Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24.100
1.
Gen Physiol Biophys ; 43(3): 263-271, 2024 May.
Article En | MEDLINE | ID: mdl-38774925

Lithium (Li) is a mood-stabilizing drug. Although one of the potential mechanisms underlying the neuroprotective effects of lithium is related to its antioxidative effect, its mechanisms of action are not fully understood. Herein we aimed to investigate the impact of varied dosages of long-term lithium therapy on oxidative stress parameters in the brains of healthy rats, and on anxiety-like behaviors, and whether any changes in behavior can be attributed to modifications in oxidative stress levels within the brain. Thirty-two adult Wistar albino male rats were randomly assigned to four treatment groups. While the control (C) group was fed with a standard diet, low Li (1.4 g/kg/diet), moderate Li (1.8 g/kg/diet), and high Li (2.2 g/kg/diet) groups were fed with lithium bicarbonate (Li2CO3) for 30 days. Malondialdehyde increased, while superoxide dismutase and catalase levels decreased in the brains of the high Li group animals. In addition, anxiety-like behaviors of animals increased in the high Li group considering fewer entries to and less time spent in the open arms of the elevated plus maze test. Our findings underscore the potential adverse effects of prolonged lithium treatment, especially at doses approaching the upper therapeutic range. The induction of toxicity, manifested through heightened oxidative stress, appears to be a key mechanism contributing to the observed increase in anxiety-like behaviors. Consequently, caution is warranted when considering extended lithium therapy at higher doses, emphasizing the need for further research to delineate the precise mechanisms underlying these effects and to inform safer therapeutic practices.


Anxiety , Brain , Dose-Response Relationship, Drug , Oxidative Stress , Rats, Wistar , Animals , Oxidative Stress/drug effects , Male , Rats , Anxiety/chemically induced , Anxiety/drug therapy , Brain/drug effects , Brain/metabolism , Lithium/pharmacology , Lithium/administration & dosage , Behavior, Animal/drug effects , Drug Administration Schedule , Lithium Compounds/pharmacology , Lithium Compounds/administration & dosage
2.
Ther Drug Monit ; 46(3): 281-284, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38723114

ABSTRACT: This is a case description of a patient with bipolar disorder undergoing lithium therapy who received plasmapheresis for neuromyelitis optica spectrum disorder. Plasmapheresis resulted in lower and subtherapeutic serum lithium levels. Using therapeutic drug monitoring, a dose escalation of 80% was necessary to maintain therapeutic serum lithium levels. This underscores the importance of individualized therapy through therapeutic drug monitoring.


Bipolar Disorder , Drug Monitoring , Neuromyelitis Optica , Plasmapheresis , Humans , Plasmapheresis/methods , Bipolar Disorder/therapy , Bipolar Disorder/blood , Neuromyelitis Optica/therapy , Neuromyelitis Optica/blood , Drug Monitoring/methods , Female , Lithium/blood , Lithium/therapeutic use , Intensive Care Units , Antimanic Agents/therapeutic use , Antimanic Agents/blood , Adult , Middle Aged
3.
Nature ; 629(8013): 784-790, 2024 May.
Article En | MEDLINE | ID: mdl-38720075

Electro-optical photonic integrated circuits (PICs) based on lithium niobate (LiNbO3) have demonstrated the vast capabilities of materials with a high Pockels coefficient1,2. They enable linear and high-speed modulators operating at complementary metal-oxide-semiconductor voltage levels3 to be used in applications including data-centre communications4, high-performance computing and photonic accelerators for AI5. However, industrial use of this technology is hindered by the high cost per wafer and the limited wafer size. The high cost results from the lack of existing high-volume applications in other domains of the sort that accelerated the adoption of silicon-on-insulator (SOI) photonics, which was driven by vast investment in microelectronics. Here we report low-loss PICs made of lithium tantalate (LiTaO3), a material that has already been adopted commercially for 5G radiofrequency filters6 and therefore enables scalable manufacturing at low cost, and it has equal, and in some cases superior, properties to LiNbO3. We show that LiTaO3 can be etched to create low-loss (5.6 dB m-1) PICs using a deep ultraviolet (DUV) stepper-based manufacturing process7. We demonstrate a LiTaO3 Mach-Zehnder modulator (MZM) with a half-wave voltage-length product of 1.9 V cm and an electro-optic bandwidth of up to 40 GHz. In comparison with LiNbO3, LiTaO3 exhibits a much lower birefringence, enabling high-density circuits and broadband operation over all telecommunication bands. Moreover, the platform supports the generation of soliton microcombs. Our work paves the way for the scalable manufacture of low-cost and large-volume next-generation electro-optical PICs.


Lithium , Oxides , Photons , Lithium/chemistry , Oxides/chemistry , Tantalum/chemistry , Niobium/chemistry , Semiconductors , Optics and Photonics/instrumentation , Ultraviolet Rays , Silicon/chemistry
4.
Epidemiol Psychiatr Sci ; 33: e31, 2024 May 23.
Article En | MEDLINE | ID: mdl-38779809

AIMS: Accumulating studies have assessed mortality risk associated with mood-stabilizers, the mainstay treatment for bipolar disorder (BD). However, existing data were mostly restricted to suicide risk, focused on lithium and valproate and rarely adequately adjusted for potential confounders. This study aimed to assess comparative mortality risk with all, natural and unnatural causes between lithium, valproate and three frequently prescribed second-generation antipsychotics (SGA), with adjustment for important confounders. METHODS: This population-based cohort study identified 8137 patients with first-diagnosed BD, who had exposed to lithium (n = 1028), valproate (n = 3580), olanzapine (n = 797), quetiapine (n = 1975) or risperidone (n = 757) between 2002 and 2018. Data were retrieved from territory-wide medical-record database of public healthcare services in Hong Kong. Propensity-score (PS)-weighting method was applied to optimize control for potential confounders including pre-existing chronic physical diseases, substance/alcohol use disorders and other psychotropic medications. PS-weighted Cox proportional-hazards regression was conducted to assess risk of all-, natural- and unnatural-cause mortality related to each mood-stabilizer, compared to lithium. Three sets of sensitivity analyses were conducted by restricting to patients with (i) length of cumulative exposure to specified mood-stabilizer ≥90 days and its medication possession ratio (MPR) ≥90%, (ii) MPR of specified mood-stabilizer ≥80% and MPR of other studied mood-stabilizers <20% and (iii) monotherapy. RESULTS: Incidence rates of all-cause mortality per 1000 person-years were 5.9 (95% confidence interval [CI]: 4.5-7.6), 8.4 (7.4-9.5), 11.1 (8.3-14.9), 7.4 (6.0-9.2) and 12.0 (9.3-15.6) for lithium-, valproate-, olanzapine-, quetiapine- and risperidone-treated groups, respectively. BD patients treated with olanzapine (PS-weighted hazard ratio = 2.07 [95% CI: 1.33-3.22]) and risperidone (1.66 [1.08-2.55]) had significantly higher all-cause mortality rate than lithium-treated group. Olanzapine was associated with increased risk of natural-cause mortality (3.04 [1.54-6.00]) and risperidone was related to elevated risk of unnatural-cause mortality (3.33 [1.62-6.86]), relative to lithium. The association between olanzapine and increased natural-cause mortality rate was consistently affirmed in sensitivity analyses. Relationship between risperidone and elevated unnatural-cause mortality became non-significant in sensitivity analyses restricted to low MPR in other mood-stabilizers and monotherapy. Valproate- and lithium-treated groups did not show significant differences in all-, natural- or unnatural-cause mortality risk. CONCLUSION: Our data showed that olanzapine and risperidone were associated with higher mortality risk than lithium, and further supported the clinical guidelines recommending lithium as the first-line mood-stabilizer for BD. Future research is required to further clarify comparative mortality risk associated with individual SGA agents to facilitate risk-benefit evaluation of alternative mood-stabilizers to minimize avoidable premature mortality in BD.


Antimanic Agents , Antipsychotic Agents , Bipolar Disorder , Propensity Score , Quetiapine Fumarate , Valproic Acid , Humans , Bipolar Disorder/drug therapy , Bipolar Disorder/mortality , Antipsychotic Agents/therapeutic use , Antipsychotic Agents/adverse effects , Female , Male , Adult , Middle Aged , Valproic Acid/therapeutic use , Antimanic Agents/therapeutic use , Cohort Studies , Quetiapine Fumarate/therapeutic use , Quetiapine Fumarate/adverse effects , Olanzapine/therapeutic use , Hong Kong/epidemiology , Risperidone/therapeutic use , Risperidone/adverse effects , Lithium/therapeutic use , Cause of Death
5.
J Environ Manage ; 359: 120963, 2024 May.
Article En | MEDLINE | ID: mdl-38728980

An efficient recycling process is developed to recover valuable materials from overhaul slag and reduce its harm to the ecological environment. The high temperature sulfuric acid roasting - water leaching technology is innovatively proposed to prepare Li2CO3 from overhaul slag. Under roasting conditions, fluorine volatilizes into the flue gas with HF, lithium is transformed into NaLi(SO4), aluminum is firstly transformed into NaAl(SO4)2, and then decomposed into Al2O3, so as to selective extraction of lithium. Under the optimal roasting - leaching conditions, the leaching rate of lithium and aluminum are 95.6% and 0.9%, respectively. Then the processes of impurity removal, and settling lithium are carried out. The Li2CO3 with recovery rate of 72.6% and purity of 98.6% could be obtained under the best settling lithium conditions. Compared with the traditional process, this work has short flow, high controllability, remarkable technical, economic, and environmental benefits. This comprehensive recycling technology is suitable for overhaul slag, and has great practical application potential for the disposal of other hazardous wastes in electrolytic aluminum industry.


Lithium Carbonate , Recycling , Sulfuric Acids , Sulfuric Acids/chemistry , Recycling/methods , Lithium Carbonate/chemistry , Aluminum/chemistry , Lithium/chemistry , Water/chemistry
6.
Biomed Phys Eng Express ; 10(4)2024 May 22.
Article En | MEDLINE | ID: mdl-38744248

Evaluating neutron output is important to ensure proper dose delivery for patients in boron neutron capture therapy (BNCT). It requires efficient quality assurance (QA) and quality control (QC) while maintaining measurement accuracy. This study investigated the optimal measurement conditions for QA/QC of activation measurements using a high-purity germanium (HP-Ge) detector in an accelerator-based boron neutron capture therapy (AB-BNCT) system employing a lithium target. The QA/QC uncertainty of the activation measurement was evaluated based on counts, reproducibility, and standard radiation source uncertainties. Measurements in a polymethyl methacrylate (PMMA) cylindrical phantom using aluminum-manganese (Al-Mn) foils and aluminum-gold (Al-Au) foils and measurements in a water phantom using gold wire with and without cadmium cover were performed to determine the optimal measurement conditions. The QA/QC uncertainties of the activation measurements were 4.5% for Au and 4.6% for Mn. The optimum irradiation proton charge and measurement time were determined to be 36 C and 900 s for measurements in a PMMA cylindrical phantom, 7.0 C and 900 s for gold wire measurements in a water phantom, and 54 C and 900 s at 0-2.2 cm depth and 3,600 s at deeper depths for gold wire measurements with cadmium cover. Our results serve as a reference for determining measurement conditions when performing QA/QC of activation measurements using HP-Ge detectors at an AB-BNCT employing a lithium target.


Boron Neutron Capture Therapy , Lithium , Particle Accelerators , Phantoms, Imaging , Quality Control , Lithium/chemistry , Boron Neutron Capture Therapy/methods , Humans , Particle Accelerators/instrumentation , Reproducibility of Results , Polymethyl Methacrylate/chemistry , Neutrons , Gold/chemistry , Aluminum/chemistry , Water/chemistry , Radiometry/methods , Radiometry/instrumentation , Radiotherapy Dosage
7.
Sci Rep ; 14(1): 11253, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755333

Accelerator-based boron neutron capture therapy (BNCT) systems employing a solid-state lithium target indicated the reduction of neutron flux over the lifetime of a target, and its reduction could represent the neutron flux model. This study proposes a novel compensatory approach for delivering the required neutron fluence and validates its clinical applicability. The proposed approach relies on the neutron flux model and the cumulative sum of real-time measurements of proton charges. The accuracy of delivering the required neutron fluence for BNCT using the proposed approach was examined in five Li targets. With the proposed approach, the required neutron fluence could be delivered within 3.0%, and within 1.0% in most cases. However, those without using the proposed approach exceeded 3.0% in some cases. The proposed approach can consider the neutron flux reduction adequately and decrease the effect of uncertainty in neutron measurements. Therefore, the proposed approach can improve the accuracy of delivering the required fluence for BNCT even if a neutron flux reduction is expected during treatment and over the lifetime of the Li target. Additionally, by adequately revising the approach, it may apply to other type of BNCT systems employing a Li target, furthering research in this direction.


