Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
PLoS Negl Trop Dis ; 18(8): e0012347, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39207938

ABSTRACT

Rift Valley fever (RVF) is a neglected vector-borne disease which is endemic in many countries across Africa and has seen recent geographical expansions into the Arabian Peninsula. RVF can cause severe infections in both animals and humans. RVF infections in livestock can lead to mass fatalities. In humans, the symptoms are nonspecific and can often lead to misdiagnosis. However, a small proportion progresses to haemorrhagic infection with a significantly higher mortality rate. The culmination of this can cause severe socioeconomic impacts. This review aims to identify the main socioeconomic impacts caused by RVF outbreaks as well as existing knowledge gaps. Ninety-three academic and grey papers were selected, covering 19 countries and 10 methodological approaches. A variety of socioeconomic impacts were found across all levels of society: Livestock trade disruptions consequently impacted local food security, local and national economies. Most livestock farmers in endemic countries are subsistence farmers and so rely on their livestock for sustenance and income. RVF outbreaks resulted in a variety of socioeconomic impacts, e.g., the inability to pay for school fees. Main barriers to vaccine uptake in communities were lack of access, funds, interest along with other social aspects. The occupational risks for women (and pregnant women) are largely unknown. To our knowledge, this is the first review on RVF to highlight the clear knowledge gap surrounding the potential gender differences on risks of RVF exposure, as well as differences on occupational health risk in pastoral communities. Further work is required to fill the gaps identified in this review and inform control policies.


Subject(s)
Disease Outbreaks , Livestock , Rift Valley Fever , Socioeconomic Factors , Rift Valley Fever/epidemiology , Rift Valley Fever/economics , Humans , Animals , Livestock/virology , Africa/epidemiology , Rift Valley fever virus
2.
Viruses ; 16(8)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39205289

ABSTRACT

Vesicular stomatitis (VS) is a vector-borne livestock disease caused by the vesicular stomatitis New Jersey virus (VSNJV). This study presents the first application of an SEIR-SEI compartmental model to analyze VSNJV transmission dynamics. Focusing on the 2014-2015 outbreak in the United States, the model integrates vertebrate hosts and insect vector demographics while accounting for heterogeneous competency within the populations and observation bias in documented disease cases. Key epidemiological parameters were estimated using Bayesian inference and Markov chain Monte Carlo (MCMC) methods, including the force of infection, effective reproduction number (Rt), and incubation periods. The model revealed significant underreporting, with only 10-24% of infections documented, 23% of which presented with clinical symptoms. These findings underscore the importance of including competence and imperfect detection in disease models to depict outbreak dynamics and inform effective control strategies accurately. As a baseline model, this SEIR-SEI implementation is intended to serve as a foundation for future refinements and expansions to improve our understanding of VS dynamics. Enhanced surveillance and targeted interventions are recommended to manage future VS outbreaks.


Subject(s)
Disease Outbreaks , Vesicular Stomatitis , United States/epidemiology , Vesicular Stomatitis/epidemiology , Vesicular Stomatitis/virology , Animals , Vesicular stomatitis New Jersey virus/genetics , Bayes Theorem , Cattle , Insect Vectors/virology , Livestock/virology
3.
Front Immunol ; 15: 1397780, 2024.
Article in English | MEDLINE | ID: mdl-39100679

ABSTRACT

Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.


Subject(s)
Livestock , Vaccination , Viral Vaccines , Animals , Livestock/immunology , Livestock/virology , Viral Vaccines/immunology , Vaccination/veterinary , Virus Diseases/prevention & control , Virus Diseases/immunology , Virus Diseases/veterinary , Swine , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/immunology , African Swine Fever/prevention & control , African Swine Fever/immunology , Humans
4.
Viruses ; 16(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066310

