs did elicit elevation of antigen-specific IgGs. In addition, the titers of serum antigen-specific IgG2a were the same as those of IgG1 in mice that received 400-nm OMLs. Resident peritoneal mononuclear phagocytes (MNPs) treated with OMLs of diameter ≥ 600 nm secreted IL-12, which is essential for induction of Th1 immune responses, while those treated with OMLs of ≤ 400 nm failed to produce this cytokine. However, 400-nm OMLs did induce enhanced expression of MHC class II and costimulatory molecules on MNPs, similarly to OMLs of ≥ 600 nm. Taken together, these results strongly indicate that OMLs of diameter ≥ 600 nm are required to induce Th1 immune responses against OML-encased antigens, although OMLs of diameter ≤ 400 nm can activate MNPs.


Subject(s)
Liposomes/chemistry , Liposomes/immunology , Mannose/chemistry , Mannose/immunology , Th1 Cells/immunology , 1,2-Dipalmitoylphosphatidylcholine/immunology , Animals , Antigens/immunology , B7-2 Antigen/metabolism , Cytochalasin D/pharmacology , Female , Histocompatibility Antigens Class II/drug effects , Histocompatibility Antigens Class II/metabolism , Immune System , Immunoglobulin G/blood , Interferon-gamma/drug effects , Interferon-gamma/metabolism , Interleukin-12 Subunit p35/metabolism , Mice , Particle Size , Peritoneal Absorption/drug effects , Phagocytes/drug effects , Phagocytes/metabolism , Phagocytosis/drug effects , Spleen/drug effects , Spleen/metabolism
12.
Nanomedicine ; 37: 102445, 2021 10.
Article in English | MEDLINE | ID: mdl-34303841

ABSTRACT

Chikungunya virus (CHIKV) is responsible for a self-limited illness that can evolve into long-lasting painful joint inflammation. In this study, we report a novel experimental CHIKV vaccine formulation of lipid nanoparticles loaded with a recombinant protein derived from the E2 structural protein. This antigen fragment, designated ∆E2.1, maintained the antigenicity of the native viral protein and was specifically recognized by antibodies induced in CHIKV-infected patients. The antigen has been formulated into nanoparticles consisting of nano-multilamellar vesicles (NMVs) combined with the adjuvant monophosphoryl lipid A (MPLA). The vaccine formulation demonstrated a depot effect, leading to controlled antigen release, and induced strong antibody responses significantly higher than in mice immunized with the purified protein combined with the adjuvant. More relevantly, E2-specific antibodies raised in mice immunized with ∆E2.1-loaded NMV-MPLA neutralized CHIKV under in vitro conditions. Taken together, the results demonstrated that the new nanoparticle-based vaccine formulation represents a promising approach for the development of effective anti-CHIKV vaccines.


Subject(s)
Chikungunya Fever/immunology , Chikungunya virus/immunology , Liposomes/immunology , Viral Envelope Proteins/genetics , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/drug effects , Antibodies, Viral/immunology , Chikungunya Fever/therapy , Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Humans , Liposomes/chemistry , Liposomes/pharmacology , Mice , Nanoparticles/chemistry , Viral Envelope Proteins/pharmacology , Viral Vaccines/immunology
13.
Front Immunol ; 12: 674048, 2021.
Article in English | MEDLINE | ID: mdl-34054859

ABSTRACT

Dendritic cells (DCs) are paramount in initiating and guiding immunity towards a state of activation or tolerance. This bidirectional capacity of DCs sets them at the center stage for treatment of cancer and autoimmune or allergic conditions. Accordingly, many clinical studies use ex vivo DC vaccination as a strategy to boost anti-tumor immunity or to suppress immunity by including vitamin D3, NF-κB inhibitors or retinoic acid to create tolerogenic DCs. As harvesting DCs from patients and differentiating these cells in vitro is a costly and cumbersome process, in vivo targeting of DCs has huge potential as nanoparticulate platforms equipped with activating or tolerogenic adjuvants can modulate DCs in their natural environment. There is a rapid expansion of the choices of nanoparticles and activation- or tolerance-promoting adjuvants for a therapeutic vaccine platform. In this review we highlight the most recent nanomedical approaches aimed at inducing immune activation or tolerance via targeting DCs, together with novel fundamental insights into the mechanisms inherent to fostering anti-tumor or tolerogenic immunity.


