Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.348
Filter
1.
Cells ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38995000

ABSTRACT

Erythropoiesis occurs first in the yolk sac as a transit "primitive" form, then is gradually replaced by the "definitive" form in the fetal liver (FL) during fetal development and in the bone marrow (BM) postnatally. While it is well known that differences exist between primitive and definitive erythropoiesis, the similarities and differences between FL and BM definitive erythropoiesis have not been studied. Here we performed comprehensive comparisons of erythroid progenitors and precursors at all maturational stages sorted from E16.5 FL and adult BM. We found that FL cells at all maturational stages were larger than their BM counterparts. We further found that FL BFU-E cells divided at a faster rate and underwent more cell divisions than BM BFU-E. Transcriptome comparison revealed that genes with increased expression in FL BFU-Es were enriched in cell division. Interestingly, the expression levels of glucocorticoid receptor Nr3c1, Myc and Myc downstream target Ccna2 were significantly higher in FL BFU-Es, indicating the role of the Nr3c1-Myc-Ccna2 axis in the enhanced proliferation/cell division of FL BFU-E cells. At the CFU-E stage, the expression of genes associated with hemoglobin biosynthesis were much higher in FL CFU-Es, indicating more hemoglobin production. During terminal erythropoiesis, overall temporal patterns in gene expression were conserved between the FL and BM. While biological processes related to translation, the tricarboxylic acid cycle and hypoxia response were upregulated in FL erythroblasts, those related to antiviral signal pathway were upregulated in BM erythroblasts. Our findings uncovered previously unrecognized differences between FL and BM definitive erythropoiesis and provide novel insights into erythropoiesis.


Subject(s)
Bone Marrow , Erythropoiesis , Fetus , Liver , Transcriptome , Animals , Erythropoiesis/genetics , Mice , Liver/metabolism , Liver/embryology , Liver/cytology , Transcriptome/genetics , Fetus/metabolism , Fetus/cytology , Bone Marrow/metabolism , Mice, Inbred C57BL , Gene Expression Regulation, Developmental , Female , Erythroid Precursor Cells/metabolism , Erythroid Precursor Cells/cytology
2.
Nature ; 630(8016): 412-420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839950

ABSTRACT

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.


Subject(s)
Cell Self Renewal , Hematopoietic Stem Cells , Nuclear Proteins , Animals , Female , Humans , Male , Mice , Cells, Cultured , Endocytosis , Endosomes/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fetal Blood/cytology , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Liver/cytology , Liver/metabolism , Liver/embryology , Mitochondria/metabolism , Nuclear Proteins/metabolism , Signal Transduction , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Single-Cell Gene Expression Analysis
3.
Article in English | MEDLINE | ID: mdl-38583696

ABSTRACT

Existing evidence shows that currently used pesticides pose toxicological risks to exposed wildlife. Chemically, bifenox belongs to diphenyl ethers, a well-known group of herbicides. Its mechanism of action primarily involves inducing lipid peroxidation and blocking protoporphyrinogen oxidases. Toxicity of diphenyl ether herbicides has been elucidated in animal cells; however, in vivo toxicological evaluations of bifenox are required to determine its unexpected effects. This study aimed to determine the negative effects of bifenox, and its effects on higher eukaryotes. We found that early stages of zebrafish embryo exposed to bifenox demonstrated increased mortality and physiological defects, based on the LC50 value. Bifenox severely inhibited blood vessel growth by reducing key elements of complex connectivity; fluorescently tagged transgenic lines (fli1a:EGFP) showed morphological changes. Additionally, transgenic lines that selectively identified hepatocytes (fabp10a:DsRed) showed reduced fluorescence, indicating that bifenox may inhibit liver development. To evaluate the level of oxidative stress, we used 2',7'-dichlorofluorescein diacetate (DCFH-DA) probes in zebrafish embryos to identify the underlying mechanisms causing developmental damage. Our findings demonstrate that exposure to bifenox causes abnormalities in the hepatic and cardiovascular systems during zebrafish embryogenesis. Therefore, this study provides new information for the evaluation of toxicological risks of bifenox in vertebrates.


Subject(s)
Embryo, Nonmammalian , Reactive Oxygen Species , Signal Transduction , Zebrafish , Animals , Zebrafish/embryology , Embryo, Nonmammalian/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Oxidative Stress/drug effects , Animals, Genetically Modified , Herbicides/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/embryology , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Halogenated Diphenyl Ethers/toxicity
4.
J Hepatol ; 81(1): 108-119, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38460794

ABSTRACT

BACKGROUND & AIMS: In the developing liver, bipotent epithelial progenitor cells undergo lineage segregation to form hepatocytes, which constitute the bulk of the liver parenchyma, and biliary epithelial cells (cholangiocytes), which comprise the bile duct (a complex tubular network that is critical for normal liver function). Notch and TGFß signalling promote the formation of a sheet of biliary epithelial cells, the ductal plate, that organises into discontinuous tubular structures. How these structures elongate and connect to form a continuous duct remains undefined. We aimed to define the mechanisms by which the ductal plate transitions from a simple sheet of epithelial cells into a complex and connected bile duct. METHODS: By combining single-cell RNA sequencing of embryonic mouse livers with genetic tools and organoid models we functionally dissected the role of planar cell polarity in duct patterning. RESULTS: We show that the planar cell polarity protein VANGL2 is expressed late in intrahepatic bile duct development and patterns the formation of cell-cell contacts between biliary cells. The patterning of these cell contacts regulates the normal polarisation of the actin cytoskeleton within biliary cells and loss of Vangl2 function results in the abnormal distribution of cortical actin remodelling, leading to the failure of bile duct formation. CONCLUSIONS: Planar cell polarity is a critical step in the post-specification sculpture of the bile duct and is essential for establishing normal tissue architecture. IMPACT AND IMPLICATIONS: Like other branched tissues, such as the lung and kidney, the bile ducts use planar cell polarity signalling to coordinate cell movements; however, how these biochemical signals are linked to ductular patterning remains unclear. Here we show that the core planar cell polarity protein VANGL2 patterns how cell-cell contacts form in the mammalian bile duct and how ductular cells transmit confluent mechanical changes along the length of a duct. This work sheds light on how biological tubes are patterned across mammalian tissues (including within the liver) and will be important in how we promote ductular growth in patients where the duct is mis-patterned or poorly formed.


Subject(s)
Cell Polarity , Nerve Tissue Proteins , Animals , Mice , Cell Polarity/physiology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Epithelial Cells/metabolism , Epithelial Cells/cytology , Liver/embryology , Liver/cytology , Liver/metabolism , Bile Ducts, Intrahepatic/embryology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/cytology , Biliary Tract/embryology , Biliary Tract/cytology , Biliary Tract/metabolism , Signal Transduction/physiology
5.
Toxicol Sci ; 199(1): 63-80, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38439560

ABSTRACT

Prednisone, a widely used glucocorticoid drug in human and veterinary medicine, has been reported to cause developmental toxicity. However, systematic studies about the effect of prednisone on fetal liver development are still unclear. We investigated the potential effects of maternal exposure to clinically equivalent doses of prednisone during different gestational stages on cell proliferation and apoptosis, cell differentiation, glucose and lipid metabolism, and hematopoiesis in the liver of fetal mice, and explored the potential mechanisms. Results showed that prenatal prednisone exposure (PPE) could suppress cell proliferation, inhibit hepatocyte differentiation, and promote cholangiocyte differentiation in the fetal liver. Meanwhile, PPE could result in the enhancement of glyconeogenesis and bile acid synthesis and the inhibition of fatty acid ß-oxidation and hematopoiesis in the fetal liver. Further analysis found that PPE-induced alterations in liver development had obvious stage and sex differences. Overall, the alteration in fetal liver development and function induced by PPE was most pronounced during the whole pregnancy (GD0-18), and the males were relatively more affected than the females. Additionally, fetal hepatic insulin-like growth factor 1 (IGF1) signaling pathway was inhibited by PPE. In conclusion, PPE could impact fetal liver development and multiple functions, and these alterations might be partially related to the inhibition of IGF1 signaling pathway.


Subject(s)
Liver , Prednisone , Animals , Female , Pregnancy , Liver/drug effects , Liver/metabolism , Liver/embryology , Male , Prednisone/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Mice , Cell Proliferation/drug effects , Glucocorticoids/toxicity , Maternal Exposure/adverse effects , Fetal Development/drug effects , Cell Differentiation/drug effects , Apoptosis/drug effects , Insulin-Like Growth Factor I/metabolism , Signal Transduction/drug effects , Lipid Metabolism/drug effects
6.
Science ; 381(6659): eadd7564, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590359

ABSTRACT

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Subject(s)
Embryonic Development , Yolk Sac , Female , Humans , Pregnancy , Blood Coagulation/genetics , Macrophages , Yolk Sac/cytology , Yolk Sac/metabolism , Embryonic Development/genetics , Atlases as Topic , Gene Expression , Gene Expression Profiling , Hematopoiesis/genetics , Liver/embryology
7.
Science ; 378(6621): eabg3679, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36395225

ABSTRACT

The Hippo signaling pathway is widely considered a master regulator of organ growth because of the prominent overgrowth phenotypes caused by experimental manipulation of its activity. Contrary to this model, we show here that removing Hippo transcriptional output did not impair the ability of the mouse liver and Drosophila eyes to grow to their normal size. Moreover, the transcriptional activity of the Hippo pathway effectors Yap/Taz/Yki did not correlate with cell proliferation, and hyperactivation of these effectors induced gene expression programs that did not recapitulate normal development. Concordantly, a functional screen in Drosophila identified several Hippo pathway target genes that were required for ectopic overgrowth but not normal growth. Thus, Hippo signaling does not instruct normal growth, and the Hippo-induced overgrowth phenotypes are caused by the activation of abnormal genetic programs.


Subject(s)
Drosophila melanogaster , Eye , Gene Expression Regulation, Developmental , Hippo Signaling Pathway , Liver , Transcription, Genetic , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Animals , Mice , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Eye/embryology , Hippo Signaling Pathway/genetics , Liver/embryology , Organ Size , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/metabolism
8.
Cell Rep ; 38(7): 110386, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172136

ABSTRACT

B-1 cell development mainly occurs via fetal and neonatal hematopoiesis and is suppressed in adult bone marrow hematopoiesis. However, little is known about the factors inhibiting B-1 cell development at the adult stage. We report that capicua (CIC) suppresses postnatal B-1a cell development and survival. CIC levels are high in B-1a cells and gradually increase in transitional B-1a (TrB-1a) cells with age. B-cell-specific Cic-null mice exhibit expansion of the B-1a cell population and a gradual increase in TrB-1a cell frequency with age but attenuated B-2 cell development. CIC deficiency enhances B cell receptor (BCR) signaling in transitional B cells and B-1a cell viability. Mechanistically, CIC-deficiency-mediated Per2 derepression upregulates Bhlhe41 levels by inhibiting CRY-mediated transcriptional repression for Bhlhe41, consequently promoting B-1a cell formation in Cic-null mice. Taken together, CIC is a key transcription factor that limits the B-1a cell population at the adult stage and balances B-1 versus B-2 cell formation.


Subject(s)
B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Period Circadian Proteins/metabolism , Repressor Proteins/metabolism , Signal Transduction , Animals , Animals, Newborn , Apoptosis , Base Sequence , Bone Marrow/embryology , Cell Differentiation , Cell Survival , Child , Child, Preschool , Fetus/embryology , HEK293 Cells , Humans , Liver/embryology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , NIH 3T3 Cells , Receptors, Antigen, B-Cell/metabolism
9.
Arterioscler Thromb Vasc Biol ; 42(3): 326-342, 2022 03.
Article in English | MEDLINE | ID: mdl-35021856

ABSTRACT

BACKGROUND: Endothelial cells (ECs) play a critical role in angiogenesis and vascular remodeling. The heterogeneity of ECs has been reported at adult stages, yet it has not been fully investigated. This study aims to assess the transcriptional heterogeneity of developmental ECs at spatiotemporal level and to reveal the changes of embryonic ECs clustering when endothelium-enriched microRNA-126 (miR-126) was specifically knocked out. METHODS: C57BL/6J mice embryos at day 14.5 were harvested and digested, followed by fluorescence-activated cell sorting to enrich ECs. Then, single-cell RNA sequencing was applied to enriched embryonic ECs. Tie2 (Tek receptor tyrosine kinase)-cre-mediated ECs-specific miR-126 knockout mice were constructed, and ECs from Tie2-cre-mediated ECs-specific miR-126 knockout embryos were subjected to single-cell RNA sequencing. RESULTS: Embryonic ECs were clustered into 11 groups corresponding to anatomic characteristics. The vascular bed (arteries, capillaries, veins, lymphatics) exhibited transcriptomic similarity across the developmental stage. Embryonic ECs had higher proliferative potential than adult ECs. Integrating analysis showed that 3 ECs populations (hepatic, mesenchymal transition, and pulmonary ECs) were apparently disorganized after miR-126 being knocked out. Gene ontology analysis revealed that disrupted ECs were mainly related to hypoxia, glycometabolism, and vascular calcification. Additionally, in vivo experiment showed that Tie2-cre-mediated ECs-specific miR-126 knockout mice exhibited excessive intussusceptive angiogenesis; reductive glucose and pyruvate tolerance; and excessive accumulation of calcium. Agonist miR-126-3p agomir significantly rescued the phenotype of glucose metabolic dysfunction in Tie2-cre-mediated ECs-specific miR-126 knockout mice. CONCLUSIONS: The heterogeneity of ECs is established as early as the embryonic stage. The deficiency of miR-126 disrupts the differentiation and diversification of embryonic ECs, suggesting that miR-126 plays an essential role in the maintenance of ECs heterogeneity.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/metabolism , MicroRNAs/genetics , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Animals , Apoptosis/genetics , Cell Hypoxia/genetics , Cell Lineage/genetics , Cell Plasticity/genetics , Cell Proliferation/genetics , Endothelial Cells/classification , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gestational Age , Glucose/metabolism , Liver/blood supply , Liver/embryology , Liver/metabolism , Metabolic Networks and Pathways/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Mouse Embryonic Stem Cells/classification , Neovascularization, Physiologic/genetics , Single-Cell Analysis , Spatio-Temporal Analysis , Vascular Calcification/genetics , Vascular Calcification/metabolism , Vascular Calcification/pathology
10.
Am J Physiol Endocrinol Metab ; 322(2): E181-E196, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34957858

ABSTRACT

Fetal hypoxemia decreases insulin and increases cortisol and norepinephrine concentrations and may restrict growth by decreasing glucose utilization and altering substrate oxidation. Specifically, we hypothesized that hypoxemia would decrease fetal glucose oxidation and increase lactate and pyruvate production. We tested this by measuring whole body glucose oxidation and lactate production, and molecular pathways in liver, muscle, adipose, and pancreas tissues of fetuses exposed to maternal hypoxemia for 9 days (HOX) compared with control fetal sheep (CON) in late gestation. Fetuses with more severe hypoxemia had lower whole body glucose oxidation rates, and HOX fetuses had increased lactate production from glucose. In muscle and adipose tissue, expression of the glucose transporter GLUT4 was decreased. In muscle, pyruvate kinase (PKM) and lactate dehydrogenase B (LDHB) expression was decreased. In adipose tissue, LDHA and lactate transporter (MCT1) expression was increased. In liver, there was decreased gene expression of PKLR and MPC2 and phosphorylation of PDH, and increased LDHA gene and LDH protein abundance. LDH activity, however, was decreased only in HOX skeletal muscle. There were no differences in basal insulin signaling across tissues, nor differences in pancreatic tissue insulin content, ß-cell area, or genes regulating ß-cell function. Collectively, these results demonstrate coordinated metabolic responses across tissues in the hypoxemic fetus that limit glucose oxidation and increase lactate and pyruvate production. These responses may be mediated by hypoxemia-induced endocrine responses including increased norepinephrine and cortisol, which inhibit pancreatic insulin secretion resulting in lower insulin concentrations and decreased stimulation of glucose utilization.NEW & NOTEWORTHY Hypoxemia lowered fetal glucose oxidation rates, based on severity of hypoxemia, and increased lactate production. This was supported by tissue-specific metabolic responses that may result from increased norepinephrine and cortisol concentrations, which decrease pancreatic insulin secretion and insulin concentrations and decrease glucose utilization. This highlights the vulnerability of metabolic pathways in the fetus and demonstrates that constrained glucose oxidation may represent an early event in response to sustained hypoxemia and fetal growth restriction.


Subject(s)
Adipose Tissue/metabolism , Fetal Hypoxia/metabolism , Fetus/metabolism , Glucose/metabolism , Lactic Acid/biosynthesis , Liver/metabolism , Muscle, Skeletal/metabolism , Pancreas/metabolism , Adipose Tissue/embryology , Animals , Disease Models, Animal , Female , Fetal Growth Retardation/metabolism , Insulin/metabolism , Insulin Secretion , Liver/embryology , Male , Muscle, Skeletal/embryology , Oxidation-Reduction , Pancreas/embryology , Pregnancy , Sheep
11.
Nat Commun ; 12(1): 7334, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921133

ABSTRACT

The erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor-/- mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions. We find that, paradoxically, EpoR signaling increases red cell size while also increasing the number and speed of erythroblast cell cycles. EpoR-regulation of cell size is independent of established red cell size regulation by iron. High erythropoietin (Epo) increases red cell size in wild-type mice and in human volunteers. The increase in mean corpuscular volume (MCV) outlasts the duration of Epo treatment and is not the result of increased reticulocyte number. Our work shows that EpoR signaling alters the relationship between cycling and cell size. Further, diagnostic interpretations of increased MCV should now include high Epo levels and hypoxic stress.


Subject(s)
Cell Cycle , Cell Size , Erythrocytes/cytology , Erythrocytes/metabolism , Erythropoiesis , Receptors, Erythropoietin/metabolism , Adult , Animals , Antigens, CD/metabolism , CD4 Antigens/metabolism , Cell Differentiation , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Embryo, Mammalian/metabolism , Erythroblasts/cytology , Erythroblasts/drug effects , Erythroblasts/metabolism , Erythropoietin/administration & dosage , Erythropoietin/pharmacology , Female , Fetus/metabolism , Healthy Volunteers , Humans , Iron/metabolism , Liver/embryology , Liver/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Protein Serine-Threonine Kinases/metabolism , Receptors, Transferrin/metabolism , Reticulocytes/cytology , Reticulocytes/drug effects , Reticulocytes/metabolism , Signal Transduction , bcl-X Protein/metabolism
12.
Nat Commun ; 12(1): 6636, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789735

ABSTRACT

FOXA pioneer transcription factors (TFs) associate with primed enhancers in endodermal organ precursors. Using a human stem cell model of pancreas differentiation, we here discover that only a subset of pancreatic enhancers is FOXA-primed, whereas the majority is unprimed and engages FOXA upon lineage induction. Primed enhancers are enriched for signal-dependent TF motifs and harbor abundant and strong FOXA motifs. Unprimed enhancers harbor fewer, more degenerate FOXA motifs, and FOXA recruitment to unprimed but not primed enhancers requires pancreatic TFs. Strengthening FOXA motifs at an unprimed enhancer near NKX6.1 renders FOXA recruitment pancreatic TF-independent, induces priming, and broadens the NKX6.1 expression domain. We make analogous observations about FOXA binding during hepatic and lung development. Our findings suggest a dual role for FOXA in endodermal organ development: first, FOXA facilitates signal-dependent lineage initiation via enhancer priming, and second, FOXA enforces organ cell type-specific gene expression via indirect recruitment by lineage-specific TFs.


Subject(s)
Endoderm/embryology , Enhancer Elements, Genetic/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-beta/metabolism , Binding Sites , Cell Differentiation , Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Humans , Liver/embryology , Lung/embryology , Nucleotide Motifs , Organ Specificity , Organogenesis , Pancreas/embryology , Trans-Activators/genetics
13.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639052

ABSTRACT

Disabled-1 (Dab1) protein is an intracellular adaptor of reelin signaling required for prenatal neuronal migration, as well as postnatal neurotransmission, memory formation and synaptic plasticity. Yotari, an autosomal recessive mutant of the mouse Dab1 gene is recognizable by its premature death, unstable gait and tremor. Previous findings are mostly based on neuronal abnormalities caused by Dab1 deficiency, but the role of the reelin signaling pathway in nonneuronal tissues and organs has not been studied until recently. Hepatocytes, the most abundant cells in the liver, communicate via gap junctions (GJ) are composed of connexins. Cell communication disruption in yotari mice was examined by analyzing the expression of connexins (Cxs): Cx26, Cx32, Cx37, Cx40, Cx43 and Cx45 during liver development at 13.5 and 15.5 gestation days (E13.5 and E15.5). Analyses were performed using immunohistochemistry and fluorescent microscopy, followed by quantification of area percentage covered by positive signal. Data are expressed as a mean ± SD and analyzed by one-way ANOVA. All Cxs examined displayed a significant decrease in yotari compared to wild type (wt) individuals at E13.5. Looking at E15.5 we have similar results with exception of Cx37 showing negligible expression in wt. Channels formation triggered by pathological stimuli, as well as propensity to apoptosis, was studied by measuring the expression of Pannexin1 (Panx1) and Apoptosis-inducing factor (AIF) through developmental stages mentioned above. An increase in Panx1 expression of E15.5 yotari mice, as well as a strong jump of AIF in both phases suggesting that yotari mice are more prone to apoptosis. Our results emphasize the importance of gap junction intercellular communication (GJIC) during liver development and their possible involvement in liver pathology and diagnostics where they can serve as potential biomarkers and drug targets.


Subject(s)
Connexins/genetics , Gene Expression Regulation , Liver/embryology , Nerve Tissue Proteins/genetics , Organogenesis/genetics , Animals , Biomarkers , Connexins/metabolism , Fluorescent Antibody Technique , Gap Junctions/metabolism , Mice , Mice, Knockout , Reelin Protein , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
14.
Sci Rep ; 11(1): 21132, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702858

ABSTRACT

One-carbon metabolism (1C metabolism) is of paramount importance for cell metabolism and mammalian development. It is involved in the synthesis or modification of a wide variety of compounds such as proteins, lipids, purines, nucleic acids and neurotransmitters. We describe here the evolution of expression of genes related to 1C metabolism during liver and brain ontogeny in mouse. The level of expression of 30 genes involved in 1C metabolism was quantified by RT-qPCR in liver and brain tissues of OF1 mice at E9, E11, E13, E15, E17, P0, P3, P5, P10, P15 developmental stages and in adults. In the liver, hierarchical clustering of the gene expression patterns revealed five distinct clades of genes with a first bifurcating hierarchy distinguishing two main developmental stages before and after E15. In the brain most of the 1C metabolism genes are expressed but at a lower levels. The gene expression of enzymes involved in 1C metabolism show dramatic changes during development that are tissue specific. mRNA expression patterns of all major genes involved in 1C metabolism in liver and brain provide clues about the methylation demand and methylation pathways during embryonic development.


Subject(s)
Brain/embryology , Carbon/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Liver/embryology , Animals , Female , Mice , Pregnancy
15.
Oxid Med Cell Longev ; 2021: 9013280, 2021.
Article in English | MEDLINE | ID: mdl-34712389

ABSTRACT

Maternal severe zinc (Zn) deficiency resulted in growth retardation and high mortality during embryonic development in human. Therefore, this study is aimed at evaluating the effect of maternal marginal Zn deficiency on the development and redox status to avoid severe Zn deficiency using an avian model. A total of 324 laying duck breeders at 214 days old were randomly allotted into 3 dietary Zn levels with 6 replicates of 18 ducks per replicate. The birds were fed experimental diets including 3 dietary supplemental Zn levels of 0 mg/kg (maternal Zn-deficient group, 29.2 mg Zn/kg diet), 60 mg/kg (maternal Zn-adequate group), and 120 mg/kg (maternal Zn-high group) for 6 weeks. Dietary Zn levels had on effect on egg production and fertility (P > 0.05), whereas dietary Zn deficiency decreased breeder plasma Zn concentration and erythrocytic alkaline phosphatase activity at week 6 and inhibited erythrocytic 5'-nucleotidase (5'-NT) activity at weeks 2, 4, and 6 (P < 0.05), indicating that marginal Zn-deficient status occurred after Zn depletion. Maternal marginal Zn deficiency increased embryonic mortality and contents of superoxide anion radical, MDA, and PPC and reduced MT content and CuZnSOD activity in duck embryonic livers on E29. The MDA content was positively correlated with embryonic mortality. Maternal marginal Zn deficiency increased BCL2-associated X protein and Caspase-9 mRNA expressions as well as decreased B-cell lymphoma-2 and MT1 mRNA and signal AKT1 and ERK1 protein expressions (P < 0.05). Breeder plasma Zn concentration and erythrocytic 5'-NT activities at week 6 were positively correlated with GSH-Px activity and GPx, MT1, and BCL2 mRNA expressions in embryonic livers on E29. In conclusion, erythrocytic 5'-NT activity could be more rapid and reliable to monitor marginal Zn-deficient status. Marginal Zn deficiency impaired hatchability and antioxidant defense system and then induced oxidative damage and apoptosis in the embryonic liver, contributing to the greater loss of duck embryonic death.


Subject(s)
Apoptosis , Deficiency Diseases/metabolism , Ducks/embryology , Embryo, Nonmammalian/metabolism , Maternal Nutritional Physiological Phenomena , Oxidative Stress , Zinc/deficiency , 5'-Nucleotidase/blood , Animals , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Deficiency Diseases/genetics , Deficiency Diseases/pathology , Deficiency Diseases/physiopathology , Disease Models, Animal , Embryo, Nonmammalian/pathology , Erythrocytes/enzymology , Female , Gene Expression Regulation, Developmental , Liver/embryology , Liver/enzymology , Nutritional Status , Oxidation-Reduction , Oxidative Stress/genetics
16.
Physiol Res ; 70(6): 821-829, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34717063

ABSTRACT

Hepatic stellate cells (HSCs) are located in the space of Disse, between liver sinusoidal endothelia cells (LSECs) and hepatocytes. They have surprised and excited hepatologists for their biological characteristics. Under physiological quiescent conditions, HSCs are the major vitamin A-storing cells of the liver, playing crucial roles in the liver development, regeneration, and tissue homeostasis. Upon injury-induced activation, HSCs convert to a pro-fibrotic state, producing the excessive extracellular matrix (ECM) and promoting angiogenesis in the liver fibrogenesis. Activated HSCs significantly contribute to liver fibrosis progression and inactivated HSCs are key to liver fibrosis regression. In this review, we summarize the comprehensive understanding of HSCs features, including their roles in normal liver and liver fibrosis in hopes of advancing the development of emerging diagnosis and treatment for hepatic fibrosis.


Subject(s)
Hepatic Stellate Cells/physiology , Liver Cirrhosis/etiology , Animals , Hepatic Stellate Cells/ultrastructure , Humans , Liver/embryology
17.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575877

ABSTRACT

Embryo manipulation is a requisite step in assisted reproductive technology (ART). Therefore, it is of great necessity to appraise the safety of ART and investigate the long-term effect, including lipid metabolism, on ART-conceived offspring. Augmenting our ART rabbit model to investigate lipid metabolic outcomes in offspring longitudinally, we detected variations in hepatic DNA methylation ART offspring in the F3 generation for embryonic exposure (multiple ovulation, vitrification and embryo transfer). Through adult liver metabolomics and proteomics, we identified changes mainly related to lipid metabolism (e.g., polyunsaturated fatty acids, steroids, steroid hormone). We also found that DNA methylation analysis was linked to changes in lipid metabolism and apoptosis genes. Nevertheless, these differences did not apparently alter the general health status. Thus, our findings suggest that ART is likely to be a player in embryo epigenetic events related to hepatic homeostasis alteration in adulthood.


Subject(s)
DNA Methylation , Embryo Transfer , Epigenomics , Liver/embryology , Reproductive Techniques, Assisted , Animals , Embryo, Mammalian/metabolism , Epigenesis, Genetic , Female , Genome , Humans , Lipid Metabolism , Liver/metabolism , Male , Metabolome , Pregnancy , Pregnancy, Animal , Proteome , Proteomics/methods , Rabbits , Reproduction , Steroids/biosynthesis , Vitrification
18.
Sci Rep ; 11(1): 18551, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535735

ABSTRACT

The liver is an important metabolic organ that controls homeostasis in the body. Moreover, it functions as a hematopoietic organ, while its metabolic function is low during development. Hepatocytes, which are parenchymal cells of the liver, acquire various metabolic functions by the maturation of hepatic progenitor cells during the fetal period; however, this molecular mechanism is still unclear. In this study, Kruppel-like factor 15 (KLF15) was identified as a new regulator of hepatic maturation through a comprehensive analysis of the expression of transcriptional regulators in mouse fetal and adult hepatocytes. KLF15 is a transcription factor whose expression in the liver increases from the embryonic stage throughout the developmental process. KLF15 induced the overexpression of liver function genes in mouse embryonic hepatocytes. Furthermore, we found that the expression of KLF15 could also induce the expression of liver function genes in hepatoblasts derived from human induced pluripotent stem cells (iPSCs). Moreover, KLF15 increased the promoter activity of tyrosine aminotransferase, a liver function gene. KLF15 also suppressed the proliferation of hepatoblasts. These results suggest that KLF15 induces hepatic maturation through the transcriptional activation of target genes and cell cycle control.


Subject(s)
Cell Differentiation , Hepatocytes/cytology , Kruppel-Like Transcription Factors/metabolism , Animals , Cell Line , Cells, Cultured , Gene Expression Regulation, Developmental , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Transcription Factors/genetics , Liver/cytology , Liver/embryology , Liver/metabolism , Mice, Inbred C57BL
19.
Life Sci ; 284: 119906, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34478761

ABSTRACT

The present study was performed to investigate the effects of Cd exposure on lipid metabolism and mitochondrial dysfunction and to explore the role of mitophagy in Cd-induced dysregulation of lipid metabolism in chicken embryo liver tissues and hepatocytes. To this end, seven-day-old chicken embryos were exposed to different concentrations of Cd for 7 days, and primary chicken embryo hepatocytes were treated with Cd at four different concentrations for 6 h. Furthermore, the mitophagy inhibitor cyclosporine A (CsA) was used to investigate the role of mitophagy in Cd-induced disruption of lipid metabolism. Lipid accumulation, the expression levels of genes involved in lipid metabolism, mitochondrial dysfunction, and mitophagy were measured. The results demonstrated that Cd exposure increases hepatic triglyceride (TG) accumulation and the expression levels of lipogenic genes while decreasing those of lipolytic genes. Furthermore, Cd exposure was observed to alter mitochondrial morphology in terms of reduced size, excessive mitochondrial damage, and the formation of mitophagosomes. The co-localization of lysosome-associated membrane glycoprotein 2 and LC3 puncta was significantly increased in primary chicken embryo hepatocytes after Cd exposure. Moreover, Cd exposure increased LC3, PINK1, and Parkin protein expression levels. CsA effectively alleviated Cd-induced mitochondrial dysfunction, blocked mitochondrial membrane potential collapse, and suppressed PINK1/Parkin-mediated mitophagy. Furthermore, CsA treatment reversed the Cd-induced TG accumulation in liver tissues but further increased it in hepatocytes. Taken together, our findings demonstrate (for the first time) the importance of mitochondrial dysfunction and mitophagy via the PINK1/Parkin pathway in Cd-induced disruption of lipid metabolism.


Subject(s)
Cadmium/toxicity , Lipid Metabolism , Liver/metabolism , Mitochondria, Liver/pathology , Mitophagy , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Chick Embryo , Cyclosporine/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/ultrastructure , Lipid Metabolism/drug effects , Liver/drug effects , Liver/embryology , Mitochondria, Liver/drug effects , Mitochondria, Liver/ultrastructure , Mitophagy/drug effects , Models, Biological
20.
Cell Rep ; 36(7): 109562, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34407416

ABSTRACT

Hematopoietic ontogeny consists of two broad programs: an initial hematopoietic stem cell (HSC)-independent program followed by HSC-dependent hematopoiesis that sequentially seed the fetal liver and generate blood cells. However, the transition from HSC-independent to HSC-derived hematopoiesis remains poorly characterized. To help resolve this question, we developed Mds1CreERT2 mice, which inducibly express Cre-recombinase in emerging HSCs in the aorta and label long-term adult HSCs, but not HSC-independent yolk-sac-derived primitive or definitive erythromyeloid (EMP) hematopoiesis. Our lineage-tracing studies indicate that HSC-derived erythroid, myeloid, and lymphoid progeny significantly expand in the liver and blood stream between E14.5 and E16.5. Additionally, we find that HSCs contribute the majority of F4/80+ macrophages in adult spleen and marrow, in contrast to their limited contribution to macrophage populations in brain, liver, and lungs. The Mds1CreERT2 mouse model will be useful to deconvolute the complexity of hematopoiesis as it unfolds in the embryo and functions postnatally.


Subject(s)
Aging/metabolism , Alleles , Hematopoietic Stem Cells/metabolism , Integrases/metabolism , Animals , Cell Lineage/drug effects , Embryo, Mammalian/metabolism , Fetus/cytology , Hemangioblasts/metabolism , Hematopoiesis/drug effects , Liver/embryology , MDS1 and EVI1 Complex Locus Protein , Mice, Inbred C57BL , Mice, Transgenic , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...