ABSTRACT

Rift Valley fever (RVF), a mosquito-borne transboundary zoonosis, was first confirmed in Rwanda's livestock in 2012 and since then sporadic cases have been reported almost every year. In 2018, the country experienced its first large outbreak, which was followed by a second one in 2022. To determine the circulating virus lineages and their ancestral origin, two genome sequences from the 2018 outbreak, and thirty-six, forty-one, and thirty-eight sequences of small (S), medium (M), and large (L) genome segments, respectively, from the 2022 outbreak were generated. All of the samples from the 2022 outbreak were collected from slaughterhouses. Both maximum likelihood and Bayesian-based phylogenetic analyses were performed. The findings showed that RVF viruses belonging to a single lineage, C, were circulating during the two outbreaks, and shared a recent common ancestor with RVF viruses isolated in Uganda between 2016 and 2019, and were also linked to the 2006/2007 largest East Africa RVF outbreak reported in Kenya, Tanzania, and Somalia. Alongside the wild-type viruses, genetic evidence of the RVFV Clone 13 vaccine strain was found in slaughterhouse animals, demonstrating a possible occupational risk of exposure with unknown outcome for people working in meat-related industry. These results provide additional evidence of the ongoing wide spread of RVFV lineage C in Africa and emphasize the need for an effective national and international One Health-based collaborative approach in responding to RVF emergencies.


Subject(s)
Disease Outbreaks , Genome, Viral , Livestock , Phylogeny , Rift Valley Fever , Rift Valley fever virus , Animals , Rwanda/epidemiology , Rift Valley Fever/epidemiology , Rift Valley Fever/virology , Rift Valley Fever/transmission , Rift Valley fever virus/genetics , Rift Valley fever virus/classification , Rift Valley fever virus/isolation & purification , Livestock/virology , Cattle , Abattoirs , Genomics/methods
5.
Afr Health Sci ; 24(1): 16-24, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38962339

ABSTRACT

Background: Most studies on viral infections among livestock handlers have focused on occupational exposure from inadvertent contact with infected animals. Consequently, little emphasis is given to the effect of their lifestyle on the acquisition of other blood-borne viruses. Objectives: To determine the prevalence and assess risk factors for HIV, HBV and HCV infections among livestock handlers in Ibadan, Nigeria. Methods: Blood samples were collected from 265 livestock handlers between October 2016 to April 2017 in Ibadan. The samples were tested for the presence of antibodies to HIV and HCV; and surface antigen to HBV using ELISA. Structured questionnaire was administered to collect information on risk factors associated with the transmission of these viruses. Data analysis was carried out using Chi-square test and logistic regression to determine the association between risk factors and predictors of infection (p < 0.05). Results: Of 265 participants, 11 (4.2%), 29 (10.9%) and 13 (4.9%) individuals tested positive for HIV, HBV and HCV infections respectively. Two (0.8%) of the participants were coinfected with HIV and HBV while 1(0.4%) was coinfected with both HBV and HCV. Individuals who travelled frequently in the course of Livestock trades had a higher rate of HIV infection. Conclusions: A high Infection with HIV, HBV and HCV is common among the study participants. There is a need for continued surveillance and awareness creation on preventive measures against these viruses.


Subject(s)
Abattoirs , HIV Infections , Hepatitis B , Hepatitis C , Livestock , Occupational Exposure , Humans , Nigeria/epidemiology , Hepatitis B/epidemiology , Hepatitis C/epidemiology , Male , Adult , Prevalence , Female , Animals , HIV Infections/epidemiology , Occupational Exposure/statistics & numerical data , Occupational Exposure/adverse effects , Middle Aged , Livestock/virology , Risk Factors , Cross-Sectional Studies , Young Adult , Hepacivirus/isolation & purification , Surveys and Questionnaires , Enzyme-Linked Immunosorbent Assay , Coinfection/epidemiology
6.
Viruses ; 16(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38932166

ABSTRACT

(1) Background: Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne disease endemic in Africa, Asia, the Middle East, and the Balkan and Mediterranean regions of Europe. Although no human CCHF cases have been reported, based on vector presence, serological evidence among small vertebrates, and the general human population, Hungary lies within high evidence consensus for potential CCHF introduction and future human infection. Thus, the aim of our pilot serosurvey was to assess CCHF seropositivity among cattle and sheep as indicator animals for virus circulation in the country. (2) Methods: In total, 1905 serum samples taken from free-range cattle and sheep in 2017 were tested for the presence of anti-CCHF virus IgG antibodies using commercial ELISA and commercial and in-house immunofluorescent assays. (3) Results: We found a total of eleven reactive samples (0.58%) from five administrative districts of Hungary comprising 8 cattle and 3 sheep. The most affected regions were the south-central and northwestern parts of the country. (4) Conclusions: Based on these results, more extended surveillance is advised, especially in the affected areas, and there should be greater awareness among clinicians and other high-risk populations of the emerging threat of CCHF in Hungary and Central Europe.


Subject(s)
Antibodies, Viral , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Livestock , Sheep Diseases , Animals , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Sheep , Hungary/epidemiology , Cattle , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Seroepidemiologic Studies , Antibodies, Viral/blood , Livestock/virology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Sheep Diseases/blood , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/blood , Immunoglobulin G/blood , Enzyme-Linked Immunosorbent Assay , Humans
7.
Vet Res Commun ; 48(4): 2029-2049, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865041

ABSTRACT

Cattle have a significant impact on human societies in terms of both economics and health. Viral infections pose a relevant problem as they directly or indirectly disrupt the balance within cattle populations. This has negative consequences at the economic level for producers and territories, and also jeopardizes human health through the transmission of zoonotic diseases that can escalate into outbreaks or pandemics. To establish prevention strategies and control measures at various levels (animal, farm, region, or global), it is crucial to identify the viral agents present in animals. Various techniques, including virus isolation, serological tests, and molecular techniques like PCR, are typically employed for this purpose. However, these techniques have two major drawbacks: they are ineffective for non-culturable viruses, and they only detect a small fraction of the viruses present. In contrast, metagenomics offers a promising approach by providing a comprehensive and unbiased analysis for detecting all viruses in a given sample. It has the potential to identify rare or novel infectious agents promptly and establish a baseline of healthy animals. Nevertheless, the routine application of viral metagenomics for epidemiological surveillance and diagnostics faces challenges related to socioeconomic variables, such as resource availability and space dedicated to metagenomics, as well as the lack of standardized protocols and resulting heterogeneity in presenting results. This review aims to provide an overview of the current knowledge and prospects for using viral metagenomics to detect and identify viruses in cattle raised for livestock, while discussing the epidemiological and clinical implications.


Subject(s)
Cattle Diseases , Metagenomics , Animals , Cattle , Cattle Diseases/virology , Cattle Diseases/epidemiology , Virus Diseases/veterinary , Virus Diseases/virology , Virus Diseases/epidemiology , Viruses/isolation & purification , Viruses/genetics , Viruses/classification , Livestock/virology , Communicable Diseases, Emerging/veterinary , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/epidemiology
8.
Comp Immunol Microbiol Infect Dis ; 111: 102202, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852439

ABSTRACT

Avian Alpha-influenza-virus (AIV) massively affects poultry, targeting mainly the respiratory tract for virus replication. Recently, two major H5N8 and H5N1 outbreaks caused tremendous losses in Algerian poultry. The clinical symptoms that had not been seen in the past didn't prompt a rapid reaction to control the epidemics. We report here the characteristics of these outbreaks and the epidemiological status of AIV in Algeria. Following autopsy observation samples from target organs were taken and analyzed by the classical real-time reverse transcription polymerase chain reaction (RRT-PCR). Specific PCR HA and NA identification was used for subtyping H5 and N1/N8 genes. Systemic damage was observed in the upper-respiratory tracts with hemorrhagic and congestive tracheas, lungs, proventriculus, gut, and cecal tonsils were bloody. Out of 77 positive cases 13 were H5N8, 8 H5N1, and 10 H5Nx strains. These findings raise questions about the strain's pathotype considering severe organ damage and high mortality.


Subject(s)
Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Animals , Algeria/epidemiology , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Disease Outbreaks/veterinary , Influenza A Virus, H5N8 Subtype/genetics , Influenza A Virus, H5N8 Subtype/pathogenicity , Influenza A Virus, H5N8 Subtype/isolation & purification , Livestock/virology , Poultry/virology , Chickens/virology , Poultry Diseases/virology , Poultry Diseases/epidemiology
9.
Int J Infect Dis ; 146: 107141, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901728

ABSTRACT

OBJECTIVES: In Sindh Province, Pakistan, confirmed Crimean-Congo haemorrhagic fever (CCHF) increased from zero in 2008 to 16 in 2015-2016. To counter this increase, in 2016, we initiated structured CCHF surveillance to improve estimates of risk factors for CCHF in Sindh and to identify potential interventions. METHODS: Beginning in 2016, all referral hospitals in Sindh reported all CCHF cases to surveillance agents. We used laboratory-confirmed cases from CCHF surveillance from 2016 to 2020 to compute incidence rates and in a case-control study to quantify risk factors for CCHF. RESULTS: For the 5 years, CCHF incidence was 4.2 per million for the Sindh capital, Karachi, (68 cases) and 0.4 per million elsewhere. Each year, the onset of new cases peaked during the 13 days during and after the 3-day Eid-al-Adha festival, when Muslims sacrificed livestock, accounting for 38% of cases. In Karachi, livestock for Eid were purchased at a seasonal livestock market that concentrated up to 700,000 livestock. CCHF cases were most common (44%) among the general population that had visited livestock markets (odds ratio = 102). CONCLUSIONS: Urban CCHF in Sindh province is associated with the general public's exposure to livestock markets in addition to high-risk occupations.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Hemorrhagic Fever, Crimean/epidemiology , Pakistan/epidemiology , Humans , Risk Factors , Male , Case-Control Studies , Female , Middle Aged , Adult , Incidence , Animals , Adolescent , Young Adult , Aged , Child , Livestock/virology , Child, Preschool
10.
Zoonoses Public Health ; 71(6): 696-707, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38627964

ABSTRACT

OBJECTIVE: Crimean-Congo haemorrhagic fever (CCHF) is a severe zoonotic arboviral disease that occurs widely in Eastern and Western Europe, Asia and Africa. The disease is becoming of growing public health importance in Senegal. However, analysis of tick infestation, CCHF virus (CCHFV) circulation extent and risk factors during ongoing outbreak are scarce. A thorough outbreak investigation was carried out during a CCHF outbreak in Podor (Northern Senegal) in August 2022. METHODS: Ticks and blood samples were collected from animals (cattle, goats and sheep) randomly selected from confirmed CCHF human cases houses, neighbourhoods and surrounding villages. Blood samples were tested for CCHFV antibodies using a commercial enzyme-linked immunosorbent assay (ELISA) test. Tick samples were screened for CCHFV RNA by RT-PCR. RESULTS: Overall, tick infestation rate (TIR) and CCHFV seroprevalence of livestock were 52.12% (95% confidence interval (CI): 45.54%-58.64%) and 43.28% (95% CI: 36.33%-50.44%), respectively. The TIRs were 87.7% in cattle, 57.6% in sheep and 20.0% in goats. These rates were significantly associated with location, host species and tick control (p < 0.001) but not with animal age and sex (p > 0.7). CCHFV seroprevalence was 80.4% (95% CI: 67.57%-89.77%) in cattle, 35.4% (95% CI: 25.00%-47.01%) in sheep and 21.2% (95% CI: 12.11%-33.02%) in goats. Age, sex, location, animal host and presence of ticks were significantly associated to the presence of antibodies. The 950 ticks collected included among other species, Hyalomma impeltatum (48.84%) and H. rufipes (10.21%). Five pools of Hyalomma ssp. were found CCHFV RT-PCR positive. These infected ticks included 0.86% (4/464) of H. impeltatum collected on cattle and sheep and 1.03% (1/97) of H. rufipes collected on a sheep. CONCLUSIONS: To our knowledge, this is the first report on the extend of tick infestation and CCHFV infection in livestock during an outbreak in Senegal. The results highlight the risk of human infections and the importance of strengthening vector, animal and human surveillance as well as tick control measures in this area to prevent CCHF infections in humans.


Subject(s)
Disease Outbreaks , Goat Diseases , Goats , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Livestock , Sheep Diseases , Ticks , Animals , Hemorrhagic Fever, Crimean/epidemiology , Senegal/epidemiology , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Disease Outbreaks/veterinary , Risk Factors , Humans , Sheep , Ticks/virology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Goat Diseases/epidemiology , Goat Diseases/virology , Cattle , Livestock/virology , Male , Cattle Diseases/epidemiology , Cattle Diseases/virology , Female , Seroepidemiologic Studies , Tick Infestations/epidemiology , Tick Infestations/veterinary , Prevalence , Zoonoses/epidemiology , Antibodies, Viral/blood
11.
Infect Disord Drug Targets ; 24(8): e180324228044, 2024.
Article in English | MEDLINE | ID: mdl-38500271

ABSTRACT

Every year witnesses an outbreak of some or the other zoonotic disease that causes the unparalled loss of human life. The year 2022 presented the outbreak of Crimean Congo haemorrhagic fever (CCHF), which brought unprecedented challenges to individuals as well as to the healthcare system all around the world, making it a serious health concern. Rising health concerns have highlighted the importance of managing and decreasing the further transmission of the CCHF virus. CCHF is one of tick-borne viral diseases, which spreads due to various reasons like changes in global warming, environmental influences, and other ecological factors. All these factors somehow impact the disease prevalence. This disease has a negative impact on both humans and livestock. The diverse climate and significant livestock population of India make it susceptible to the prevalence of CCHF. Therefore, it is the need of the hour to develop some strategies in order to tackle the challenges posed by CCHF. This article includes all the cases of CCHF that have occurred in India from the year 2011, along with the fatality rates associated with this disease. Also this study discusses the need to explore some specific drugs for the management and prevention of such diseases. In addition, the pathogenesis of the disease progression, along with some protective measures suggested by the government has been described for prevention of CCHF. Subsequently, this article attempted to draw attention towards the risk that may be posed by CCHF in the coming scenario, emphasizing the importance of taking proactive measures in anticipation of such risks.


Subject(s)
Disease Outbreaks , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/transmission , Humans , India/epidemiology , Animals , Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity , Zoonoses/epidemiology , Zoonoses/transmission , Livestock/virology , Prevalence , Ticks/virology , Risk Factors
12.
Infect Disord Drug Targets ; 24(5): e150124225632, 2024.
Article in English | MEDLINE | ID: mdl-38231058

ABSTRACT

The novel bovine viral infection known as lumpy skin disease is common in most African and Middle Eastern countries, with a significant likelihood of disease transfer to Asia and Europe. Recent rapid disease spread in formerly disease-free zones highlights the need of understanding disease limits and distribution mechanisms. Capripox virus, the causal agent, may also cause sheeppox and Goatpox. Even though the virus is expelled through several bodily fluids and excretions, the most common causes of infection include sperm and skin sores. Thus, vulnerable hosts are mostly infected mechanically by hematophagous arthropods such as biting flies, mosquitoes, and ticks. As a result, milk production lowers, abortions, permanent or temporary sterility, hide damage, and mortality occur, contributing to a massive financial loss for countries that raise cattle. These illnesses are economically significant because they affect international trade. The spread of Capripox viruses appears to be spreading because to a lack of effectual vaccinations and poverty in rural areas. Lumpy skin disease has reached historic levels; as a consequence, vaccination remains the only viable option to keep the illness from spreading in endemic as well as newly impacted areas. This study is intended to offer a full update on existing knowledge of the disease's pathological characteristics, mechanisms of spread, transmission, control measures, and available vaccinations.


Subject(s)
Lumpy Skin Disease , Animals , Lumpy Skin Disease/virology , Lumpy Skin Disease/therapy , Cattle , Livestock/virology , Farmers , Lumpy skin disease virus , Humans , Vaccination/veterinary , Capripoxvirus
14.
PLoS Negl Trop Dis ; 17(1): e0010460, 2023 01.
Article in English | MEDLINE | ID: mdl-36634153

ABSTRACT

Rift Valley fever virus (RVFV) is a zoonotic arbovirus that has profound impact on domestic ruminants and can also be transmitted to humans via infected animal secretions. Urban areas in endemic regions across Africa have susceptible animal and human hosts, dense vector distributions, and source livestock (often from high risk locations to meet the demand for animal protein). Yet, there has never been a documented urban outbreak of RVF. To understand the likely risk of RVFV introduction to urban communities from their perspective and guide future initiatives, we conducted focus group discussions with slaughterhouse workers, slaughterhouse animal product traders, and livestock owners in Kisumu City and Ukunda Town in Kenya. For added perspective and data triangulation, in-depth interviews were conducted one-on-one with meat inspector veterinarians from selected slaughterhouses. A theoretical framework relevant to introduction, transmission, and potential persistence of RVF in urban areas is presented here. Urban livestock were primarily mentioned as business opportunities, but also had personal sentiment. In addition to slaughtering risks, perceived risk factors included consumption of fresh milk. High risk groups' knowledge and experience with RVFV and other zoonotic diseases impacted their consideration of personal risk, with consensus towards lower risk in the urban setting compared to rural areas as determination of health risk was said to primarily rely on hygiene practices rather than the slaughtering process. Groups relied heavily on veterinarians to confirm animal health and meat safety, yet veterinarians reported difficulty in accessing RVFV diagnostics. We also identified vulnerable public health regulations including corruption in meat certification outside of the slaughterhouse system, and blood collected during slaughter being used for food and medicine, which could provide a means for direct RVFV community transmission. These factors, when compounded by diverse urban vector breeding habitats and dense human and animal populations, could create suitable conditions for RVFV to arrive an urban center via a viremic imported animal, transmit to locally owned animals and humans, and potentially adapt to secondary vectors and persist in the urban setting. This explorative qualitative study proposes risk pathways and provides initial insight towards determining how urban areas could adapt control measures and plan future initiatives to better understand urban RVF potential.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Animals , Humans , Kenya/epidemiology , Livestock/virology , Meat , Rift Valley Fever/prevention & control , Rift Valley Fever/transmission , Ruminants/virology , Zoonoses/prevention & control , Zoonoses/transmission , Risk Factors , Urban Population , Abattoirs/legislation & jurisprudence , Abattoirs/standards , Food Safety
15.
J Virol ; 97(1): e0109122, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36475767

ABSTRACT

Getah virus (GETV) mainly causes disease in livestock and may pose an epidemic risk due to its expanding host range and the potential of long-distance dispersal through animal trade. Here, we used metagenomic next-generation sequencing (mNGS) to identify GETV as the pathogen responsible for reemerging swine disease in China and subsequently estimated key epidemiological parameters using phylodynamic and spatially-explicit phylogeographic approaches. The GETV isolates were able to replicate in a variety of cell lines, including human cells, and showed high pathogenicity in a mouse model, suggesting the potential for more mammal hosts. We obtained 16 complete genomes and 79 E2 gene sequences from viral strains collected in China from 2016 to 2021 through large-scale surveillance among livestock, pets, and mosquitoes. Our phylogenetic analysis revealed that three major GETV lineages are responsible for the current epidemic in livestock in China. We identified three potential positively selected sites and mutations of interest in E2, which may impact the transmissibility and pathogenicity of the virus. Phylodynamic inference of the GETV demographic dynamics identified an association between livestock meat consumption and the evolution of viral genetic diversity. Finally, phylogeographic reconstruction of GETV dispersal indicated that the sampled lineages have preferentially circulated within areas associated with relatively higher mean annual temperature and pig population density. Our results highlight the importance of continuous surveillance of GETV among livestock in southern Chinese regions associated with relatively high temperatures. IMPORTANCE Although livestock is known to be the primary reservoir of Getah virus (GETV) in Asian countries, where identification is largely based on serology, the evolutionary history and spatial epidemiology of GETV in these regions remain largely unknown. Through our sequencing efforts, we provided robust support for lineage delineation of GETV and identified three major lineages that are responsible for the current epidemic in livestock in China. We further analyzed genomic and epidemiological data to reconstruct the recent demographic and dispersal history of GETV in domestic animals in China and to explore the impact of environmental factors on its genetic diversity and its diffusion. Notably, except for livestock meat consumption, other pig-related factors such as the evolution of live pig transport and pork production do not show a significant association with the evolution of viral genetic diversity, pointing out that further studies should investigate the potential contribution of other host species to the GETV outbreak. Our analysis of GETV demonstrates the need for wider animal species surveillance and provides a baseline for future studies of the molecular epidemiology and early warning of emerging arboviruses in China.


Subject(s)
Arboviruses , Genome, Viral , Phylogeny , Animals , Humans , Mice , Arboviruses/genetics , China/epidemiology , Genomics , Livestock/virology
16.
PLoS Negl Trop Dis ; 16(1): e0010156, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35073325

ABSTRACT

Cache Valley virus (CVV) is a mosquito-borne virus in the genus Orthobunyavirus, family Peribunyaviridae. It was first isolated from a Culiseta inorata mosquito in Cache Valley, Utah in 1956 and is known to circulate widely in the Americas. While only a handful of human cases have been reported since its discovery, it is the causative agent of fetal death and severe malformations in livestock. CVV has recently emerged as a potential viral pathogen causing severe disease in humans. Currently, the only serological assay available for diagnostic testing is plaque reduction neutralization test which takes several days to perform and requires biocontainment. To expand diagnostic capacity to detect CVV infections by immunoassays, 12 hybridoma clones secreting anti-CVV murine monoclonal antibodies (MAbs) were developed. All MAbs developed were found to be non-neutralizing and specific to the nucleoprotein of CVV. Cross-reactivity experiments with related orthobunyaviruses revealed several of the MAbs reacted with Tensaw, Fort Sherman, Tlacotalpan, Maguari, Playas, and Potosi viruses. Our data shows that MAbs CVV14, CVV15, CVV17, and CVV18 have high specific reactivity as a detector in an IgM antibody capture test with human sera.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Bunyamwera virus/immunology , Bunyaviridae Infections/diagnosis , Nucleocapsid Proteins/immunology , Animals , Bunyaviridae Infections/virology , Cell Line , Chlorocebus aethiops , Cross Reactions/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Livestock/virology , Mice , Mice, Knockout , Sensitivity and Specificity , Serologic Tests , Vector Borne Diseases/virology , Vero Cells
17.
PLoS One ; 16(12): e0252972, 2021.
Article in English | MEDLINE | ID: mdl-34972117

ABSTRACT

SARS-CoV-2 has clearly shown that efficient management of infectious diseases requires a top-down approach which must be complemented with a bottom-up response to be effective. Here we investigate a novel approach to surveillance for transboundary animal diseases using African Swine (ASF) fever as a model. We collected data both at a population level and at the local level on information-seeking behavior respectively through digital data and targeted questionnaire-based surveys to relevant stakeholders such as pig farmers and veterinary authorities. Our study shows how information-seeking behavior and resulting public attention during an epidemic, can be identified through novel data streams from digital platforms such as Wikipedia. Leveraging attention in a critical moment can be key to providing the correct information at the right moment, especially to an interested cohort of people. We also bring evidence on how field surveys aimed at local workers and veterinary authorities remain a crucial tool to assess more in-depth preparedness and awareness among front-line actors. We conclude that these two tools should be used in combination to maximize the outcome of surveillance and prevention activities for selected transboundary animal diseases such as ASF.


Subject(s)
African Swine Fever/epidemiology , Epidemics/prevention & control , Epidemiological Monitoring , Livestock/virology , Animals , Awareness , Estonia/epidemiology , Farmers , Internet , Statistics, Nonparametric , Surveys and Questionnaires , Swine
18.
Viruses ; 13(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34834943

ABSTRACT

Infectious agents including viruses are important abortifacients and can cause fetal abnormalities in livestock animals. Here, samples that had been collected in Israel from aborted or malformed ruminant fetuses between 2015 and 2019 were investigated for the presence of the following viruses: the reoviruses bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), the flaviviruses bovine viral diarrhea virus (BVDV) and border disease virus (BDV), the peribunyaviruses Shuni virus (SHUV) and Akabane virus (AKAV), bovine herpesvirus type 1 (BoHV-1) and bovine ephemeral fever virus (BEFV). Domestic (cattle, sheep, goat) and wild/zoo ruminants were included in the study. The presence of viral nucleic acid or antigen could be confirmed in 21.8 % of abnormal pregnancies (213 out of 976 investigated cases), with peribunyaviruses, reoviruses and pestiviruses being the most prevalent. At least four different BTV serotypes were involved in abnormal courses of pregnancy in Israel. The subtyping of pestiviruses revealed the presence of two BDV and several distinct BVDV type 1 strains. The peribunyaviruses AKAV and SHUV were identified annually throughout the study period, however, variation in the extent of virus circulation could be observed between the years. In 2018, AKAV even represented the most detected pathogen in cases of small domestic ruminant gestation abnormalities. In conclusion, it was shown that various viruses are involved in abnormal courses of pregnancy in ruminants in Israel.


Subject(s)
Livestock/virology , Pestivirus/isolation & purification , Ruminants/virology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Animals , Bluetongue virus , Border disease virus , Cattle , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/immunology , Female , Goat Diseases/virology , Goats , Hemorrhagic Disease Virus, Epizootic , Israel , Pestivirus/genetics , Phylogeny , Pregnancy , Sheep , Sheep Diseases/virology
19.
Viruses ; 13(11)2021 10 25.
Article in English | MEDLINE | ID: mdl-34834956

ABSTRACT

Important lessons have been learned by the Israeli veterinary community regarding Simbu serogroup viruses infections. This serogroup of viruses might cause the births of neonatal malformation in susceptible ruminant's populations. Until 2012, only Akabane virus was connected with the births of malformed ruminants in Israel. However, serological and genomic detection tests, coupled with viral isolations, revealed that more than a single Simbu serogroup serotype could be present concurrently in the same farm or even in the same animal. From 2012 to date, Aino, Shuni, Shamunda, Satuperi, Peaton, Schmallenberg, and Sango viruses have been found in Israel either by serological or genomic investigation. Israel is located in the Eastern Mediterranean Basin, a terrestrial and climatic bridge between the three old continents. The Eastern Mediterranean shores benefit from both the tropical/subtropical and the continental climatic conditions. Therefore, the Eastern Mediterranean basin might serve as an optimal investigatory compound for several arboviral diseases, acting as a sentinel. This review summarizes updated information related to the presence of Simbu serogroup viruses in Israel.


Subject(s)
Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology , Climate , Livestock/virology , Simbu virus , Animals , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Arbovirus Infections/virology , Bunyaviridae Infections/epidemiology , Cattle , Cattle Diseases/virology , Communicable Diseases, Emerging , Disease Outbreaks/veterinary , Israel , Orthobunyavirus , Ruminants/virology , Serogroup , Sheep , Sheep Diseases/virology , Simbu virus/classification , Simbu virus/genetics , Simbu virus/isolation & purification
20.
Viruses ; 13(11)2021 10 31.
Article in English | MEDLINE | ID: mdl-34835001

ABSTRACT

The livestock industry supports livelihood and nutritional security of at least 42% of people in the Southern African Development Community region. However, presence of animal diseases such as foot-and-mouth disease poses a major threat to the development of this industry. Samples collected from FMD outbreaks in Zambia during 2015-2020, comprising epithelial tissues samples (n = 47) and sera (n = 120), were analysed. FMD virus was serotyped in 26 samples, while 92 sera samples tested positive on NSP-ELISA. Phylogenetic analysis revealed notable changes in the epidemiology of FMD in Zambia, which included: (i) introduction of a novel FMDV SAT-3 (topotype II) causing FMD cases in cattle in Western Province; (ii) emergence of FMDV serotype O (topotype O/EA-2) in Central, Southern, Copperbelt, Western, Lusaka Provinces; and (iii) new outbreaks due to SAT -2 (topotypes I) in Eastern Zambia. Together, these data describe eight different epizootics that occurred in Zambia, four of which were outside the known FMD high-risk areas. This study highlights the complex epidemiology of FMD in Zambia, where the country represents an interface between East Africa (Pool 4) and Southern Africa (Pool 6). These changing viral dynamics have direct impacts on FMD vaccine selection in the SADC region.


Subject(s)
Disease Outbreaks/veterinary , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/virology , Phylogeny , Africa, Eastern , Africa, Southern , Animals , Buffaloes , Cattle , Cattle Diseases/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Foot-and-Mouth Disease Virus/genetics , Livestock/virology , Serogroup , Zambia
SELECTION OF CITATIONS
SEARCH DETAIL