Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Trends Immunol ; 45(7): 495-510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38908962

ABSTRACT

Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.


Subject(s)
Aging , Lymphopoiesis , Humans , Aging/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Lymphoid Progenitor Cells/immunology , B-Lymphocytes/immunology , Animals , Cell Differentiation , Killer Cells, Natural/immunology
2.
Nat Immunol ; 25(7): 1183-1192, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872000

ABSTRACT

Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.


Subject(s)
Cell Differentiation , Killer Cells, Natural , Killer Cells, Natural/immunology , Animals , Mice , Humans , Cell Differentiation/immunology , Mice, Inbred C57BL , Immunity, Innate , CD56 Antigen/metabolism , Muromegalovirus/immunology , Cell Lineage/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Lymphoid Progenitor Cells/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice, Knockout , Cells, Cultured
3.
Sci Immunol ; 9(95): eadj2654, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820141

ABSTRACT

Tissue-resident innate lymphoid cells (ILCs) play a vital role in the frontline defense of various tissues, including the lung. The development of type 2 ILCs (ILC2s) depends on transcription factors such as GATA3, RORα, GFI1, and Bcl11b; however, the factors regulating lung-resident ILC2s remain unclear. Through fate mapping analysis of the paralog transcription factors GFI1 and GFI1B, we show that GFI1 is consistently expressed during the transition from progenitor to mature ILC2s. In contrast, GFI1B expression is limited to specific subsets of bone marrow progenitors and lung-resident ILC progenitors. We found that GFI1B+ lung ILC progenitors represent a multi-lineage subset with tissue-resident characteristics and the potential to form lung-derived ILC subsets and liver-resident ILC1s. Loss of GFI1B in bone marrow progenitors led to the selective loss of lung-resident IL-18R+ ILCs and mature ILC2, subsequently preventing the emergence of effector ILCs that could protect the lung against inflammatory or tumor challenge.


Subject(s)
Immunity, Innate , Lung , Mice, Inbred C57BL , Proto-Oncogene Proteins , Animals , Lung/immunology , Lung/cytology , Mice , Immunity, Innate/immunology , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/metabolism , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/cytology , Repressor Proteins/genetics , Repressor Proteins/immunology , Mice, Knockout , Lymphocytes/immunology , Cell Differentiation/immunology , DNA-Binding Proteins , Transcription Factors
4.
Front Immunol ; 13: 854312, 2022.
Article in English | MEDLINE | ID: mdl-35757763

ABSTRACT

Natural killer (NK) cells play roles in viral clearance and early surveillance against malignant transformation, yet our knowledge of the underlying mechanisms controlling their development and functions remain incomplete. To reveal cell fate-determining pathways in NK cell progenitors (NKP), we utilized an unbiased approach and generated comprehensive gene expression profiles of NK cell progenitors. We found that the NK cell program was gradually established in the CLP to preNKP and preNKP to rNKP transitions. In line with FOXO1 and FOXO3 being co-expressed through the NK developmental trajectory, the loss of both perturbed the establishment of the NK cell program and caused stalling in both NK cell development and maturation. In addition, we found that the combined loss of FOXO1 and FOXO3 caused specific changes to the composition of the non-cytotoxic innate lymphoid cell (ILC) subsets in bone marrow, spleen, and thymus. By combining transcriptome and chromatin profiling, we revealed that FOXO TFs ensure proper NK cell development at various lineage-commitment stages through orchestrating distinct molecular mechanisms. Combined FOXO1 and FOXO3 deficiency in common and innate lymphoid cell progenitors resulted in reduced expression of genes associated with NK cell development including ETS-1 and their downstream target genes. Lastly, we found that FOXO1 and FOXO3 controlled the survival of committed NK cells via gene regulation of IL-15Rß (CD122) on rNKPs and bone marrow NK cells. Overall, we revealed that FOXO1 and FOXO3 function in a coordinated manner to regulate essential developmental genes at multiple stages during murine NK cell and ILC lineage commitment.


Subject(s)
Forkhead Box Protein O1 , Forkhead Box Protein O3 , Killer Cells, Natural , Lymphoid Progenitor Cells , Animals , Cell Differentiation/immunology , Forkhead Box Protein O1/immunology , Forkhead Box Protein O3/immunology , Immunity, Innate , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice , Mice, Inbred C57BL
5.
J Immunol ; 208(5): 1066-1075, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35140132

ABSTRACT

BATF3-deficient mice that lack CD8+ dendritic cells (DCs) showed an exacerbation of chronic graft-versus-host disease (cGVHD), including T follicular helper (Tfh) cell and autoantibody responses, whereas mice carrying the Sle2c2 lupus-suppressive locus with a mutation in the G-CSFR showed an expansion of CD8+ DCs and a poor mobilization of plasmacytoid DCs (pDCs) and responded poorly to cGVHD induction. Here, we investigated the contribution of CD8+ DCs and pDCs to the humoral response to protein immunization, where CD8neg DCs are thought to represent the major inducers. Both BATF3-/- and Sle2c2 mice had reduced humoral and germinal center (GC) responses compared with C57BL/6 (B6) controls. We showed that B6-derived CD4+ DCs are the major early producers of IL-6, followed by CD4-CD8- DCs. Surprisingly, IL-6 production and CD80 expression also increased in CD8+ DCs after immunization, and B6-derived CD8+ DCs rescued Ag-specific adaptive responses in BATF3-/- mice. In addition, inflammatory pDCs (ipDCs) produced more IL-6 than all conventional DCs combined. Interestingly, G-CSFR is highly expressed on pDCs. G-CSF expanded pDC and CD8+ DC numbers and IL-6 production by ipDCs and CD4+ DCs, and it improved the quality of Ab response, increasing the localization of Ag-specific T cells to the GC. Finally, G-CSF activated STAT3 in early G-CSFR+ common lymphoid progenitors of cDCs/pDCs but not in mature cells. In conclusion, we showed a multilayered role of DC subsets in priming Tfh cells in protein immunization, and we unveiled the importance of G-CSFR signaling in the development and function pDCs.


Subject(s)
Dendritic Cells/immunology , Graft vs Host Disease/immunology , Lymphoid Progenitor Cells/cytology , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , T Follicular Helper Cells/immunology , Adoptive Transfer , Animals , Autoantibodies/immunology , B7-1 Antigen/biosynthesis , Basic-Leucine Zipper Transcription Factors/genetics , CD4 Antigens/biosynthesis , CD8 Antigens/biosynthesis , Cell Differentiation/immunology , Dendritic Cells/transplantation , Female , Granulocyte Colony-Stimulating Factor/metabolism , Interleukin-6/biosynthesis , Lymphocyte Activation/immunology , Lymphoid Progenitor Cells/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Repressor Proteins/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/immunology
6.
Cell Rep ; 38(3): 110266, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045305

ABSTRACT

Production of effector CD8+ T cells during persistent infection requires a stable pool of stem-like cells that can give rise to effector cells via a proliferative intermediate population. In infection models marked by T cell exhaustion, this process can be transiently induced by checkpoint blockade but occurs spontaneously in mice chronically infected with the protozoan intracellular parasite Toxoplasma gondii. We observe distinct locations for parasite-specific T cell subsets, implying a link between differentiation and anatomical niches in the spleen. Loss of the chemokine receptor CXCR3 on T cells does not prevent white pulp-to-red pulp migration but reduces interactions with CXCR3 ligand-producing dendritic cells (DCs) and impairs memory-to-intermediate transition, leading to a buildup of memory T cells in the red pulp. Thus, CXCR3 increases T cell exposure to differentiation-inducing signals during red pulp migration, providing a dynamic mechanism for modulating effector differentiation in response to environmental signals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Dendritic Cells/immunology , Lymphoid Progenitor Cells/immunology , Receptors, CXCR3/immunology , Spleen/immunology , Animals , Mice , Persistent Infection/immunology , Toxoplasmosis, Animal/immunology
7.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-34958351

ABSTRACT

During dendritic cell (DC) development, Myc expression in progenitors is replaced by Mycl in mature DCs, but when and how this transition occurs is unknown. We evaluated DC development using reporters for MYC, MYCL, and cell cycle proteins Geminin and CDT1 in wild-type and various mutant mice. For classical type 1 dendritic cells (cDC1s) and plasmacytoid DCs (pDCs), the transition occurred upon their initial specification from common dendritic cell progenitors (CDPs) or common lymphoid progenitors (CLPs), respectively. This transition required high levels of IRF8 and interaction with PU.1, suggesting the use of EICEs within Mycl enhancers. In pDCs, maximal MYCL induction also required the +41kb Irf8 enhancer that controls pDC IRF8 expression. IRF8 also contributed to repression of MYC. While MYC is expressed only in rapidly dividing DC progenitors, MYCL is most highly expressed in DCs that have exited the cell cycle. Thus, IRF8 levels coordinate the Myc-Mycl transition during DC development.


Subject(s)
Cell Differentiation/genetics , Dendritic Cells/cytology , Dendritic Cells/metabolism , Gene Expression Regulation , Genes, myc , Interferon Regulatory Factors/genetics , Animals , Cell Cycle Proteins/genetics , Enhancer Elements, Genetic , Genes, Reporter , Immunophenotyping , Interferon Regulatory Factors/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Mice , Mice, Knockout , Protein Binding , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism
8.
Mol Biol Rep ; 48(1): 817-822, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33438082

ABSTRACT

Acute lymphoid leukemia (ALL) is a type of hematological neoplasm that affects the precursor cells of strains B, T  and NK, with a higher incidence in the pediatric range. The pathophysiology of ALL is characterized by chromosomal abnormalities and genetic alterations involved in the differentiation and proliferation of lymphoid precursor cells. Despite the lack of information in the literature, it is believed that leukemogenesis originates from a complex interaction between environmental and genetic factors, which combined lead to cellular modifications. Environmental factors have been evaluated as possible predisposing factors in the development of ALL but there are still conflicting results in the world literature. In this context, the aim of the present review is to discuss the major exogenous factors regarding ALL.


Subject(s)
Carcinogenesis/immunology , Gene Expression Regulation, Leukemic/immunology , Gene-Environment Interaction , Lymphoid Progenitor Cells/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Adult , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Differentiation , Cell Proliferation , Child , Chromosome Aberrations , Cytokines/genetics , Cytokines/immunology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Lymphoid Progenitor Cells/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
9.
Cancer Immunol Immunother ; 70(5): 1305-1321, 2021 May.
Article in English | MEDLINE | ID: mdl-33140189

ABSTRACT

Allogeneic natural killer (NK) cell transfer is a potential immunotherapy to eliminate and control cancer. A promising source are CD34 + hematopoietic progenitor cells (HPCs), since large numbers of cytotoxic NK cells can be generated. Effective boosting of NK cell function can be achieved by interleukin (IL)-15. However, its in vivo half-life is short and potent trans-presentation by IL-15 receptor α (IL-15Rα) is absent. Therefore, ImmunityBio developed IL-15 superagonist N-803, which combines IL-15 with an activating mutation, an IL-15Rα sushi domain for trans-presentation, and IgG1-Fc for increased half-life. Here, we investigated whether and how N-803 improves HPC-NK cell functionality in leukemia and ovarian cancer (OC) models in vitro and in vivo in OC-bearing immunodeficient mice. We used flow cytometry-based assays, enzyme-linked immunosorbent assay, microscopy-based serial killing assays, and bioluminescence imaging, for in vitro and in vivo experiments. N-803 increased HPC-NK cell proliferation and interferon (IFN)γ production. On leukemia cells, co-culture with HPC-NK cells and N-803 increased ICAM-1 expression. Furthermore, N-803 improved HPC-NK cell-mediated (serial) leukemia killing. Treating OC spheroids with HPC-NK cells and N-803 increased IFNγ-induced CXCL10 secretion, and target killing after prolonged exposure. In immunodeficient mice bearing human OC, N-803 supported HPC-NK cell persistence in combination with total human immunoglobulins to prevent Fc-mediated HPC-NK cell depletion. Moreover, this combination treatment decreased tumor growth. In conclusion,  N-803 is a promising IL-15-based compound that boosts HPC-NK cell expansion and functionality in vitro and in vivo. Adding N-803 to HPC-NK cell therapy could improve cancer immunotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Interleukin-15/agonists , Killer Cells, Natural/immunology , Leukemia/therapy , Lymphoid Progenitor Cells/immunology , Ovarian Neoplasms/therapy , Recombinant Fusion Proteins/therapeutic use , Animals , Antigens, CD34/metabolism , Antineoplastic Agents/pharmacology , Cell Differentiation , Cell Line, Tumor , Cytotoxicity Tests, Immunologic , Disease Models, Animal , Female , Humans , Interferon-gamma/metabolism , Killer Cells, Natural/transplantation , Leukemia/immunology , Lymphoid Progenitor Cells/transplantation , Mice , Mice, SCID , Ovarian Neoplasms/immunology , Recombinant Fusion Proteins/pharmacology
10.
Front Immunol ; 12: 825813, 2021.
Article in English | MEDLINE | ID: mdl-35095929

ABSTRACT

Protection against pathogen re-infection is mediated, in large part, by two humoral cellular compartments, namely, long-lived plasma cells and memory B cells. Recent data have reinforced the importance of memory B cells, particularly in response to re-infection of different viral subtypes or in response with viral escape mutants. In regard to memory B cell generation, considerable advancements have been made in recent years in elucidating its basic mechanism, which seems to well explain why the memory B cells pool can deal with variant viruses. Despite such progress, efforts to develop vaccines that induce broadly protective memory B cells to fight against rapidly mutating pathogens such as influenza virus and HIV have not yet been successful. Here, we discuss recent advances regarding the key signals and factors regulating germinal center-derived memory B cell development and activation and highlight the challenges for successful vaccine development.


Subject(s)
Immunologic Memory , Memory B Cells/immunology , Memory B Cells/metabolism , Antibodies, Neutralizing/immunology , Antibody Formation/genetics , Antibody Formation/immunology , Cell Communication/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Clonal Selection, Antigen-Mediated , Female , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Host-Pathogen Interactions/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Male , Memory B Cells/cytology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
Immunity ; 53(4): 775-792.e9, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33002412

ABSTRACT

Innate lymphoid cells (ILCs) are generated early during ontogeny and persist predominantly as tissue-resident cells. Here, we examined how ILCs are maintained and renewed within tissues. We generated a single cell atlas of lung ILC2s and found that Il18r1+ ILCs comprise circulating and tissue-resident ILC progenitors (ILCP) and effector-cells with heterogeneous expression of the transcription factors Tcf7 and Zbtb16, and CD103. Our analyses revealed a continuous differentiation trajectory from Il18r1+ ST2- ILCPs to Il18r- ST2+ ILC2s, which was experimentally validated. Upon helminth infection, recruited and BM-derived cells generated the entire spectrum of ILC2s in parabiotic and shield chimeric mice, consistent with their potential role in the renewal of tissue ILC2s. Our findings identify local ILCPs and reveal ILCP in situ differentiation and tissue adaptation as a mechanism of ILC maintenance and phenotypic diversification. Local niches, rather than progenitor origin, or the developmental window during ontogeny, may dominantly imprint ILC phenotypes in adult tissues.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Lymphoid Progenitor Cells/immunology , Animals , Cell Differentiation/immunology , Cells, Cultured , Female , Humans , Interleukin-18 Receptor alpha Subunit/immunology , Lung/immunology , Mice , Mice, Inbred C57BL , Promyelocytic Leukemia Zinc Finger Protein/immunology , Signal Transduction/immunology , Single-Cell Analysis/methods , T Cell Transcription Factor 1/immunology , Transcription Factors/immunology
12.
Nat Immunol ; 21(12): 1574-1584, 2020 12.
Article in English | MEDLINE | ID: mdl-33077975

ABSTRACT

A classical view of blood cell development is that multipotent hematopoietic stem and progenitor cells (HSPCs) become lineage-restricted at defined stages. Lin-c-Kit+Sca-1+Flt3+ cells, termed lymphoid-primed multipotent progenitors (LMPPs), have lost megakaryocyte and erythroid potential but are heterogeneous in their fate. Here, through single-cell RNA sequencing, we identify the expression of Dach1 and associated genes in this fraction as being coexpressed with myeloid/stem genes but inversely correlated with lymphoid genes. Through generation of Dach1-GFP reporter mice, we identify a transcriptionally and functionally unique Dach1-GFP- subpopulation within LMPPs with lymphoid potential with low to negligible classic myeloid potential. We term these 'lymphoid-primed progenitors' (LPPs). These findings define an early definitive branch point of lymphoid development in hematopoiesis and a means for prospective isolation of LPPs.


Subject(s)
Biomarkers , Eye Proteins/metabolism , Genomics , Lymphoid Progenitor Cells/metabolism , Single-Cell Analysis , Animals , Cells, Cultured , Computational Biology/methods , Eye Proteins/genetics , Gene Expression Profiling , Genomics/methods , Hematopoiesis/genetics , High-Throughput Nucleotide Sequencing , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice , Mice, Knockout , Mice, Transgenic , Proteomics , Single-Cell Analysis/methods
13.
Nat Immunol ; 21(12): 1552-1562, 2020 12.
Article in English | MEDLINE | ID: mdl-33046887

ABSTRACT

T cell memory relies on the generation of antigen-specific progenitors with stem-like properties. However, the identity of these progenitors has remained unclear, precluding a full understanding of the differentiation trajectories that underpin the heterogeneity of antigen-experienced T cells. We used a systematic approach guided by single-cell RNA-sequencing data to map the organizational structure of the human CD8+ memory T cell pool under physiological conditions. We identified two previously unrecognized subsets of clonally, epigenetically, functionally, phenotypically and transcriptionally distinct stem-like CD8+ memory T cells. Progenitors lacking the inhibitory receptors programmed death-1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were committed to a functional lineage, whereas progenitors expressing PD-1 and TIGIT were committed to a dysfunctional, exhausted-like lineage. Collectively, these data reveal the existence of parallel differentiation programs in the human CD8+ memory T cell pool, with potentially broad implications for the development of immunotherapies and vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory , Lymphoid Progenitor Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Biomarkers , Cell Differentiation/immunology , Computational Biology/methods , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice , Telomere Homeostasis
14.
J Immunol ; 204(9): 2600-2611, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32213568

ABSTRACT

Accurately tuned expression levels of the transcription factor GATA-3 are crucial at several stages of T cell and innate lymphoid cell development and differentiation. Moreover, several lines of evidence suggest that Gata3 expression might provide a reliable molecular marker for the identification of elusive progenitor cell subsets at the earliest stages of T lineage commitment. To be able to faithfully monitor Gata3 expression noninvasively at the single-cell level, we have generated a novel strain of knock-in reporter mice, termed GATIR, by inserting an expression cassette encoding a bright fluorescent marker into the 3'-untranslated region of the endogenous Gata3 locus. Importantly, in contrast to three previously published strains of Gata3 reporter mice, GATIR mice preserve physiological Gata3 expression on the targeted allele. In this study, we show that GATIR mice faithfully reflect endogenous Gata3 expression without disturbing the development of GATA-3-dependent lymphoid cell populations. We further show that GATIR mice provide an ideal tool for noninvasive monitoring of Th2 polarization and straightforward identification of innate lymphoid cell 2 progenitor populations. Finally, as our reporter is non-gene-destructive, GATIR mice can be bred to homozygosity, not feasible with previously published strains of Gata3 reporter mice harboring disrupted alleles. The availability of hetero- and homozygous Gata3 reporter mice with an exceptionally bright fluorescent marker, allowed us to visualize allelic Gata3 expression in individual cells simply by flow cytometry. The unambiguous results obtained provide compelling evidence against previously postulated monoallelic Gata3 expression in early T lineage and hematopoietic stem cell subsets.


Subject(s)
GATA3 Transcription Factor/genetics , Genes, Reporter/genetics , 3' Untranslated Regions/genetics , 3' Untranslated Regions/immunology , Alleles , Animals , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Female , Flow Cytometry/methods , Fluorescent Dyes/metabolism , GATA3 Transcription Factor/immunology , Gene Knock-In Techniques/methods , Genes, Reporter/immunology , Hematopoietic Stem Cells/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Lymphocytes/immunology , Lymphoid Progenitor Cells/immunology , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/immunology
15.
J Immunol ; 204(9): 2447-2454, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32198141

ABSTRACT

The caudal hematopoietic tissue in zebrafish, the equivalent to the fetal liver in mammals, is an intermediate hematopoietic niche for the maintenance and differentiation of hematopoietic stem and progenitor cells before homing to the thymus and kidney marrow. As one of the ultimate hematopoietic organs, the thymus sustains T lymphopoiesis, which is essential for adaptive immune system. However, the mechanism of prethymic T lymphoid progenitors migrating to the thymus remains elusive. In this study, we identify an Rho GTPase Rac2 as a modulator of T lymphoid progenitor homing to the thymus in zebrafish. rac2-Deficient embryos show the inability of T lymphoid progenitors homing to the thymus because of defective cell-autonomous motility. Mechanistically, we demonstrate that Rac2 regulates homing of T lymphoid progenitor through Pak1-mediated AKT pathway. Taken together, our work reveals an important function of Rac2 in directing T lymphoid progenitor migration to the thymus during zebrafish embryogenesis.


Subject(s)
Cell Movement/immunology , Embryonic Development/immunology , Lymphoid Progenitor Cells/metabolism , Thymus Gland/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , rac GTP-Binding Proteins/metabolism , Animals , Animals, Genetically Modified/immunology , Animals, Genetically Modified/metabolism , Bone Marrow/immunology , Bone Marrow/metabolism , Cell Differentiation/immunology , Lymphoid Progenitor Cells/immunology , Lymphopoiesis/immunology , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/immunology , Thymus Gland/immunology , Zebrafish/immunology , Zebrafish Proteins/immunology , p21-Activated Kinases/immunology , p21-Activated Kinases/metabolism , rac GTP-Binding Proteins/immunology , rho GTP-Binding Proteins/immunology , rho GTP-Binding Proteins/metabolism
16.
Methods Mol Biol ; 2121: 7-22, 2020.
Article in English | MEDLINE | ID: mdl-32147782

ABSTRACT

Understanding the origins and developmental trajectory of innate lymphoid cell (ILC) progenitors has been of substantial interest to the fields of ILC biology and immunology. While mature ILC are rare lymphocytes, ILC progenitors represent an even smaller fraction of cells, providing additional challenges in studying them. Moreover, though the approaches to studying these cells are conceptually straightforward, the technical nuances that underlie them can substantially affect the quality of the data. Herein, we provide a detailed protocol for assessing the frequency of ILC progenitors in the bone marrow, their phenotype, and their potential to develop into mature ILC. These methods make up the foundation of in vivo investigations into ILC development, and we hope these thorough protocols and associated notes facilitate additional, high-quality inquiries into this fascinating field.


Subject(s)
Adoptive Transfer/methods , Bone Marrow Cells , Killer Cells, Natural/cytology , Liver/cytology , Lymphocytes/cytology , Lymphoid Progenitor Cells/cytology , Lymphopoiesis/immunology , Animals , Bone Marrow , Bone Marrow Cells/cytology , Cell Lineage , Female , Flow Cytometry , Killer Cells, Natural/immunology , Liver/immunology , Lymphocytes/immunology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Mice , Mice, Inbred BALB C
17.
Eur J Immunol ; 50(7): 959-971, 2020 07.
Article in English | MEDLINE | ID: mdl-32090320

ABSTRACT

The transcription factor Hhex (hematopoietically expressed homeobox gene) is critical for development of multiple lymphoid lineages beyond the common lymphoid progenitor. In addition, Hhex regulates hematopoietic stem cell (HSC) self-renewal, emergency hematopoiesis, and acute myeloid leukemia initiation and maintenance. Hhex mediates its effects on HSCs and acute myeloid leukemia stem cells via repression of the Cdkn2a tumor suppressor locus. However, we report here that loss of Cdkn2a does not rescue the failure of lymphoid development caused by loss of Hhex. As loss of Hhex causes apoptosis of lymphoid progenitors associated with impaired Bcl2 expression and defective Stat5b signaling, we tested the effects of rescuing these pathways using transgenic mice. Expression of the anti-apoptotic factor Bcl2, but not activated Stat5, rescued the development of T-, B-, and NK-cell lineages in the absence of Hhex. These results indicate that Bcl2 expression, but not Stat5b signaling or loss of Cdkn2a, can overcome the lymphoid deficiencies caused by the absence of Hhex, suggesting that the primary role of this transcription factor is to promote survival of lymphoid progenitors during early lymphoid development.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/immunology , Homeodomain Proteins/immunology , Lymphoid Progenitor Cells/immunology , STAT5 Transcription Factor/immunology , Signal Transduction/immunology , Transcription Factors/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , Cell Survival/genetics , Cell Survival/immunology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Homeodomain Proteins/genetics , Lymphoid Progenitor Cells/cytology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/immunology , STAT5 Transcription Factor/genetics , Signal Transduction/genetics , Transcription Factors/genetics
18.
Annu Rev Immunol ; 38: 229-247, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31928469

ABSTRACT

Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.


Subject(s)
T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adaptive Immunity , Animals , Biomarkers , Cell Differentiation/immunology , Host-Pathogen Interactions , Humans , Immunologic Memory , Lymphocyte Activation/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Phenotype , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/cytology
19.
Adv Immunol ; 143: 99-119, 2019.
Article in English | MEDLINE | ID: mdl-31607369

ABSTRACT

Rapid advances have been made to uncover the mechanisms that regulate dendritic cell (DC) development, and in turn, how models of development can be employed to define dendritic cell function. Models of DC development have been used to define the unique functions of DC subsets during immune responses to distinct pathogens. More recently, models of DC function have expanded to include their homeostatic and inflammatory physiology, modes of communication with various innate and adaptive immune lineages, and specialized functions across different lymphoid organs. New models of DC development call for revisions of previously accepted paradigms with respect to the ontogeny of plasmacytoid DC (pDC) and classical DC (cDC) subsets. By far, development of the cDC1 subset is best understood, and models have now been developed that can separate deficiencies in development from deficiencies in function. Such models are lacking for pDCs and cDC2s, limiting the depth of our understanding of their unique and essential roles during immune responses. If novel immunotherapies aim to harness the functions of human DCs, understanding of DC development will be essential to develop models DC function. Here we review emerging models of DC development and function.


Subject(s)
Cell Differentiation/immunology , Dendritic Cells/immunology , Lymphoid Progenitor Cells/immunology , Myeloid Progenitor Cells/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Dendritic Cells/cytology , Humans , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lymphoid Progenitor Cells/metabolism , Mice , Models, Immunological , Myeloid Progenitor Cells/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box Binding Homeobox 2/metabolism
20.
Front Immunol ; 10: 2045, 2019.
Article in English | MEDLINE | ID: mdl-31555276

ABSTRACT

NK cells are generated from hematopoietic stem cells (HSC) residing in the bone marrow (BM), similar to other blood cells. Development toward mature NK cells occurs largely outside the BM through travel of CD34+ and other progenitor intermediates toward secondary lymphoid organs. The BM harbors multipotent CD34+ common lymphoid progenitors (CLPs) that generate T, B, NK, and Dendritic Cells and are devoid of erythroid, myeloid, and megakaryocytic potential. Over recent years, there has been a quest for single-lineage progenitors predominantly with the objective of manipulation and intervention in mind, which has led to the identification of unipotent NK cell progenitors devoid of other lymphoid lineage potential. Research efforts for the study of lymphopoiesis have almost exclusively concentrated on healthy donor tissues and on repopulation/transplant models. This has led to the widely accepted assumption that lymphopoiesis during disease states reflects the findings of these models. However, compelling evidences in animal models show that inflammation plays a fundamental role in the regulation of HSC maturation and release in the BM niches through several mechanisms including modulation of the CXCL12-CXCR4 expression. Indeed, recent findings during systemic inflammation in patients provide evidence that a so-far overlooked CLP exists in the BM (Lin-CD34+DNAM-1brightCXCR4+) and that it overwhelmingly exits the BM during systemic inflammation. These "inflammatory" precursors have a developmental trajectory toward surprisingly functional NK and T cells as reviewed here and mirror the steady state maintenance of the NK cell pool by CD34+DNAM-1-CXCR4- precursors. Our understanding of NK cell precursor development may benefit from including a distinct "inflammatory" progenitor modeling of lymphoid precursors, allowing rapid deployment of specialized Lin-CD34+DNAM-1brightCXCR4+ -derived resources from the BM.


Subject(s)
Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Homeostasis , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Animals , Biomarkers , Bone Marrow Cells/cytology , Cell Differentiation/immunology , Disease Susceptibility , Humans , Immunophenotyping , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Lymphoid Progenitor Cells/cytology , Stem Cell Niche
SELECTION OF CITATIONS
SEARCH DETAIL