Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.246
Filter
1.
Exp Dermatol ; 33(8): e15155, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39133009

ABSTRACT

Hair loss affects men and women of all ages. Myokines, which are mainly secreted by skeletal muscles during exercise, have numerous health benefits. VEGF, IGF-1, FGF and irisin are reprehensive myokines. Although VEGF, IGF-1 and FGF are positively associated with hair growth, few studies have researched the effects of irisin on hair growth. Here, we investigated whether irisin promotes hair growth using in vitro, ex vivo and in vivo patch assays, as well as mouse models. We show that irisin increases proliferation, alkaline phosphatase (ALP) activity and mitochondrial membrane potential in human dermal papilla cells (hDPCs). Irisin activated the Wnt/ß-catenin signalling pathway, thereby upregulating Wnt5a, Wnt10b and LEF-1, which play an important role in hair growth. Moreover, irisin enhanced human hair shaft elongation. In vivo, patch assays revealed that irisin promotes the generation of new hair follicles, accelerates entry into the anagen phase, and significantly increases hair growth in C57BL/6 mice. However, XAV939, a Wnt/ß-catenin signalling inhibitor, suppressed the irisin-mediated increase in hair shaft and hair growth. These results indicate that irisin increases hair growth via the Wnt/ß-catenin pathway and highlight its therapeutic potential in hair loss treatment.


Subject(s)
Fibronectins , Glycogen Synthase Kinase 3 beta , Hair Follicle , Hair , Mice, Inbred C57BL , Wnt Signaling Pathway , beta Catenin , Animals , Humans , Fibronectins/metabolism , Mice , Glycogen Synthase Kinase 3 beta/metabolism , Hair/growth & development , beta Catenin/metabolism , Hair Follicle/growth & development , Hair Follicle/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism , Cell Proliferation , Wnt-5a Protein/metabolism , Wnt Proteins/metabolism , Male , Female , Proto-Oncogene Proteins
2.
J Nanobiotechnology ; 22(1): 425, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030543

ABSTRACT

Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors ß-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/ß-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.


Subject(s)
Cell Proliferation , Exosomes , Fibroblasts , Hair Follicle , Mice, Nude , Regeneration , Vibrissae , Wnt Signaling Pathway , Wound Healing , beta Catenin , Animals , Mice , Fibroblasts/metabolism , Exosomes/metabolism , Vibrissae/physiology , beta Catenin/metabolism , Dermis/metabolism , Cell Movement , Lymphoid Enhancer-Binding Factor 1/metabolism
3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000154

ABSTRACT

Putatively, tooth agenesis was attributed to the initiation failure of tooth germs, though little is known about the histological and molecular alterations. To address if constitutively active FGF signaling is associated with tooth agenesis, we activated Fgf8 in dental mesenchyme with Osr-cre knock-in allele in mice (Osr2-creKI; Rosa26R-Fgf8) and found incisor agenesis and molar microdontia. The cell survival assay showed tremendous apoptosis in both the Osr2-creKI; Rosa26R-Fgf8 incisor epithelium and mesenchyme, which initiated incisor regression from cap stage. In situ hybridization displayed vanished Shh transcription, and immunostaining exhibited reduced Runx2 expression and enlarged mesenchymal Lef1 domain in Osr2-creKI; Rosa26R-Fgf8 incisors, both of which were suggested to enhance apoptosis. In contrast, Osr2-creKI; Rosa26R-Fgf8 molar germs displayed mildly suppressed Shh transcription, and the increased expression of Ectodin, Runx2 and Lef1. Although mildly smaller than WT controls prenatally, the Osr2-creKI; Rosa26R-Fgf8 molar germs produced a miniature tooth with impaired mineralization after a 6-week sub-renal culture. Intriguingly, the implanted Osr2-creKI; Rosa26R-Fgf8 molar germs exhibited delayed odontoblast differentiation and accelerated ameloblast maturation. Collectively, the ectopically activated Fgf8 in dental mesenchyme caused incisor agenesis by triggering incisor regression and postnatal molar microdontia. Our findings reported tooth agenesis resulting from the regression from the early bell stage and implicated a correlation between tooth agenesis and microdontia.


Subject(s)
Fibroblast Growth Factor 8 , Incisor , Mesoderm , Molar , Animals , Fibroblast Growth Factor 8/genetics , Fibroblast Growth Factor 8/metabolism , Mice , Incisor/abnormalities , Incisor/metabolism , Mesoderm/metabolism , Mesoderm/pathology , Molar/abnormalities , Molar/metabolism , Anodontia/genetics , Anodontia/metabolism , Anodontia/pathology , Apoptosis , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Signal Transduction , Gene Expression Regulation, Developmental , Odontogenesis/genetics , Mice, Transgenic
4.
Nat Commun ; 15(1): 5693, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972954

ABSTRACT

Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.


Subject(s)
CpG Islands , DNA Methylation , Epigenesis, Genetic , Gene Regulatory Networks , Humans , DNA Methylation/genetics , CpG Islands/genetics , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Gene Expression Regulation, Leukemic , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/metabolism , Chromatin/genetics , Male , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Female , Hematopoiesis/genetics , Child , Transcriptome , Proto-Oncogene Proteins , Trans-Activators
5.
Hum Pathol ; 150: 58-66, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971328

ABSTRACT

DUSP22 rearrangements are genetic alterations observed in a subset of systemic anaplastic large cell lymphoma (S-ALCL), primary cutaneous anaplastic large cell lymphoma (C-ALCL), and lymphomatoid papulosis (LyP). Previous investigations have shown that the LEF1+/TIA1- immunoprofile and MSC E116K mutations are highly associated with DUSP22 rearrangement in ALCL. However, the existing literature primarily focuses on S-ALCL. Our understanding of the LEF1/TIA1 immunoprofile and MSC mutation status in C-ALCL/LyP is still limited. In this study, we aimed to assess LEF1/TIA1 expression and MSC mutations in a cohort of 23 C-ALCL/LyP cases, along with a control group of histological mimickers. DUSP22 rearrangements were detected by fluorescence in situ hybridization in eight cases (6/10 C-ALCL, 2/13 LyP). We found LEF1 expression in five out of eight (63%) DUSP22-rearranged cases (3/6 C-ALCL, 2/2 LyP), and none of the 15 cases lacking DUSP22 rearrangements. Furthermore, we also found frequent LEF1 expression in adult T-cell leukemia/lymphoma (ATLL; 10 of 11, 91%) within the control group. TIA1 expression was consistently negative in all DUSP22-rearranged C-ALCL/LyP and ATLL cases tested. MCS E116K mutation was identified in one of five DUSP22-rearranged C-ALCL cases. RNA sequencing of a DUSP22-rearranged C-ALCL revealed a novel DUSP22::SNHG fusion coexisting with a CD58::WNT2B fusion. In conclusion, our findings demonstrated a lower rate of LEF1 expression in DUSP22-rearranged C-ALCL/LyP compared to previous reports that predominantly focused on S-ALCL. Moreover, we observed that the majority of ATLL cases also expressed LEF1, suggesting that the LEF1+/TIA1- immunoprofile does not differentiate DUSP22-rearranged C-ALCL/LyP from ATLL.


Subject(s)
Dual-Specificity Phosphatases , Gene Rearrangement , Immunophenotyping , Lymphoid Enhancer-Binding Factor 1 , Mitogen-Activated Protein Kinase Phosphatases , Skin Neoplasms , Humans , Dual-Specificity Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/genetics , Male , Female , Middle Aged , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/analysis , Adult , Aged , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Ki-1 Antigen/genetics , Ki-1 Antigen/analysis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Aged, 80 and over , In Situ Hybridization, Fluorescence , Mutation , Lymphomatoid Papulosis/genetics , Lymphomatoid Papulosis/pathology , Young Adult , Phenotype , Lymphoma, Primary Cutaneous Anaplastic Large Cell/genetics , Lymphoma, Primary Cutaneous Anaplastic Large Cell/pathology , Immunohistochemistry , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/pathology , Lymphoma, Large-Cell, Anaplastic/immunology
6.
Skin Res Technol ; 30(6): e13807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887112

ABSTRACT

BACKGROUND: The objective of this study is to investigate the mechanism by which low-level laser stimulation promotes the proliferation of intraepithelial hair follicle stem cells (HFSCs) in wounds. This research aims to expand the applications of laser treatment, enhance wound repair methods, and establish a theoretical and experimental foundation for achieving accelerated wound healing. METHODS: The experimental approach involved irradiating a cell model with low-level laser to assess the proliferation of HFSCs and examine alterations in the expression of proteins related to the Wnt/ß-catenin signaling pathway. A mouse back wound model was established to investigate the effects of low-level laser irradiation on wound healing rate, wound microenvironment, and the proliferation of HFSCs in relation to the Wnt/ß-catenin signaling pathway. RESULTS: The research findings indicate that low-level laser light effectively activates the Wnt signaling pathway, leading to the increased accumulation of core protein ß-catenin and the upregulation of key downstream gene Lef 1. Consequently, this regulatory mechanism facilitates various downstream biological effects, including the notable promotion of HFSC proliferation and differentiation into skin appendages and epithelial tissues. As a result, the process of wound healing is significantly accelerated. CONCLUSION: Low levels of laser activates the Wnt signalling pathway, promotes the regeneration of hair follicle stem cells and accelerates wound healing.


Subject(s)
Cell Proliferation , Hair Follicle , Low-Level Light Therapy , Lymphoid Enhancer-Binding Factor 1 , Regeneration , Stem Cells , Up-Regulation , Wnt Signaling Pathway , Wound Healing , Hair Follicle/radiation effects , Animals , Wound Healing/radiation effects , Wound Healing/physiology , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/radiation effects , Mice , Stem Cells/radiation effects , Stem Cells/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Cell Proliferation/radiation effects , Low-Level Light Therapy/methods , Regeneration/physiology , Regeneration/radiation effects , beta Catenin/metabolism , Humans
7.
Sci Total Environ ; 933: 173113, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735319

ABSTRACT

With the wide application of bromuconazole (BRO), a kind of triazole fungicide, the environmental problems caused by BRO have been paid more and more attention. In this study, adult male zebrafish were exposed to environmental related concentration and the maximum non-lethal concentration for zebrafish larvae (0,50 ng/L and 7.5 mg/L) for 7 days, respectively. Zebrafish exposed to BRO exhibited a significant reduction in body length and an increase in fatness index, indicating adverse physiological changes. Notably, the exposed zebrafish showed enlarged heart ventricular volumes and thinner heart walls. Transcriptome analysis of heart samples showed that BRO exposure mainly affected pathways related to cardiac energy metabolism. In addition, the amount of ATP in the heart tissue was correspondingly reduced, and the expression levels of genes related to controlling ion balance and myosin synthesis in the heart were also altered. The study extended its findings to the rat cardiomyocytes (H9C2), where similar cardiotoxic effects including changes in transcription of genes related to energy metabolism and heart function were also observed, suggesting a potential universal mechanism of BRO-induced cardiotoxicity. In a doxorubicin (DOX) induced larval zebrafish heart failure model, the expression of lymphoid enhancer-binding factor 1(LEF1), a key gene in the Wnt/ß-catenin signaling pathway, was significantly increased in larval zebrafish and adult fish heart tissues and cardiomyocytes, suggesting that LEF1 might play an important role in BRO-induced cardiotoxicity. Taken together, BRO exposure could interfere with cardiac function and metabolic capacity by abnormal activation the expression of LEF1. The study emphasized the urgent need for monitoring and regulating BRO due to its harmful effects on the hearts of aquatic organisms.


Subject(s)
Heart , Triazoles , Water Pollutants, Chemical , Zebrafish , Animals , Male , Cardiotoxicity , Fungicides, Industrial/toxicity , Heart/drug effects , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Triazoles/toxicity , Up-Regulation , Water Pollutants, Chemical/toxicity
8.
Nat Immunol ; 25(5): 902-915, 2024 May.
Article in English | MEDLINE | ID: mdl-38589618

ABSTRACT

Repetitive exposure to antigen in chronic infection and cancer drives T cell exhaustion, limiting adaptive immunity. In contrast, aberrant, sustained T cell responses can persist over decades in human allergic disease. To understand these divergent outcomes, we employed bioinformatic, immunophenotyping and functional approaches with human diseased tissues, identifying an abundant population of type 2 helper T (TH2) cells with co-expression of TCF7 and LEF1, and features of chronic activation. These cells, which we termed TH2-multipotent progenitors (TH2-MPP) could self-renew and differentiate into cytokine-producing effector cells, regulatory T (Treg) cells and follicular helper T (TFH) cells. Single-cell T-cell-receptor lineage tracing confirmed lineage relationships between TH2-MPP, TH2 effectors, Treg cells and TFH cells. TH2-MPP persisted despite in vivo IL-4 receptor blockade, while thymic stromal lymphopoietin (TSLP) drove selective expansion of progenitor cells and rendered them insensitive to glucocorticoid-induced apoptosis in vitro. Together, our data identify TH2-MPP as an aberrant T cell population with the potential to sustain type 2 inflammation and support the paradigm that chronic T cell responses can be coordinated over time by progenitor cells.


Subject(s)
Hepatocyte Nuclear Factor 1-alpha , Hypersensitivity , Lymphoid Enhancer-Binding Factor 1 , Multipotent Stem Cells , T Cell Transcription Factor 1 , Th2 Cells , Humans , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Th2 Cells/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Hypersensitivity/immunology , Multipotent Stem Cells/metabolism , Multipotent Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Cell Differentiation , Cytokines/metabolism , Thymic Stromal Lymphopoietin , Animals , Cells, Cultured , Mice
9.
Virchows Arch ; 484(5): 807-813, 2024 May.
Article in English | MEDLINE | ID: mdl-38503969

ABSTRACT

Diagnosis of desmoid-type fibromatosis (DF) may be challenging on biopsy due to morphologic overlap with reactive fibrosis (scar) and other uniform spindle cell neoplasms. Evaluation of nuclear ß-catenin, a surrogate of Wnt pathway activation, is often difficult in DF due to weak nuclear expression and high background membranous/cytoplasmic staining. Lymphoid enhancer-factor 1 (LEF1) is a recently characterized effector partner of ß-catenin which activates the transcription of target genes. We investigated the performance of LEF1 and ß-catenin immunohistochemistry in a retrospective series of 156 soft tissue tumors, including 35 DF, 3 superficial fibromatosis, and 121 histologic mimics (19 soft tissue perineurioma, 8 colorectal perineurioma, 4 intraneural perineurioma, 26 scars, 23 nodular fasciitis, 6 low-grade fibromyxoid sarcomas, 6 angioleiomyomas, 5 neurofibromas, 5 dermatofibrosarcoma protuberans, 3 low-grade myofibroblastic sarcomas, 3 synovial sarcomas, 3 inflammatory myofibroblastic tumors, 2 schwannomas, and 1 each of Gardner-associated fibroma, radiation-associated spindle cell sarcoma, sclerotic fibroma, dermatofibroma, and glomus tumor). LEF1 expression was not only seen in 33/35 (94%) of DF but also observed in 19/23 (82%) nodular fasciitis, 7/19 (37%) soft tissue perineurioma, 2/3 (66%) synovial sarcoma, and 6/26 (23%) scar, as well as in 1 radiation-associated spindle cell sarcoma. The sensitivity and specificity of LEF1 IHC for diagnosis of DF were 94% and 70%, respectively. By comparison, ß-catenin offered similar sensitivity, 94%, but 88% specificity. Positivity for LEF1 and ß-catenin in combination showed sensitivity of 89%, lower than the sensitivity of ß-catenin alone (94%); however, the combination of both LEF1 and ß-catenin improved specificity (96%) compared to the specificity of ß-catenin alone (88%). Although LEF1 has imperfect specificity in isolation, this stain has diagnostic utility when used in combination with ß-catenin.


Subject(s)
Biomarkers, Tumor , Fibromatosis, Aggressive , Immunohistochemistry , Lymphoid Enhancer-Binding Factor 1 , Soft Tissue Neoplasms , beta Catenin , Humans , Lymphoid Enhancer-Binding Factor 1/analysis , Fibromatosis, Aggressive/diagnosis , Fibromatosis, Aggressive/pathology , Diagnosis, Differential , Female , Male , Adult , Middle Aged , Retrospective Studies , Biomarkers, Tumor/analysis , Aged , Adolescent , Young Adult , Soft Tissue Neoplasms/diagnosis , Soft Tissue Neoplasms/pathology , beta Catenin/analysis , beta Catenin/metabolism , Child , Aged, 80 and over , Child, Preschool
10.
Invest New Drugs ; 42(2): 185-195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372948

ABSTRACT

Acquired resistance is a significant hindrance to clinical application of lenvatinib in unresectable hepatocellular carcinoma (HCC). Further in-depth investigation of resistance mechanisms can help to develop additional therapeutic strategies to overcome or delay resistance. In our study, two lenvatinib-resistant (LR) HCC cell lines were established by treatment with gradient increasing concentration of lenvatinib, named Hep3B-LR and HepG2-LR. Interestingly, continuous lenvatinib treatment reinforced epithelial-mesenchymal transition (EMT), cell migration, and cell invasion. Gene set enrichment analysis (GSEA) enrichment analysis of RNA-sequencing from Hep3B-LR and corresponding parental cells revealed that activation of Wnt signaling pathway was involved in this adaptive process. Active ß-catenin and its downstream target lymphoid enhancer binding factor 1 (LEF1) were significantly elevated in LR HCC cells, which promoted lenvatinib resistance through mediating EMT-related genes. Data analysis based on Gene Expression Omnibus (GEO) and the Cancer Genome Atlas Program (TCGA) databases suggests that LEF1, as a key regulator of EMT, was a novel molecular target linked to lenvatinib resistance and poor prognosis in HCC. Using a small-molecule specific inhibitor ICG001 and knocking down LEF1 showed that targeting LEF1 restored the sensitivity of LR HCC cells to lenvatinib. Our results uncover upregulation of LEF1 confers lenvatinib resistance by facilitating EMT, cell migration, and invasion of LR HCC cells, indicating that LEF1 is a novel therapeutic target for overcoming acquired lenvatinib resistance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phenylurea Compounds , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
11.
Int Immunol ; 36(4): 167-182, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38169425

ABSTRACT

Forkhead box P3 (Foxp3)-expressing regulatory T (Treg) cells play essential roles in immune homeostasis but also contribute to establish a favorable environment for tumor growth by suppressing anti-tumor immune responses. It is thus necessary to specifically target tumor-infiltrating Treg cells to minimize effects on immune homeostasis in cancer immunotherapy. However, molecular features that distinguish tumor-infiltrating Treg cells from those in secondary lymphoid organs remain unknown. Here we characterize distinct features of tumor-infiltrating Treg cells by global analyses of the transcriptome and chromatin landscape. They exhibited activated phenotypes with enhanced Foxp3-dependent transcriptional regulation, yet being distinct from activated Treg cells in secondary lymphoid organs. Such differences may be attributed to the extensive clonal expansion of tumor-infiltrating Treg cells. Moreover, we found that TCF7 and LEF1 were specifically downregulated in tumor-infiltrating Treg cells both in mice and humans. These factors and Foxp3 co-occupied Treg suppressive function-related gene loci in secondary lymphoid organ Treg cells, whereas the absence of TCF7 and LEF1 accompanied altered gene expression and chromatin status at these gene loci in tumor-infiltrating Treg cells. Functionally, overexpression of TCF7 and LEF1 in Treg cells inhibited the enhancement of Treg suppressive function upon activation. Our results thus show the downregulation of TCF7 and LEF1 as markers of highly suppressive Treg cells in tumors and suggest that their absence controls the augmentation of Treg suppressive function in tumors. These molecules may be potential targets for novel cancer immunotherapy with minimum effects on immune homeostasis.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Animals , Mice , Down-Regulation , Forkhead Transcription Factors/metabolism , Chromatin/metabolism , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism
13.
J Invest Dermatol ; 144(6): 1223-1237.e10, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38159590

ABSTRACT

The Wnt/ß-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/ß-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/ß-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial ß-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/ß-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high ß-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of ß-catenin, suggesting that the level of epithelial Wnt/ß-catenin signaling activity may contribute to the choice between skin appendage identities.


Subject(s)
Cell Differentiation , Mammary Glands, Animal , Morphogenesis , Wnt Signaling Pathway , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Mice , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/embryology , Mammary Glands, Animal/growth & development , Female , Wnt Signaling Pathway/physiology , Hair Follicle/embryology , Hair Follicle/metabolism , Hair Follicle/cytology , Hair Follicle/growth & development , Lymphoid Enhancer-Binding Factor 1/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental
14.
Arthritis Res Ther ; 25(1): 238, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062469

ABSTRACT

BACKGROUNDS: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovial hyperplasia. Maintaining a balance between the proliferation and apoptosis of rheumatoid arthritis synovial fibroblasts (RASFs) is crucial for preventing the erosion of bone and cartilage and, ultimately, mitigating the progression of RA. We found that the lncRNA LEF1-AS1 was expressed at low levels in the RASFs and inhibited their abnormal proliferation by targeting PIK3R2 protein and regulating the PI3K/AKT signal pathway through its interaction with miR-30-5p. In this study, we fabricated a nano-drug delivery system for LEF1-AS1 using Zn-Adenine nanoparticles (NPs) as a novel therapeutic strategy against RA. METHODS: The expression levels of LEF1-AS1, miR-30-5p, PIK3R2, p-PI3K, and p-AKT were detected in the primary RASFs and a human fibroblast-like synovial cell line (HFLS). Zn-Adenine nanoparticles (NPs) were functionalized with anti-CD305 antibody to construct (Zn-Adenine)@Ab. These NPs were then loaded with LEF1-AS1 to form (Zn-Adenine)@Ab@lncRNA LEF1-AS1. Finally, the (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs were locally injected into a rat model with collagen-induced arthritis (CIA). The arthritic injuries in each group were evaluated by HE staining and other methods. RESULTS: LEF1-AS1 was expressed at low levels in the primary RASFs. High expression levels of LEF1-AS1 were detected in the HFLS cells, which corresponded to a significant downregulation of miR-30-5p. In addition, the expression level of PIK3R2 was significantly increased, and that of p-PI3K and p-AKT were significantly downregulated in these cells. The (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly inhibited the proliferation of RASFs and decreased the production of inflammatory cytokines (IL-1ß, IL-6, TNF-α). Intra-articular injection (IAI) of (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly alleviated cartilage destruction and joint injury in the CIA-modeled rats. CONCLUSIONS: LEF1-AS1 interacts with miR-30-5p to inhibit the abnormal proliferation of RASFs by regulating the PI3K/AKT signal pathway. The (Zn-Adenine)@Ab NPs achieved targeted delivery of the loaded LEF1-AS1 into the RASFs, which improved the cellular internalization rate and therapeutic effects. Thus, LEF1-AS1 is a potential target for the treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , MicroRNAs , RNA, Long Noncoding , Humans , Rats , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Synovial Membrane/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation/physiology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Antibodies/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Fibroblasts/metabolism , Inflammation/metabolism , Zinc/metabolism , Lymphoid Enhancer-Binding Factor 1/metabolism
15.
PLoS Pathog ; 19(12): e1011873, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38113273

ABSTRACT

As a human tumor virus, EBV is present as a latent infection in its associated malignancies where genetic and epigenetic changes have been shown to impede cellular differentiation and viral reactivation. We reported previously that levels of the Wnt signaling effector, lymphoid enhancer binding factor 1 (LEF1) increased following EBV epithelial infection and an epigenetic reprogramming event was maintained even after loss of the viral genome. Elevated LEF1 levels are also observed in nasopharyngeal carcinoma and Burkitt lymphoma. To determine the role played by LEF1 in the EBV life cycle, we used in silico analysis of EBV type 1 and 2 genomes to identify over 20 Wnt-response elements, which suggests that LEF1 may bind directly to the EBV genome and regulate the viral life cycle. Using CUT&RUN-seq, LEF1 was shown to bind the latent EBV genome at various sites encoding viral lytic products that included the immediate early transactivator BZLF1 and viral primase BSLF1 genes. The LEF1 gene encodes various long and short protein isoforms. siRNA depletion of specific LEF1 isoforms revealed that the alternative-promoter derived isoform with an N-terminal truncation (ΔN LEF1) transcriptionally repressed lytic genes associated with LEF1 binding. In addition, forced expression of the ΔN LEF1 isoform antagonized EBV reactivation. As LEF1 repression requires histone deacetylase activity through either recruitment of or direct intrinsic histone deacetylase activity, siRNA depletion of LEF1 resulted in increased histone 3 lysine 9 and lysine 27 acetylation at LEF1 binding sites and across the EBV genome. Taken together, these results indicate a novel role for LEF1 in maintaining EBV latency and restriction viral reactivation via repressive chromatin remodeling of critical lytic cycle factors.


Subject(s)
Epstein-Barr Virus Infections , Virus Latency , Humans , Virus Latency/genetics , Herpesvirus 4, Human/genetics , Virus Activation/genetics , Lysine/genetics , Lymphoid Enhancer-Binding Factor 1/genetics , Epstein-Barr Virus Infections/genetics , Protein Isoforms/genetics , RNA, Small Interfering/genetics , Histone Deacetylases/genetics , Gene Expression Regulation, Viral
16.
PeerJ ; 11: e16128, 2023.
Article in English | MEDLINE | ID: mdl-37927791

ABSTRACT

Background: The venous malformation is the most common congenital vascular malformation and exhibits the characteristics of local invasion and lifelong progressive development. Long noncoding RNA (lncRNA) regulates endothelial cells, vascular smooth muscle cells, macrophages, vascular inflammation, and metabolism and also affects the development of venous malformations. This study aimed to elucidate the role of the lncRNA LEF1-AS1 in the development of venous malformations and examine the interaction among LEF1-AS1, miR-489-3p, and S100A11 in HUVEC cells. Methods: Venous malformation tissues, corresponding normal venous tissues, and HUVEC cells were used. Agilent human lncRNA microarray gene chip was used to screen differential genes, RNA expression was detected using quantitative reverse transcription PCR, and protein expression was detected using Western blotting. The proliferation, migration, and angiogenesis of HUVEC cells were assessed using CCK8, transwell, and in vitro angiogenesis tests. Results: A total of 1,651 lncRNAs were screened using gene chip analysis, of which 1015 were upregulated and 636 were downregulated. The lncRNA LEF1-AS1 was upregulated with an obvious difference multiple, and the fold-change value was 11.03273. The results of the analysis performed using the StarBase bioinformatics prediction website showed that LEF1-AS1 and miR-489-3p possessed complementary binding sites and that miR-489-3p and S100A11 also had complementary binding sites. The findings of tissue experiments revealed that the expressions of LEF1-AS1 and S100A11 were higher in tissues with venous malformations than in normal tissues, whereas the expression of miR-489-3p was lower in venous malformations than in normal tissues. Cell culture experiments indicated that LEF1-AS1 promoted the proliferation, migration, and angiogenesis of HUVEC cells. In these cells, LEF1-AS1 targeted miR-489-3p, which in turn targeted S100A11. LEF1-AS1 acted as a competitive endogenous RNA and promoted the expression of S100A11 by competitively binding to miR-489-3p and enhancing the proliferation, migration, and angiogenesis of HUVEC cells. Thus, LEF1-AS1 participated in the occurrence and development of venous malformation. Conclusions: The expression of LEF1-AS1 was upregulated in venous malformations, and the expression of S100A11 was increased by the adsorption of miR-489-3p to venous endothelial cells, thus enhancing the proliferation, migration, and angiogenesis of HUVEC cells. In conclusion, LEF1-AS1 is involved in the occurrence and development of venous malformations by regulating the miR-489-3p/S100A11 axis, which provides valuable insights into the pathogenesis of this disease and opens new avenues for its treatment.


Subject(s)
MicroRNAs , RNA, Antisense , RNA, Long Noncoding , Vascular Diseases , Humans , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , S100 Proteins/genetics , Vascular Diseases/genetics , RNA, Antisense/genetics
17.
Aging Cell ; 22(12): e14024, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37961030

ABSTRACT

The study of aging and its mechanisms, such as cellular senescence, has provided valuable insights into age-related pathologies, thus contributing to their prevention and treatment. The current abundance of high-throughput data combined with the surge of robust analysis algorithms has facilitated novel ways of identifying underlying pathways that may drive these pathologies. For the purpose of identifying key regulators of lung aging, we performed comparative analyses of transcriptional profiles of aged versus young human subjects and mice, focusing on the common age-related changes in the transcriptional regulation in lung macrophages, T cells, and B immune cells. Importantly, we validated our findings in cell culture assays and human lung samples. Our analysis identified lymphoid enhancer binding factor 1 (LEF1) as an important age-associated regulator of gene expression in all three cell types across different tissues and species. Follow-up experiments showed that the differential expression of long and short LEF1 isoforms is a key regulatory mechanism of cellular senescence. Further examination of lung tissue from patients with idiopathic pulmonary fibrosis, an age-related disease with strong ties to cellular senescence, revealed a stark dysregulation of LEF1. Collectively, our results suggest that LEF1 is a key factor of aging, and its differential regulation is associated with human and murine cellular senescence.


Subject(s)
Aging , Cellular Senescence , Aged , Animals , Humans , Mice , Aging/genetics , Cellular Senescence/genetics , Lung/pathology , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Protein Isoforms/genetics
18.
Cell Death Dis ; 14(8): 510, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553362

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most prevalent cancer of the mouth, characterised by rapid progression and poor prognosis. Hence, an urgent need exists for the development of predictive targets for early diagnosis, prognosis determination, and clinical therapy. Dysregulation of lymphoid enhancer-binding factor 1 (LEF1), an important transcription factor involved in the Wnt-ß-catenin pathway, contributes to the poor prognosis of OSCC. Herein, we aimed to explore the correlation between LEF1 and histone lysine demethylase 4 A (KDM4A). Results show that the KDM4A complex is recruited by LEF1 and specifically binds the LATS2 promoter region, thereby inhibiting its expression, and consequently promoting cell proliferation and impeding apoptosis in OSCC. We also established NOD/SCID mouse xenograft models using CAL-27 cells to conduct an in vivo analysis of the roles of LEF1 and KDM4A in tumour growth, and our findings show that cells stably suppressing LEF1 or KDM4A have markedly decreased tumour-initiating capacity. Overall, the results of this study demonstrate that LEF1 plays a pivotal role in OSCC development and has potential to serve as a target for early diagnosis and treatment of OSCC.


Subject(s)
Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , Animals , Humans , Mice , beta Catenin/genetics , beta Catenin/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Mice, Inbred NOD , Mice, SCID , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Suppressor Proteins/metabolism , Wnt Signaling Pathway/genetics
19.
Pathol Int ; 73(9): 456-462, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37530485

ABSTRACT

DUSP22-rearranged primary cutaneous anaplastic large-cell lymphoma (pcALCL) has a biphasic histological pattern defined by large dermal atypical lymphocytes and epidermotropic small lymphocytes resembling pagetoid reticulosis, but the positivity rate of the biphasic pattern in DUSP22-rearranged pcALCL is unknown. Immunohistochemically, LEF1 expression in >75% of tumor cells is associated with DUSP22-rearrangement (DUSP22-R) in systemic ALCL. However, whether this association applies to pcALCL remains unclear. To analyze these pathological clues for screening DUSP22-R, we reviewed 11 skin biopsies from three patients with DUSP22-rearranged pcALCL. All specimens showed a biphasic pattern, of which three showed nonpagetoid infiltration of the epidermis. In all lesions, small-cell changes of tumor cells were observed not only within the epidermis but also under the epidermis. LEF1 positivity rates varied by lesion (range: 30%-90%, mean: 59.6%) with only three patients expressing LEF1 in more than 75% of tumor cells. In conclusion, the biphasic pattern was a constant finding in DUSP22-rearranged pcALCL, but it was not always pagetoid reticulosis-like. The recognition of small-cell change outside the epidermis may be helpful in diagnosing DUSP22-rearranged pcALCL. However, LEF1 expression was variable and its diagnostic usefulness may be limited.


Subject(s)
Lymphoma, Large-Cell, Anaplastic , Pagetoid Reticulosis , Skin Neoplasms , Humans , Lymphoma, Large-Cell, Anaplastic/pathology , Biopsy , Skin Neoplasms/pathology , Lymphoid Enhancer-Binding Factor 1/genetics , Dual-Specificity Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/genetics
20.
Am J Dermatopathol ; 45(8): 549-556, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37462205

ABSTRACT

ABSTRACT: Deep penetrating nevi (DPN), particularly those showing combined features, or combined deep penetrating nevi (CDPN), may show histopathological resemblance to blue nevus (BN) and melanoma. Preferentially Expressed Antigen in MElanoma (PRAME) is a marker that helps distinguish melanoma from benign melanocytic lesions. Lymphoid enhancer-binding factor 1 (LEF1) has been proposed to be used in conjunction with ß-catenin for diagnosis of DPN. The immunohistochemical expression of PRAME and LEF1 was evaluated in 10 DPN (including 6 CDPN and 2 DPN-like proliferations with atypical features), 16 BN (including combined and cellular BN), and 2 melanomas with features of DPN or BN. PRAME was negative in most DPN (n = 10/10, n = 9/10, one case with discrepancy between readers) and all BN (n = 16/16), while the 2 melanomas included were positive (n = 2/2). All DPN were positive for LEF1 (n = 9/9) while only a subset of BN were positive (n = 6/16, P = 0.0028; n = 5/16, P = 0.001, per both readers). LEF1 seemed to be easier to interpret than ß-catenin because of its nuclear pattern of expression. The expression of LEF1 in the regular nevus component of combined BN presents a potential pitfall in practice because it may lead to misinterpretation of LEF1 as positive in the BN component of the lesion. However, a subset (approximately one-third) of combined BN seemed to show true LEF1 expression. Taking into account pitfalls in interpretation, the combinatorial panel of PRAME and LEF1, in addition to conventional histopathological features, may be useful to distinguish CDPN from combined BN and other benign and malignant mimics.


Subject(s)
Melanoma , Nevus, Blue , Nevus, Epithelioid and Spindle Cell , Nevus , Skin Neoplasms , Humans , Nevus, Blue/diagnosis , Nevus, Blue/pathology , beta Catenin/metabolism , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Lymphoid Enhancer-Binding Factor 1 , Melanoma/pathology , Nevus, Epithelioid and Spindle Cell/diagnosis , Nevus/diagnosis , Nevus/pathology , Transcription Factors , Diagnosis, Differential , Antigens, Neoplasm
SELECTION OF CITATIONS
SEARCH DETAIL