Boron Neutron Capture Therapy , Lithium , Neutrons , Boron Neutron Capture Therapy/methods , Lithium/chemistry , Humans , Particle Accelerators , Radiotherapy Dosage
8.
Waste Manag ; 182: 102-112, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38648688

Vast quantities of anode graphite from waste lithium ion batteries (LIBs), as a type of underrated urban mine, has enormous potential to be exploited for resource recovery. Herein, we propose a benign process integrating low-temperature pyrolysis and mechanochemical techniques to upcycle spent graphite (SG) from end-of-life LIBs. Pyrolysis at 500 °C leads to about 82.2 % PVDF dissociation in thermal treated graphite (TG). Solid-phase exfoliation via ball milling assisted by urea successfully produces abundant graphite flakes and a small amount of monolayer graphene nanosheet at the edge of mechanochemically processed graphite (MG). Subsequent rinsing removes the residual LiF salts. High purity and unique edge structural features of the as-prepared MG offer more active sites and storage reservoir for intercalation and de-intercalation of lithium ions, resulting in enhanced lithium-ion diffusion kinetics, excellent reversible specific capacity and desirable rate capability. Inspiringly, MG exhibits a remarkably enhanced initial specific charge capacity of 521.3 mAh g-1 during the first charge-discharge, and only declines from 569.9 mAh g-1 to 538 mAh g-1 with slight attenuation after 50 consecutive cycles at 0.1 A/g, indicating satisfactory cycle stability. Additionally, the purification and reconstruction mechanism for MG have been illustrated in detail. This study offers a green strategy to reconstruct and upgrade anode graphite from LIBs, which can realize sustainable waste management.


Electric Power Supplies , Electrodes , Graphite , Lithium , Graphite/chemistry , Lithium/chemistry , Recycling/methods
9.
Waste Manag ; 182: 186-196, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38670002

Current Li-ion battery (LIB) recycling methods exhibit the disadvantages of low metal recovery efficiencies and high levels of pollution and energy consumption. Here, products generated via the in-situ catalytic pyrolysis of bamboo sawdust (BS) were utilized to regulate the crystal phase and nanoscale size of the NCM cathode to enhance the selective Li extraction and leaching efficiencies of other valuable metals from spent LIBs. The catalytic effect of the NCM cathode significantly promoted the release of gases from BS pyrolysis. These gases (H2, CO, and CH4) finally transformed the crystal phase of the NCM cathode from LiNixCoyMnzO2 into (Ni-Co/MnO/Li2CO3)/C. The size of the spent NCM cathode material was reduced approximately 31.7-fold (from 4.1 µm to 129.2 nm) after roasting. This could be ascribed to the in-situ catalytic decomposition of aromatic compounds generated via the primary pyrolysis of BS into C and H2 on the surface of the cathode material, resulting in the formation of the nanoscale composite (Ni-Co/MnO/Li2CO3)/C. This process enabled the targeted control of the crystal phase and nanoscale size of the material. Water leaching studies revealed a remarkable selective Li extraction efficiency of 99.27 %, and sulfuric acid leaching experiments with a concentration of 2 M revealed high extraction efficiencies of 99.15 % (Ni), 93.87 % (Co), and 99.46 % (Mn). Finally, a novel mechanism involving synergistic thermo-reduction and carbon modification for crystal phase regulation and nanoscale control was proposed. This study provides a novel concept for use in enhancing the recycling of valuable metals from spent LIBs utilizing biomass waste and practices the concept of "treating waste with waste".


Electric Power Supplies , Lithium , Pyrolysis , Recycling , Recycling/methods , Lithium/chemistry , Catalysis , Electrodes
10.
Exp Gerontol ; 191: 112442, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38663491

In this study we investigated the potential synergistic effects of moderate interval training (MIT) and lithium on spatial learning and memory. Forty-two male Wistar males were classified into six groups including I: Control, II: 10 mg/kg/day IP lithium (Li10), III: MIT, IV: Li10 + MIT, V: 40 mg/kg/day IP lithium (Li40), and VI: Li40 + MIT. Then, the rats underwent Morris Water Maze (MWM) test to assess their spatial memory and learning ability. Brain-derived neurotrophic factor (BDNF) density was measured by enzyme-linked immunosorbent assay (ELISA), and the expression of PGC1 and SIRT3 were assessed via qRT-PCR. The results show that MIT improves both memory and spatial learning; but lithium alone, does not cause this. Additionally, those exposed to a combination of exercise and lithium also had improved spatial learning and memory. Finally, we observed a positive role of BDNF protein, and PGC1 gene on the effects of exercise and lithium.


Brain-Derived Neurotrophic Factor , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Physical Conditioning, Animal , Rats, Wistar , Sirtuin 3 , Spatial Memory , Animals , Brain-Derived Neurotrophic Factor/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Physical Conditioning, Animal/physiology , Rats , Spatial Memory/drug effects , Spatial Learning/drug effects , Maze Learning/drug effects , Lithium/pharmacology , Sirtuins
11.
Int J Biol Macromol ; 268(Pt 1): 131569, 2024 May.
Article En | MEDLINE | ID: mdl-38615854

In this work an integrated electrode material based on the VS4 nanoparticles grow on three-dimensional network porous biochar is put forward, forming a heterostructure that significantly boost the rate and cycle performance in lithium batteries. Biochar derives from two-steps treatment removing partial cellulose and hemicellulose, possessing three-dimensional network porous structure and naturally nitrogenous. The integrated electrode material constructs the continuous electrons transfer network, accommodates the volume expansion and traps the polar polysulfides efficiently. After 100 cycles at 1C, the integrated electrode with biochar shows the highest specific discharge capacity. Even at 2C, the three-dimensional electrode can display a high specific discharge capacity of 798.6 mAh·g-1. Thus, our study has pointed the innovations approach of constructing integrated electrode materials with porous structure biochar to enhance the electrochemical performance of lithium batteries.


Cellulose , Charcoal , Electric Power Supplies , Electrodes , Lithium , Zea mays , Lithium/chemistry , Porosity , Charcoal/chemistry , Cellulose/chemistry , Zea mays/chemistry , Electrochemical Techniques
12.
Int J Biol Macromol ; 268(Pt 1): 131729, 2024 May.
Article En | MEDLINE | ID: mdl-38653429

In this case, various characterization technologies have been employed to probe dissociation mechanism of cellulose in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) system. These results indicate that coordination of DMAc ligands to the Li+-Cl- ion pair results in the formation of a series of Lix(DMAc)yClz (x = 1, 2; y = 1, 2, 3, 4; z = 1, 2) complexes. Analysis of interaction between DMAc ligand and Li center indicate that Li bond plays a major role for the formation of these Lix(DMAc)yClz complexes. And the saturation and directionality of Li bond in these Lix(DMAc)yClz complexes are found to be a tetrahedral structure. The hydrogen bonds between two cellulose chains could be broken at the nonreduced end of cellulose molecule via combined effects of basicity of Cl- ion and steric hindrance of [Li (DMAc)4]+ unit. The unique feature of Li bond in Lix(DMAc)yClz complexes is a key factor in determination of the dissociation mechanism.


Acetamides , Cellulose , Lithium Chloride , Cellulose/chemistry , Acetamides/chemistry , Lithium Chloride/chemistry , Lithium/chemistry , Hydrogen Bonding
13.
Anal Chem ; 96(18): 7187-7193, 2024 May 07.
Article En | MEDLINE | ID: mdl-38671557

Despite the significant importance of blood lithium (Li) detection in the treatment of bipolar disorder (BD), its point-of-care testing (POCT) remains a great challenge due to tedious sample preparation and the use of large-footprint atomic spectrometers. Herein, a system coupling dried blood spots (DBS) with a point discharge optical emission spectrometer equipped with a miniaturized ultrasonic nebulizer (MUN-µPD-OES) was developed for POCT of blood Li. Three microliters of whole blood were used to prepare a dried blood spot on a piece of filter paper to which 10 µL of eluent (1% (v/v) formic acid and 0.05% (v/v) Triton-X) was added. Subsequently, the paper was placed onto the vibrating steel membrane of the ultrasonic nebulizer and powered on to generate aerosol. The aerosol was directly introduced to the µPD-OES for quantification of Li by monitoring its atomic emission line at 670.8 nm. The proposed method minimized matrix interference caused by high levels of salts and protein. It is worth noting that the MUN suitably matches the needs of DBS sampling and can provide aerosolized introduction of Li into the assembled µPD-OES, thus eliminating all tedious sample preparation and the need for a commercial atomic spectrometer. Calibration response is linear in the therapeutic range and a limit of detection (LOD) of 1.3 µg L-1 is well below the Li minimum therapeutic concentration (2800 µg L-1). Li in mouse blood was successfully detected in real-time using MUN-µPD-OES after intraperitoneal injection of lithium carbonate, confirming that the system holds great potential for POCT of blood Li for patients with BD.


Dried Blood Spot Testing , Lithium , Point-of-Care Testing , Lithium/blood , Humans , Dried Blood Spot Testing/instrumentation , Dried Blood Spot Testing/methods , Animals , Mice , Nebulizers and Vaporizers , Miniaturization , Ultrasonics , Limit of Detection
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 153-158, 2024 Jan 28.
Article En, Zh | MEDLINE | ID: mdl-38615177

Bipolar affective disorder refers to a category of mood disorders characterized clinically by the presence of both manic or hypomanic episodes and depressive episodes. Lithium stands out as the primary pharmacological intervention for managing bipolar affective disorder. However, its therapeutic dosage closely approaches toxic levels. Toxic symptoms appear when the blood lithium concentration surpasses 1.4 mmol/L, typically giving rise to gastrointestinal and central nervous system reactions. Cardiac toxicity is rare but serious in cases of lithium poisoning. The study reports a case of a patient with bipolar affective disorder who reached a blood lithium concentration of 6.08 mmol/L after the patient took lithium carbonate sustained-release tablets beyond the prescribed dosage daily and concurrently using other mood stabilizers. This resulted in symptoms such as arrhythmia, shock, impaired consciousness, and coarse tremors. Following symptomatic supportive treatment, including blood dialysis, the patient's physical symptoms gradually improved. It is necessary for clinicians to strengthen the prevention and recognition of lithium poisoning.


Hemodynamics , Lithium , Humans , Anticonvulsants , Arrhythmias, Cardiac/chemically induced , Central Nervous System
16.
Int J Biol Macromol ; 268(Pt 1): 131622, 2024 May.
Article En | MEDLINE | ID: mdl-38636762

Separator is an essential component of lithium-ion batteries (LIBs), which is placed between the electrodes to impede their electrical contact and provide the transport channels for lithium ions. Traditionally, the separator contributes the overall mass of LIBs, thereby reducing the gravimetric capacity of the devices. Herein, a dual-layer redox-active cellulose separator is designed and fabricated to enhance the electrochemical performances of LIBs by introducing NiS. The presented separator is composed of an insulating bacterial cellulose (BC) nanofiber layer and a conductive, and redox-active NiS@BC/carbon nanotubes layer. By using the NiS@BC separator, the discharge capacity of the LiFePO4//Li half battery is enhanced to 117 mAh g-1 at a current of 2C owing to the redox-activity of NiS. Moreover, the functional separator-electrode interface can facilitate the homogenous Li stripping/plating and depress the polarization upon the repeated stripping/plating process. Consequently, the battery containing the redox-active separator exhibits outstanding cycle stability and rate capability. The present study contributes a novel strategy for the developments of functional separators to improve the electrochemical properties of LIBs.


Cellulose , Electric Power Supplies , Electrodes , Lithium , Nanofibers , Oxidation-Reduction , Lithium/chemistry , Nanofibers/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Nanotubes, Carbon/chemistry , Ions/chemistry , Electrochemical Techniques
17.
Psychopharmacol Bull ; 54(2): 39-45, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38601833

This is a case of a 35-year-old woman who presented with an 18-month history of post (long)-COVID depression and exhaustion along with recurrent fevers and treatment-resistant skin boils, all of which abated with lithium treatment at a serum level of 1.14 mmol/L, and all of which worsened when the lithium serum level was lowered to 0.8. This paper illustrates Lithium's effectiveness in the treatment of post (long)-COVID syndrome, though a higher serum concentration may be required.


COVID-19 , Lithium , Female , Humans , Adult , Lithium/therapeutic use , Depression , Lithium Compounds/therapeutic use
18.
Waste Manag ; 180: 96-105, 2024 May 15.
Article En | MEDLINE | ID: mdl-38564915

The growing electric vehicle industry has increased the demand for raw materials used in lithium-ion batteries (LIBs), raising concerns about material availability. Froth flotation has gained attention as a LIB recycling method, allowing the recovery of low value materials while preserving the chemical integrity of electrode materials. Furthermore, as new battery chemistries such as lithium titanate (LTO) are introduced into the market, strategies to treat mixed battery streams are needed. In this work, laboratory-scale flotation separation experiments were conducted on two model black mass samples: i) a mixture containing a single cathode (i.e., NMC811) and two anode species (i.e., LTO and graphite), simulating a mixed feedstock prior to hydrometallurgical treatment; and ii) a graphite-TiO2 mixture to reflect the expected products after leaching. The results indicate that graphite can be recovered with > 98 % grade from NMC811-LTO-graphite mixtures. Additionally, it was found that flotation kinetics are dependent on the electrode particle species present in the suspension. In contrast, the flotation of graphite from TiO2 resulted in a low grade product (<96 %) attributed to the significant entrainment of ultrafine TiO2 particles. These results suggest that flotation of graphite should be preferably carried out before hydrometallurgical treatment of black mass.


Graphite , Lithium , Recycling/methods , Electric Power Supplies , Ions
19.
Transl Psychiatry ; 14(1): 174, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570518

The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we performed an exploratory study of the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. Overall, we observed relatively weak associations (p < 1 × 10-4) with BP phenotypes within immune-related genes. Network and functional enrichment analyses of the top findings from the association analyses of Li response variables showed an overrepresentation of pathways participating in cell adhesion and intercellular communication. These appeared to converge on the well-known Li-induced inhibition of GSK-3ß. Association analyses of age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation suggested modest contributions of genes such as RTN4, XKR4, NRXN1, NRG1/3 and GRK5 to disease characteristics. PGS analyses returned weak associations (p < 0.05) between inflammation markers and the studied BP phenotypes. Our results suggest a modest relationship between immunity and clinical features in BP. More research is needed to assess the potential therapeutic relevance.


Bipolar Disorder , Humans , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Bipolar Disorder/psychology , Lithium/therapeutic use , Retrospective Studies , Immunogenetics , Glycogen Synthase Kinase 3 beta , Phenotype
20.
World J Surg ; 48(2): 408-415, 2024 Feb.
Article En | MEDLINE | ID: mdl-38686807

BACKGROUND: The extent of parathyroidectomy (PTX) recommendation in patients with lithium-associated hyperparathyroidism (LAH) remains controversial. The primary objectives of this study were to analyze extent of surgery, complications, and long-term outcomes. METHODS: A population-based study, including all primary hyperparathyroidism (PHPT) patients who underwent PTX in Sweden between 2008 and 2017. Data on exhibited lithium prescriptions, morbidity, surgical approach, and outcomes were collected from relevant national registers and the Scandinavian Quality Register of Thyroid, Parathyroid, and Adrenal Surgery. Patients with lithium exposure before PTX were defined as having LAH. Descriptive summary statistics and regression models were used to evaluate differences in comorbidities, surgical approach, and outcomes between LAH and PHPT not exposed to lithium (non-LAH). RESULTS: Lithium exposure was significantly more common among PHPT (n = 202, 2.3%) than in controls (n = 416, 0.5%); OR 5.0 (95% CI 4.2-5.9). The risk of LAH correlated to the length of lithium exposure. In the LAH-group, the surgical procedures were more extensive and associated with a higher risk of postoperative bleeding, wound infections, persistent hypercalcemia, and hypocalcemia that remained after adjustment for the higher percentage of multiglandular disease. However, the cumulative risk of re-admission for PHPT was similar the first years after PTX and primarily elevated for patients with >5 years duration of lithium exposure prior to surgery. CONCLUSIONS: The findings support the perception of LAH as a complex entity. We recommend a functionally oriented approach, aimed to obtain and maintain normocalcemia for as long as possible, minimizing the risk of permanent hypoparathyroidism, and accepting some risk of recurrence.


Hyperparathyroidism, Primary , Parathyroidectomy , Humans , Female , Male , Middle Aged , Parathyroidectomy/adverse effects , Sweden/epidemiology , Aged , Hyperparathyroidism, Primary/surgery , Postoperative Complications/epidemiology , Postoperative Complications/chemically induced , Lithium/adverse effects , Lithium Compounds/adverse effects , Registries , Treatment Outcome , Adult , Retrospective Studies
...