Subject(s)
Dendritic Cells/immunology , Immune Tolerance/immunology , Liposomes , Nanoparticles , Vaccines , Drug Delivery Systems/methods , Humans , Liposomes/chemistry , Liposomes/immunology , Nanoparticles/chemistry , Vaccines/chemistry , Vaccines/immunology
14.
J Nanobiotechnology ; 19(1): 102, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33849551

ABSTRACT

BACKGROUND: The immunomodulation of the antitumor response driven by immunocheckpoint inhibitors (ICIs) such as PD-L1 (Programmed Death Ligand-1) monoclonal antibody (α-PD-L1) have shown relevant clinical outcomes in a subset of patients. This fact has led to the search for rational combinations with other therapeutic agents such as Doxorubicin (Dox), which cytotoxicity involves an immune activation that may enhance ICI response. Therefore, this study aims to evaluate the combination of chemotherapy and ICI by developing Dox Immunoliposomes functionalized with monovalent-variable fragments (Fab') of α-PD-L1. RESULTS: Immunoliposomes were assayed in vitro and in vivo in a B16 OVA melanoma murine cell line over-expressing PD-L1. Here, immune system activation in tumor, spleen and lymph nodes, together with the antitumor efficacy were evaluated. Results showed that immunoliposomes bound specifically to PD-L1+ cells, yielding higher cell interaction and Dox internalization, and decreasing up to 30-fold the IC50, compared to conventional liposomes. This mechanism supported a higher in vivo response. Indeed, immunoliposomes promoted full tumor regression in 20% of mice and increased in 1 month the survival rate. This formulation was the only treatment able to induce significant (p < 0.01) increase of activated tumor specific cytotoxic T lymphocytes at the tumor site. CONCLUSION: PD-L1 targeted liposomes encapsulating Dox have proved to be a rational combination able to enhance the modulation of the immune system by blocking PD-L1 and selectively internalizing Dox, thus successfully providing a dual activity offered by both, chemo and immune therapeutic strategies.


Subject(s)
Antineoplastic Agents/pharmacology , B7-H1 Antigen/metabolism , Doxorubicin/pharmacology , Immunity/drug effects , Liposomes/immunology , Melanoma/drug therapy , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Disease Models, Animal , Drug Liberation , Drug Therapy , Female , Immunotherapy/methods , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL
15.
J Virol ; 95(13): e0000521, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33883221

ABSTRACT

A major goal of HIV vaccine design is to elicit broadly neutralizing antibodies (bNAbs). Such bNAbs target HIV's trimeric, membrane-embedded envelope glycoprotein spikes (mEnv). Soluble Env (sEnv) trimers have been used as vaccines, but engineering sEnvs for stability, multivalency, and desired antigenicity is problematic and deletes key neutralizing epitopes on glycoprotein 41 (gp41) while creating neoepitopes that elicit unwanted antibodies. Meanwhile, multivalent mEnv vaccines are challenging to develop due to trimer instability and low mEnv copy number amid other extraneous proteins on virus-like particles. Here, we describe a multivalent mEnv vaccine platform that does not require protein engineering or extraneous proteins. mEnv trimers were fixed, purified, and combined with naked liposomes in mild detergent. On removal of detergent, mEnv spikes were observed embedded in liposome particles (mean diameter, 133 nm) in correct orientation. These particles were recognized by HIV bNAbs and not non-NAbs and are designated mEnv liposomes (MELs). Following a sequential immunization scheme in rabbits, MELs elicited antibodies that neutralized tier 2 HIV isolates. Analysis of serum antibody specificities, including those to epitopes involving a missing conserved N-glycosylation site at position 197 near the CD4 binding site on two of the immunogens, provides clues on how NAb responses can be improved with modified immunogens. In sum, MELs are a biochemically defined platform that enables rational immunization strategies to elicit HIV bNAbs using multimerized mEnv. IMPORTANCE A vaccine that induced broadly neutralizing antibodies against HIV would likely end the AIDS pandemic. Such antibodies target membrane-embedded envelope glycoprotein spikes (mEnv) that HIV uses to enter cells. Due to HIV Env's low expression and instability, soluble stabilized Env trimers have been used as vaccine candidates, but these have an altered base that disrupts targets of HIV broadly neutralizing antibodies that bind near the membrane and are not available for all HIV isolates. Here, we describe membrane Env liposomes (MELs) that display a multivalent array of stable mEnvs on liposome particles. MELs showed the expected antibody recognition properties, including targeting parts of mEnv missing on soluble Envs. Immunization with MELs elicited antibodies that neutralized diverse HIV isolates. The MEL platform facilitates vaccine development with potentially any HIV Env at high valency, and a similar approach may be useful for eliciting antibodies to membrane-embedded targets of therapeutic interest.


Subject(s)
AIDS Vaccines/immunology , Broadly Neutralizing Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/immunology , HIV-1/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Epitopes/immunology , HEK293 Cells , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HeLa Cells , Humans , Liposomes/immunology , Protein Engineering/methods , Vaccination
16.
Pharm Res ; 38(3): 429-450, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33655395

ABSTRACT

PURPOSE: To develop immunoliposomes modified with monoclonal cancer-specific antibody (mAb) 2C5 and co-loaded with a combination of two chemotherapeutics, in order to simultaneously target bulk cancer cells using paclitaxel and cancer stem cells (CSCs) using salinomycin to prevent cancer growth and metastases. METHODS: Breast cancer cells (MDA-MB-231 and/or SK-BR-3) were chosen as models for all in vitro testing. Liposomes composed of natural phospholipids co-loaded with salinomycin and paclitaxel were prepared and physically characterized. Immunoliposomes modified with mAb 2C5 coupled to polymeric conjugate were prepared and characterized for specific targeting. Wound healing assay was performed using the combination of free drugs in vitro. In vitro studies on cellular interaction and uptake were followed by holographic imaging to study cell-killing, cell-division and proliferation inhibiting effects of the formulation. Ex-vivo study on hemolysis was investigated to check possible toxicity of the formulation. RESULTS: Physical characterization of the liposomes showed stable nanoparticles of consistent and desirable size range (170-220 nm), zeta potential (-13 mV to - 20 mV), polydispersity indices (<0.2) and drug encapsulation efficiencies (~150 µg per ml for salinomycin, ~210 µg/ml for paclitaxel and 1:1 for combination drug loaded liposomes). Combination therapy strongly affected cancer cell proliferation as shown by significant diminishing of artificial gap closure at the wound site on MDA-MB-231 cells in culture using wound healing assay. Quantitation of changes in wound widths showed ~219 µm for drug combination, ~104 µm for only paclitaxel, and ~ 7 µm for only salinomycin treatments. Statistically significant increase in cellular interaction and specific uptake of the targeted drug co-loaded liposomal nanopreparation (p value ≤ 0.05) by MDA-MB-231 and SK-BR-3 cells confirmed the effectiveness of the approach. Holographic imaging using MDA-MB-231 cells produced visible increase in cell-killing, proliferation and division in vitro. Ex-vivo experimentation showed reduced hemolysis correlating with low toxicity in athymic nude mice model. CONCLUSION: The results demonstrated the enhanced therapeutic efficacy of a combination of salinomycin and paclitaxel delivered by mAb 2C5-modified liposomal preparation in cancer therapy.


Subject(s)
Antibodies, Monoclonal/chemistry , Antineoplastic Combined Chemotherapy Protocols/chemistry , Drug Carriers/chemistry , Liposomes/chemistry , Paclitaxel/chemistry , Pyrans/chemistry , Animals , Antibodies, Monoclonal/immunology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Membrane Permeability , Cell Proliferation/drug effects , Delayed-Action Preparations/chemistry , Drug Compounding , Drug Liberation , Female , Humans , Liposomes/immunology , Mice, Nude , Neoplasms, Experimental , Paclitaxel/pharmacology , Phosphatidylcholines/chemistry , Polyethylene Glycols/chemistry , Pyrans/pharmacology
18.
Int J Mol Sci ; 22(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467541

ABSTRACT

This study aims to provide guidelines to design and perform a robust and reliable physical-chemical characterization of liposome-based nanomaterials, and to support method development with a specific focus on their inflammation-inducing potential. Out of eight differently functionalized liposomes selected as "case-studies", three passed the physical-chemical characterization ( in terms of size-distribution, homogeneity and stability) and the screening for bacterial contamination (sterility and apyrogenicity). Although all three were non-cytotoxic when tested in vitro, they showed a different capacity to activate human blood cells. HSPC/CHOL-coated liposomes elicited the production of several inflammation-related cytokines, while DPPC/CHOL- or DSPC/CHOL-functionalized liposomes did not. This work underlines the need for accurate characterization at multiple levels and the use of reliable in vitro methods, in order to obtain a realistic assessment of liposome-induced human inflammatory response, as a fundamental requirement of nanosafety regulations.


Subject(s)
Cytokines/immunology , Immunity, Innate/immunology , Inflammation Mediators/immunology , Liposomes/immunology , Nanostructures/chemistry , Translational Research, Biomedical/methods , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Cell Survival/drug effects , Cells, Cultured , Cholesterol/chemistry , Cytokines/metabolism , Hep G2 Cells , Humans , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Liposomes/chemistry , Liposomes/pharmacology , Particle Size , Phosphatidylcholines/chemistry
19.
Sci China Life Sci ; 64(7): 1097-1115, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33009993

ABSTRACT

As a potential cancer immunotherapeutic agent, chlorogenic acid (CHA) has entered phase II clinical trials in China as a lyophilized powder formulation for treating glioma. However, the in vivo instability of CHA necessitates daily intramuscular injections, resulting in patient noncompliance. In this study, CHA-phospholipid complex (PC)-containing PEGylated liposomes (CHA-PC PEG-Lipo, named as CPPL), with CHA-PC as the drug intermediate, were prepared to lower the administration frequency. CPPL demonstrated excellent physicochemical properties, enhanced tumor accumulation, and inhibited tumor growth even when the administration interval was prolonged to 4 days when compared to a CHA solution and CHA-PC loaded liposomes (CHA-PC Lipo, labeled as CPL), both of which only demonstrated antitumor efficacy with once-daily administration. Further evaluation of the in vivo antitumor immune mechanism suggested that the extended antitumor immune efficacy of CPPL could be attributed to its distinct immune-stimulating mechanism when compared with CHA solution and CPL, such as stimulating both CD4+ and CD8+ T cell infiltration, inhibiting myeloid-derived suppressor cell expression, reducing the expression of Th2 related factors, and notably, increasing the memory T cells in tumor tissues. This CHA-containing formulation could reduce the frequency of in vivo CHA administration during cancer treatment via T cells, especially memory T cell regulation.


Subject(s)
Chlorogenic Acid/pharmacology , Glioma/drug therapy , Immunotherapy/methods , Liposomes/pharmacology , T-Lymphocytes, Regulatory/drug effects , Animals , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Chlorogenic Acid/immunology , Disease Models, Animal , Glioma/immunology , Liposomes/immunology , Rats , T-Lymphocytes, Regulatory/immunology
20.
Nanomedicine ; 35: 102338, 2021 07.
Article in English | MEDLINE | ID: mdl-33197626

ABSTRACT

DNA vaccine is an attractive immune platform for the prevention and treatment of infectious diseases, but existing disadvantages limit its use in preclinical and clinical assays, such as weak immunogenicity and short half-life. Here, we reported a novel liposome-polymer hybrid nanoparticles (pSFV-MEG/LNPs) consisting of a biodegradable core (mPEG-PLGA) and a hydrophilic shell (lecithin/PEG-DSPE-Mal 2000) for delivering a multi-epitope self-replication DNA vaccine (pSFV-MEG). The pSFV-MEG/LNPs with optimal particle size (161.61 ±â€¯15.63 nm) and high encapsulation efficiency (87.60 ±â€¯8.73%) induced a strong humoral (3.22-fold) and cellular immune responses (1.60-fold) compared to PBS. Besides, the humoral and cellular immune responses of pSFV-MEG/LNPs were 1.58- and 1.05-fold than that of pSFV-MEG. All results confirmed that LNPs was a very promising tool to enhance the humoral and cellular immune responses of pSFV-MEG. In addition, the rational design and delivery platform can be used for the development of DNA vaccines for other infectious diseases.


Subject(s)
DNA Replication , Epitopes , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Nanoparticles/therapeutic use , Vaccines, DNA , Animals , Epitopes/genetics , Epitopes/immunology , Liposomes/immunology , Liposomes/pharmacology , Mice , Mice, Inbred BALB C , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL