Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 549
Filter
1.
J Biol Chem ; 300(8): 107546, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992435

ABSTRACT

In seeding plants, biosynthesis of the phytohormone ethylene, which regulates processes including fruit ripening and senescence, is catalyzed by 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The plant pathogen Pseudomonas savastanoi (previously classified as: Pseudomonas syringae) employs a different type of ethylene-forming enzyme (psEFE), though from the same structural superfamily as ACC oxidase, to catalyze ethylene formation from 2-oxoglutarate (2OG) in an arginine dependent manner. psEFE also catalyzes the more typical oxidation of arginine to give L-Δ1-pyrroline-5-carboxylate (P5C), a reaction coupled to oxidative decarboxylation of 2OG giving succinate and CO2. We report on the effects of C3 and/or C4 substituted 2OG derivatives on the reaction modes of psEFE. 1H NMR assays, including using the pure shift method, reveal that, within our limits of detection, none of the tested 2OG derivatives is converted to an alkene; some are converted to the corresponding ß-hydroxypropionate or succinate derivatives, with only the latter being coupled to arginine oxidation. The NMR results reveal that the nature of 2OG derivatization can affect the outcome of the bifurcating reaction, with some 2OG derivatives exclusively favoring the arginine oxidation pathway. Given that some of the tested 2OG derivatives are natural products, the results are of potential biological relevance. There are also opportunities for therapeutic or biocatalytic regulation of the outcomes of reactions catalyzed by 2OG-dependent oxygenases by the use of 2OG derivatives.


Subject(s)
Bacterial Proteins , Ethylenes , Ketoglutaric Acids , Pseudomonas , Pseudomonas/enzymology , Pseudomonas/metabolism , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/chemistry , Ethylenes/metabolism , Ethylenes/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Lyases/metabolism , Lyases/chemistry , Lyases/genetics , Arginine/metabolism , Arginine/chemistry , Oxidation-Reduction
2.
FEBS Open Bio ; 14(8): 1291-1302, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923868

ABSTRACT

Metal-tetrapyrrole cofactors are involved in multiple cellular functions, and chelatases are key enzymes for the biosynthesis of these cofactors. CfbA is an ancestral, homodimeric-type class II chelatase which is able to use not only Ni2+ as a physiological metal substrate, but also Co2+ as a nonphysiological substrate with higher activity than for Ni2+. The Ni/Co-chelatase function found in CfbA is also observed in SirB, a descendant, monomeric-type class II chelatase. This is despite the distinct active site structure of CfbA and SirB; specifically, CfbA shows a unique four His residue arrangement, unlike other monomeric class II chelatases such as SirB. Herein, we studied the Ni-chelatase activity of SirB variants R134H, L200H, and R134H/L200H, the latter of which mimics the His alignment of CfbA. Our results showed that the SirB R134H variant exhibited the highest Ni-chelatase activity among the SirB enzymes, which in turn suggests that the position of His134 could be more important for the Ni-chelatase activity than that of His200. The SirB R134H/L200H variant showed lower activity than R134H, despite the four His residues found in SirB R134H/L200H. CD spectroscopy showed secondary structure denaturation and a slight difficulty in Ni-binding of SirB R134H/L200H, which may be related to its lower activity. Finally, a docking simulation suggested that the His134 of the SirB R134H variant could function as a base catalyst for the Ni-chelatase reaction in a class II chelatase architecture.


Subject(s)
Nickel , Nickel/metabolism , Nickel/chemistry , Catalytic Domain/genetics , Histidine/metabolism , Histidine/chemistry , Histidine/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Models, Molecular , Lyases/metabolism , Lyases/chemistry , Lyases/genetics
3.
Angew Chem Int Ed Engl ; 63(34): e202404045, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38874074

ABSTRACT

The thiamine diphosphate (ThDP)-binding motif, characterized by the canonical GDG(X)24-27N sequence, is highly conserved among ThDP-dependent enzymes. We investigated a ThDP-dependent lyase (JanthE from Janthinobacterium sp. HH01) with an unusual cysteine (C458) replacing the first glycine of this motif. JanthE exhibits a high substrate promiscuity and accepts long aliphatic α-keto acids as donors. Sterically hindered aromatic aldehydes or non-activated ketones are acceptor substrates, giving access to a variety of secondary and tertiary alcohols as carboligation products. The crystal structure solved at a resolution of 1.9 Šreveals that C458 is not primarily involved in cofactor binding as previously thought for the canonical glycine. Instead, it coordinates methionine 406, thus ensuring the integrity of the active site and the enzyme activity. In addition, we have determined the long-sought genuine tetrahedral intermediates formed with pyruvate and 2-oxobutyrate in the pre-decarboxylation states and deciphered the atomic details for their stabilization in the active site. Collectively, we unravel an unexpected role for the first residue of the ThDP-binding motif and unlock a family of lyases that can perform valuable carboligation reactions.


Subject(s)
Thiamine Pyrophosphate , Thiamine Pyrophosphate/metabolism , Thiamine Pyrophosphate/chemistry , Lyases/metabolism , Lyases/chemistry , Amino Acid Motifs , Catalytic Domain , Crystallography, X-Ray , Substrate Specificity , Models, Molecular
4.
J Inorg Biochem ; 257: 112582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723329

ABSTRACT

When subjected to γ-irradiation at cryogenic temperatures the oxygenated complexes of Cytochrome P450 CYP17A1 (CYP17A1) bound with either of the lyase substrates, 17α-Hydroxypregnenolone (17-OH PREG) or 17α-Hydroxyprogesterone (17-OH PROG) are shown to generate the corresponding lyase products, dehydroepiandrosterone (DHEA) and androstenedione (AD) respectively. The current study uses gas chromatography-mass spectrometry (GC/MS) to document the presence of the initial substrates and products in extracts of the processed samples. A rapid and efficient method for the simultaneous determination of residual substrate and products by GC/MS is described without derivatization of the products. It is also shown that no lyase products were detected for similarly treated control samples containing no nanodisc associated CYP17 enzyme, demonstrating that the product is formed during the enzymatic reaction and not by GC/MS conditions, nor the conditions produced by the cryoradiolysis process.


Subject(s)
Gas Chromatography-Mass Spectrometry , Steroid 17-alpha-Hydroxylase , Steroid 17-alpha-Hydroxylase/metabolism , Dehydroepiandrosterone/chemistry , Dehydroepiandrosterone/metabolism , 17-alpha-Hydroxyprogesterone/chemistry , 17-alpha-Hydroxyprogesterone/metabolism , 17-alpha-Hydroxypregnenolone/chemistry , 17-alpha-Hydroxypregnenolone/metabolism , Androstenedione/chemistry , Androstenedione/metabolism , Humans , Lyases/metabolism , Lyases/chemistry , Gamma Rays , Substrate Specificity , Oxygen/chemistry
5.
J Biol Chem ; 300(1): 105539, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072054

ABSTRACT

L-ergothioneine is widely distributed among various microbes to regulate their physiology and pathogenicity within complex environments. One of the key steps in the ergothioneine-biosynthesis pathway, the C-S bond cleavage reaction, uses the pyridoxal 5'-phosphate dependent C-S lyase to produce the final product L-ergothioneine. Here, we present the crystallographic structure of the ergothioneine-biosynthesis C-S lyase EgtE from Mycobacterium smegmatis (MsEgtE) represents the first published structure of ergothioneine-biosynthesis C-S lyases in bacteria and shows the effects of active site residues on the enzymatic reaction. The MsEgtE and the previously reported ergothioneine-biosynthesis C-S lyase Egt2 from Neurospora crassa (NcEgt2) fold similarly. However, discrepancies arise in terms of substrate recognition, as observed through sequence and structure comparison of MsEgtE and NcEgt2. The structural-based sequence alignment of the ergothioneine-biosynthesis C-S lyase from fungi and bacteria shows clear distinctions among the recognized substrate residues, but Arg348 is critical and an extremely conserved residue for substrate recognition. The α14 helix is exclusively found in the bacteria EgtE, which represent the most significant difference between bacteria EgtE and fungi Egt2, possibly resulting from the convergent evolution of bacteria and fungi.


Subject(s)
Ergothioneine , Lyases , Mycobacterium , Ergothioneine/chemistry , Ergothioneine/metabolism , Fungi/metabolism , Lyases/chemistry , Lyases/metabolism , Mycobacterium/metabolism , Mycobacterium smegmatis/chemistry , Mycobacterium smegmatis/enzymology , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Tertiary
6.
Nature ; 625(7993): 74-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110574

ABSTRACT

Enzymes are recognized as exceptional catalysts for achieving high stereoselectivities1-3, but their ability to control the reactivity and stereoinduction of free radicals lags behind that of chemical catalysts4. Thiamine diphosphate (ThDP)-dependent enzymes5 are well-characterized systems that inspired the development of N-heterocyclic carbenes (NHCs)6-8 but have not yet been proved viable in asymmetric radical transformations. There is a lack of a biocompatible and general radical-generation mechanism, as nature prefers to avoid radicals that may be harmful to biological systems9. Here we repurpose a ThDP-dependent lyase as a stereoselective radical acyl transferase (RAT) through protein engineering and combination with organophotoredox catalysis10. Enzyme-bound ThDP-derived ketyl radicals are selectively generated through single-electron oxidation by a photoexcited organic dye and then cross-coupled with prochiral alkyl radicals with high enantioselectivity. Diverse chiral ketones are prepared from aldehydes and redox-active esters (35 examples, up to 97% enantiomeric excess (e.e.)) by this method. Mechanistic studies reveal that this previously elusive dual-enzyme catalysis/photocatalysis directs radicals with the unique ThDP cofactor and evolvable active site. This work not only expands the repertoire of biocatalysis but also provides a unique strategy for controlling radicals with enzymes, complementing existing chemical tools.


Subject(s)
Acyltransferases , Biocatalysis , Light , Lyases , Acylation , Acyltransferases/chemistry , Acyltransferases/metabolism , Aldehydes/metabolism , Biocatalysis/radiation effects , Catalytic Domain , Free Radicals/metabolism , Ketones/metabolism , Lyases/chemistry , Lyases/metabolism , Oxidation-Reduction , Protein Engineering , Stereoisomerism , Thiamine Pyrophosphate/metabolism
7.
Structure ; 30(4): 534-536, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35395194

ABSTRACT

Attachment of bilins to phycobiliproteins is performed by dedicated lyases. In this issue of Structure, Kumarapperuma et al., 2022 present the structure of an E/F type lyase-isomerase that identifies the correct biological interface between active domains, suggesting that a previous E/F lyase misidentified the heterodimer structure from the crystal lattice.


Subject(s)
Lyases , Bile Pigments , Lyases/chemistry , Phycobiliproteins/chemistry
8.
Structure ; 30(4): 564-574.e3, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35148828

ABSTRACT

Chromophore attachment of the light-harvesting apparatus represents one of the most important post-translational modifications in photosynthetic cyanobacteria. Extensive pigment diversity of cyanobacteria critically depends on bilin lyases that covalently attach chemically distinct chromophores to phycobiliproteins. However, how bilin lyases catalyze bilin ligation reactions and how some lyases acquire additional isomerase abilities remain elusive at the molecular level. Here, we report the crystal structure of a representative bilin lyase-isomerase MpeQ. This structure has revealed a "question-mark" protein architecture that unambiguously establishes the active site conserved among the E/F-type bilin lyases. Based on structural, mutational, and modeling data, we demonstrate that stereoselectivity of the active site plays a critical role in conferring the isomerase activity of MpeQ. We further advance a tyrosine-mediated reaction scheme unifying different types of bilin lyases. These results suggest that lyases and isomerase actions of bilin lyases arise from two coupled molecular events of distinct origin.


Subject(s)
Cyanobacteria , Lyases , Bile Pigments/metabolism , Cyanobacteria/metabolism , Isomerases/genetics , Isomerases/metabolism , Lyases/chemistry , Lyases/genetics , Lyases/metabolism , Phycobiliproteins/metabolism
9.
Insect Biochem Mol Biol ; 142: 103722, 2022 03.
Article in English | MEDLINE | ID: mdl-35063675

ABSTRACT

Tetranychus urticae is a polyphagous spider mite that can feed on more than 1100 plant species including cyanogenic plants. The herbivore genome contains a horizontally acquired gene tetur10g01570 (TuCAS) that was previously shown to participate in cyanide detoxification. To understand the structure and determine the function of TuCAS in T. urticae, crystal structures of the protein with lysine conjugated pyridoxal phosphate (PLP) were determined. These structures reveal extensive TuCAS homology with the ß-substituted alanine synthase family, and they show that this enzyme utilizes a similar chemical mechanism involving a stable α-aminoacrylate intermediate in ß-cyanoalanine and cysteine synthesis. We demonstrate that TuCAS is more efficient in the synthesis of ß-cyanoalanine, which is a product of the detoxification reaction between cysteine and cyanide, than in the biosynthesis of cysteine. Also, the enzyme carries additional enzymatic activities that were not previously described. We show that TuCAS can detoxify cyanide using O-acetyl-L-serine as a substrate, leading to the direct formation of ß-cyanoalanine. Moreover, it catalyzes the reaction between the TuCAS-bound α-aminoacrylate intermediate and aromatic compounds with a thiol group. In addition, we have tested several compounds as TuCAS inhibitors. Overall, this study identifies additional functions for TuCAS and provides new molecular insight into the xenobiotic metabolism of T. urticae.


Subject(s)
Lyases , Tetranychidae , Animals , Cyanides/metabolism , Cysteine , Lyases/chemistry , Lyases/genetics , Lyases/metabolism , Plants/metabolism , Tetranychidae/metabolism
10.
Mar Drugs ; 20(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35049921

ABSTRACT

As a low molecular weight alginate, alginate oligosaccharides (AOS) exhibit improved water solubility, better bioavailability, and comprehensive health benefits. In addition, their biocompatibility, biodegradability, non-toxicity, non-immunogenicity, and gelling capability make them an excellent biomaterial with a dual curative effect when applied in a drug delivery system. In this paper, a novel alginate lyase, Algpt, was cloned and characterized from a marine bacterium, Paenibacillus sp. LJ-23. The purified enzyme was composed of 387 amino acid residues, and had a molecular weight of 42.8 kDa. The optimal pH of Algpt was 7.0 and the optimal temperature was 45 °C. The analysis of the conserved domain and the prediction of the three-dimensional structure indicated that Algpt was a novel alginate lyase. The dominant degradation products of Algpt on alginate were AOS dimer to octamer, depending on the incubation time, which demonstrated that Algpt degraded alginate in an endolytic manner. In addition, Algpt was a salt-independent and thermo-tolerant alginate lyase. Its high stability and wide adaptability endow Algpt with great application potential for the efficient preparation of AOS with different sizes and AOS-based products.


Subject(s)
Alginates/chemistry , Lyases/chemistry , Paenibacillus/genetics , Animals , Aquatic Organisms , China , Cloning, Molecular , Drug Delivery Systems
11.
J Biol Chem ; 298(1): 101522, 2022 01.
Article in English | MEDLINE | ID: mdl-34952003

ABSTRACT

Actinobacterial 2-hydroxyacyl-CoA lyase reversibly catalyzes the thiamine diphosphate-dependent cleavage of 2-hydroxyisobutyryl-CoA to formyl-CoA and acetone. This enzyme has great potential for use in synthetic one-carbon assimilation pathways for sustainable production of chemicals, but lacks details of substrate binding and reaction mechanism for biochemical reengineering. We determined crystal structures of the tetrameric enzyme in the closed conformation with bound substrate, covalent postcleavage intermediate, and products, shedding light on active site architecture and substrate interactions. Together with molecular dynamics simulations of the covalent precleavage complex, the complete catalytic cycle is structurally portrayed, revealing a proton transfer from the substrate acyl Cß hydroxyl to residue E493 that returns it subsequently to the postcleavage Cα-carbanion intermediate. Kinetic parameters obtained for mutants E493A, E493Q, and E493K confirm the catalytic role of E493 in the WT enzyme. However, the 10- and 50-fold reduction in lyase activity in the E493A and E493Q mutants, respectively, compared with WT suggests that water molecules may contribute to proton transfer. The putative catalytic glutamate is located on a short α-helix close to the active site. This structural feature appears to be conserved in related lyases, such as human 2-hydroxyacyl-CoA lyase 2. Interestingly, a unique feature of the actinobacterial 2-hydroxyacyl-CoA lyase is a large C-terminal lid domain that, together with active site residues L127 and I492, restricts substrate size to ≤C5 2-hydroxyacyl residues. These details about the catalytic mechanism and determinants of substrate specificity pave the ground for designing tailored catalysts for acyloin condensations for one-carbon and short-chain substrates in biotechnological applications.


Subject(s)
Acyl Coenzyme A , Lyases , Acyl Coenzyme A/chemistry , Acyl Coenzyme A/metabolism , Carbon , Catalysis , Catalytic Domain , Crystallography, X-Ray , Humans , Lyases/chemistry , Lyases/metabolism , Protons , Structure-Activity Relationship , Substrate Specificity
12.
J Microbiol ; 59(11): 1002-1009, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34613607

ABSTRACT

The increasing prevalence of foodborne diseases caused by Escherichia coli O157:H7 as well as its ability to form biofilms poses major threats to public health worldwide. With increasing concerns about the limitations of current disinfectant treatments, phage-derived depolymerases may be used as promising biocontrol agents. Therefore, in this study, the characterization, purification, and application of a novel phage depolymerase, Dpo10, specifically targeting the lipopolysaccharides of E. coli O157, was performed. Dpo10, with a molecular mass of 98 kDa, was predicted to possess pectate lyase activity via genome analysis and considered to act as a receptor-binding protein of the phage. We confirmed that the purified Dpo10 showed O-polysaccharide degrading activity only for the E. coli O157 strains by observing its opaque halo. Dpo10 maintained stable enzymatic activities across a wide range of temperature conditions under 55°C and mild basic pH. Notably, Dpo10 did not inhibit bacterial growth but significantly increased the complement-mediated serum lysis of E. coli O157 by degrading its O-polysaccharides. Moreover, Dpo10 inhibited the biofilm formation against E. coli O157 on abiotic polystyrene by 8-fold and stainless steel by 2.56 log CFU/coupon. This inhibition was visually confirmed via fieldemission scanning electron microscopy. Therefore, the novel depolymerase from E. coli siphophage exhibits specific binding and lytic activities on the lipopolysaccharide of E. coli O157 and may be used as a promising anti-biofilm agent against the E. coli O157:H7 strain.


Subject(s)
Biofilms , Coliphages/enzymology , Escherichia coli O157/virology , Lyases/metabolism , Coliphages/chemistry , Coliphages/genetics , Escherichia coli O157/physiology , Lyases/chemistry , Lyases/genetics , Stainless Steel/analysis , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Bioorg Chem ; 116: 105322, 2021 11.
Article in English | MEDLINE | ID: mdl-34488127

ABSTRACT

Bacillary dysentery is a common foodborne disease with an exaggerated mortality rate because of Shigella infection. With the increasing severity of Shigella infection, lyase has been considered as the most promising alternative to antimicrobial agents, owing to the emergence of resistant bacteria and the difficulty in disrupting and eliminating bacterial biofilms. In this study, we cloned and characterised HolSSE1 and LysSSE1, holin, and lysozyme from the S. dysenteriae phage SSE1 with extended bacterial host range against common gram-negative and gram-positive bacteria. In addition, the efficacy of HolSSE1 and LysSSE1 in removing bacterial biofilms was observed on polystyrene surfaces. Moreover, synergistic bacteriostasis was observed when they were used together. Alignment and structural model analysis showed that both HolSSE1 and LysSSE1 are T4 phage proteins that have not yet been identified. Therefore, HolSSE1 and LysSSE1 can be promising biocontrol agents for the prevention and treatment of various pathogenic infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Lyases/metabolism , Shigella dysenteriae/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Dose-Response Relationship, Drug , Lyases/chemistry , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
14.
Nat Commun ; 12(1): 3487, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108468

ABSTRACT

Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is a unique bifunctional terpenoid synthase that catalyzes the first two steps in the biosynthesis of the diterpene glycoside Fusicoccin A, a mediator of 14-3-3 protein interactions. The prenyltransferase domain of PaFS generates geranylgeranyl diphosphate, which the cyclase domain then utilizes to generate fusicoccadiene, the tricyclic hydrocarbon skeleton of Fusicoccin A. Here, we use cryo-electron microscopy to show that the structure of full-length PaFS consists of a central octameric core of prenyltransferase domains, with the eight cyclase domains radiating outward via flexible linker segments in variable splayed-out positions. Cryo-electron microscopy and chemical crosslinking experiments additionally show that compact conformations can be achieved in which cyclase domains are more closely associated with the prenyltransferase core. This structural analysis provides a framework for understanding substrate channeling, since most of the geranylgeranyl diphosphate generated by the prenyltransferase domains remains on the enzyme for cyclization to form fusicoccadiene.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Diterpenes/metabolism , Fungal Proteins/chemistry , Alkyl and Aryl Transferases/metabolism , Ascomycota/chemistry , Ascomycota/enzymology , Catalysis , Catalytic Domain , Cryoelectron Microscopy , Cyclization , Dimethylallyltranstransferase/chemistry , Dimethylallyltranstransferase/metabolism , Fungal Proteins/metabolism , Glycosides/biosynthesis , Lyases/chemistry , Lyases/metabolism , Multifunctional Enzymes , Polyisoprenyl Phosphates/metabolism , Protein Conformation
15.
Nat Chem Biol ; 17(7): 800-805, 2021 07.
Article in English | MEDLINE | ID: mdl-33958791

ABSTRACT

The covalent attachment of one or multiple heme cofactors to cytochrome c protein chains enables cytochrome c proteins to be used in electron transfer and redox catalysis in extracytoplasmic environments. A dedicated heme maturation machinery, whose core component is a heme lyase, scans nascent peptides after Sec-dependent translocation for CXnCH-binding motifs. Here we report the three-dimensional (3D) structure of the heme lyase CcmF, a 643-amino acid integral membrane protein, from Thermus thermophilus. CcmF contains a heme b cofactor at the bottom of a large cavity that opens toward the extracellular side to receive heme groups from the heme chaperone CcmE for cytochrome maturation. A surface groove on CcmF may guide the extended apoprotein to heme attachment at or near a loop containing the functionally essential WXWD motif, which is situated above the putative cofactor binding pocket. The structure suggests heme delivery from within the membrane, redefining the role of the chaperone CcmE.


Subject(s)
Cell Membrane/metabolism , Lyases/metabolism , Cell Membrane/chemistry , Lyases/chemistry , Thermus thermophilus/enzymology
16.
mBio ; 12(3)2021 05 04.
Article in English | MEDLINE | ID: mdl-33947751

ABSTRACT

In eukaryotes, heme attachment through two thioether bonds to mitochondrial cytochromes c and c1 is catalyzed by either multisubunit cytochrome c maturation system I or holocytochrome c synthetase (HCCS). The former was inherited from the alphaproteobacterial progenitor of mitochondria; the latter is a eukaryotic innovation for which prokaryotic ancestry is not evident. HCCS provides one of a few exemplars of de novo protein innovation in eukaryotes, but structure-function insight of HCCS is limited. Uniquely, euglenozoan protists, which include medically relevant kinetoplastids Trypanosoma and Leishmania parasites, attach heme to mitochondrial c-type cytochromes by a single thioether linkage. Yet the mechanism is unknown, as genes encoding proteins with detectable similarity to any proteins involved in cytochrome c maturation in other taxa are absent. Here, a bioinformatics search for proteins conserved in all hemoprotein-containing kinetoplastids identified kinetoplastid cytochrome c synthetase (KCCS), which we reveal as essential and mitochondrial and catalyzes heme attachment to trypanosome cytochrome c KCCS has no sequence identity to other proteins, apart from a slight resemblance within four short motifs suggesting relatedness to HCCS. Thus, KCCS provides a novel resource for studying eukaryotic cytochrome c maturation, possibly with wider relevance, since mutations in human HCCS leads to disease. Moreover, many examples of mitochondrial biochemistry are different in euglenozoans compared to many other eukaryotes; identification of KCCS thus provides another exemplar of extreme, unusual mitochondrial biochemistry in an evolutionarily divergent group of protists.IMPORTANCE Cytochromes c are essential proteins for respiratory and photosynthetic electron transfer. They are posttranslationally modified by covalent attachment of a heme cofactor. Kinetoplastids include important tropical disease-causing parasites; many aspects of their biology differ from other organisms, including their mammalian or plant hosts. Uniquely, kinetoplastids produce cytochromes c with a type of heme attachment not seen elsewhere in nature and were the only cytochrome c-bearing taxa without evidence of protein machinery to attach heme to the apocytochrome. Using bioinformatics, biochemistry, and molecular genetics, we report how kinetoplastids make their cytochromes c Unexpectedly, they use a highly diverged version of an enzyme used for heme-protein attachment in many eukaryotes. Mutations in the human enzyme lead to genetic disease. Identification of kinetoplastid cytochrome c synthetase, thus, solves an evolutionary unknown, provides a possible target for antiparasite drug development, and an unanticipated resource for studying the mechanistic basis of a human genetic disease.


Subject(s)
Cytochromes c/genetics , Cytochromes c/physiology , Eukaryota/physiology , Computational Biology , Leishmania mexicana/genetics , Leishmania mexicana/physiology , Lyases/chemistry , Lyases/genetics , Lyases/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/physiology
17.
Elife ; 102021 05 11.
Article in English | MEDLINE | ID: mdl-33973521

ABSTRACT

Cytochromes c are ubiquitous heme proteins in mitochondria and bacteria, all possessing a CXXCH (CysXxxXxxCysHis) motif with covalently attached heme. We describe the first in vitro reconstitution of cytochrome c biogenesis using purified mitochondrial (HCCS) and bacterial (CcsBA) cytochrome c synthases. We employ apocytochrome c and peptide analogs containing CXXCH as substrates, examining recognition determinants, thioether attachment, and subsequent release and folding of cytochrome c. Peptide analogs reveal very different recognition requirements between HCCS and CcsBA. For HCCS, a minimal 16-mer peptide is required, comprised of CXXCH and adjacent alpha helix 1, yet neither thiol is critical for recognition. For bacterial CcsBA, both thiols and histidine are required, but not alpha helix 1. Heme attached peptide analogs are not released from the HCCS active site; thus, folding is important in the release mechanism. Peptide analogs behave as inhibitors of cytochrome c biogenesis, paving the way for targeted control.


From tiny bacteria to the tallest trees, most life on Earth carries a protein called cytochrome c, which helps to create the energy that powers up cells. Cytochrome c does so thanks to its heme, a molecule that enables the chemical reactions required for the energy-creating process. Despite both relying on cytochrome c, animals and bacteria differ in the enzyme they use to attach the heme to the cytochrome. Spotting variations in how this 'cytochrome c synthase' works would help to find compounds that deactivate the enzyme in bacteria, but not in humans. However, studying cytochrome c synthase in living cells is challenging. To bypass this issue, Sutherland, Mendez, Babbitt et al. successfully reconstituted cytochrome c synthases from humans and bacteria in test tubes. This allowed them to examine in detail which structures the enzymes recognize to spot where to attach the heme onto their target. The experiments revealed that human and bacterial synthases actually rely on different parts of the cytochrome c to orient themselves. Different short compounds could also block either the human or bacterial enzyme. Variations between human and bacterial cytochrome c synthase could lead to new antibiotics which deactivate the cytochrome and kill bacteria while sparing patients. The next step is to identify molecules that specifically interfere with cytochrome c synthase in bacteria, and could be tested in clinical trials.


Subject(s)
Bacteria/enzymology , Cytochromes c/metabolism , Lyases/metabolism , Mitochondria/metabolism , Catalytic Domain , Escherichia coli/metabolism , Heme/metabolism , Humans , In Vitro Techniques , Lyases/chemistry , Peptides/chemistry , Substrate Specificity
18.
Plant Cell ; 33(2): 306-321, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33793793

ABSTRACT

Unisexual flowers provide a useful system for studying plant sex determination. In cucumber (Cucumis sativus L.), three major Mendelian loci control unisexual flower development, Female (F), androecious [a; 1-aminocyclopropane-1-carboxylate {ACC} synthase 11, acs11], and Monoecious (M; ACS2), referred to here as the Female, Androecious, Monoecious (FAM) model, in combination with two genes, gynoecious (g, the WIP family C2H2 zinc finger transcription factor gene WIP1) and the ethylene biosynthetic gene ACC oxidase 2 (ACO2). The F locus, conferring gynoecy and the potential for increasing fruit yield, is defined by a 30.2-kb tandem duplication containing three genes. However, the gene that determines the Female phenotype, and its mechanism, remains unknown. Here, we created a set of mutants and revealed that ACS1G is responsible for gynoecy conferred by the F locus. The duplication resulted in ACS1G acquiring a new promoter and expression pattern; in plants carrying the F locus duplication, ACS1G is expressed early in floral bud development, where it functions with ACO2 to generate an ethylene burst. The resulting ethylene represses WIP1 and activates ACS2 to initiate gynoecy. This early ACS1G expression bypasses the need for ACS11 to produce ethylene, thereby establishing a dominant pathway for female floral development. Based on these findings, we propose a model for how these ethylene biosynthesis genes cooperate to control unisexual flower development in cucumber.


Subject(s)
Cucumis sativus/enzymology , Cucumis sativus/genetics , Flowers/enzymology , Flowers/genetics , Lyases/genetics , Amino Acid Sequence , Gene Expression Regulation, Plant , Genetic Loci , Genome, Plant , Genotype , Glucuronidase/metabolism , Lyases/chemistry , Phenotype , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Cell Chem Biol ; 28(9): 1333-1346.e7, 2021 09 16.
Article in English | MEDLINE | ID: mdl-33773110

ABSTRACT

Desulfonation of isethionate by the bacterial glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslA) generates sulfite, a substrate for respiration that in turn produces the disease-associated metabolite hydrogen sulfide. Here, we present a 2.7 Å resolution X-ray structure of wild-type IslA from Bilophila wadsworthia with isethionate bound. In comparison with other GREs, alternate positioning of the active site ß strands allows for distinct residue positions to contribute to substrate binding. These structural differences, combined with sequence variations, create a highly tailored active site for the binding of the negatively charged isethionate substrate. Through the kinetic analysis of 14 IslA variants and computational analyses, we probe the mechanism by which radical chemistry is used for C-S bond cleavage. This work further elucidates the structural basis of chemistry within the GRE superfamily and will inform structure-based inhibitor design of IsIA and thus of microbial hydrogen sulfide production.


Subject(s)
Carbon/metabolism , Lyases/metabolism , Sulfur/metabolism , Bilophila/enzymology , Carbon/chemistry , Crystallography, X-Ray , Lyases/chemistry , Models, Molecular , Sulfur/chemistry
20.
Biochimie ; 182: 166-176, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33444662

ABSTRACT

Selenium is a vital micronutrient in many organisms. While traces are required for microbial utilization, excess amounts are toxic; thus, selenium can be regarded as a biological double-edged sword. Selenium is chemically similar to the essential element sulfur, but curiously, evolution has selected the former over the latter for a subset of oxidoreductases. Enzymes involved in sulfur metabolism are less discriminate in terms of preventing selenium incorporation; however, its specific incorporation into selenoproteins reveals a highly discriminate process that is not completely understood. We have identified SclA, a NifS-like protein in the nosocomial pathogen, Enterococcus faecalis, and characterized its enzymatic activity and specificity for l-selenocysteine over l-cysteine. It is known that Asp-146 is required for selenocysteine specificity in the human selenocysteine lyase. Thus, using computational biology, we compared the bacterial and mammalian enzymes and identified His-100, an Asp-146 ortholog in SclA, and generated site-directed mutants in order to study the residue's potential role in the l-selenocysteine discrimination mechanism. The proteins were overexpressed, purified, and characterized for their biochemical properties. All mutants exhibited varying Michaelis-Menten behavior towards l-selenocysteine, but His-100 was not found to be essential for this activity. Additionally, l-cysteine acted as a competitive inhibitor of all enzymes with higher affinity than l-selenocysteine. Finally, we discovered that SclA exhibited low activity with l-cysteine as a poor substrate regardless of mutations. We conclude that His-100 is not required for l-selenocysteine specificity, underscoring the inherent differences in discriminatory mechanisms between bacterial NifS-like proteins and mammalian selenocysteine lyases.


Subject(s)
Bacterial Proteins/chemistry , Enterococcus faecalis/enzymology , Lyases/chemistry , Selenium/chemistry , Sulfur/chemistry , Bacterial Proteins/metabolism , Lyases/metabolism , Selenium/metabolism , Substrate Specificity , Sulfur/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL