Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.012
Filter
1.
J Exp Med ; 221(9)2024 09 02.
Article in English | MEDLINE | ID: mdl-39093311

ABSTRACT

Shortly after the emergence of newly formed human B cells from bone marrow as transitional cells, they diverge along two developmental pathways that can be distinguished by the level of IgM they express and migratory biases. Here, we propose that differential tissue homing of immature B cell subsets contributes to human lymphoid tissue structure and function.


Subject(s)
Cell Movement , Lymphoid Tissue , Humans , Lymphoid Tissue/immunology , Lymphoid Tissue/cytology , Cell Movement/immunology , B-Lymphocytes/immunology , Immunoglobulin M/metabolism , Immunoglobulin M/immunology , B-Lymphocyte Subsets/immunology , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/cytology , Cell Differentiation/immunology
2.
Chem Soc Rev ; 53(15): 7657-7680, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38958009

ABSTRACT

Nanomaterials exhibit significant potential for stimulating immune responses, offering both local and systemic modulation across a variety of diseases. The lymphoid organs, such as the spleen and lymph nodes, are home to various immune cells, including monocytes and dendritic cells, which contribute to both the progression and prevention/treatment of diseases. Consequently, many nanomaterial formulations are being rationally designed to target these organs and engage with specific cell types, thereby inducing therapeutic and protective effects. In this review, we explore crucial cellular interactions and processes involved in immune regulation and highlight innovative nano-based immunomodulatory approaches. We outline essential considerations in nanomaterial design with an emphasis on their impact on biological interactions, targeting capabilities, and treatment efficacy. Through selected examples, we illustrate the strategic targeting of therapeutically active nanomaterials to lymphoid organs and the subsequent immunomodulation for infection resistance, inflammation suppression, self-antigen tolerance, and cancer immunotherapy. Additionally, we address current challenges, discuss emerging topics, and share our outlook on future developments in the field.


Subject(s)
Immunomodulation , Inflammation , Nanostructures , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Nanostructures/chemistry , Inflammation/drug therapy , Inflammation/immunology , Immunomodulation/drug effects , Animals , Immunotherapy , Lymphoid Tissue/immunology , Lymphoid Tissue/drug effects
3.
PLoS One ; 19(7): e0292408, 2024.
Article in English | MEDLINE | ID: mdl-38950025

ABSTRACT

Co-infections are a common reality but understanding how the immune system responds in this context is complex and can be unpredictable. Heligmosomoides bakeri (parasitic roundworm, previously Heligmosomoides polygyrus) and Toxoplasma gondii (protozoan parasite) are well studied organisms that stimulate a characteristic Th2 and Th1 response, respectively. Several studies have demonstrated reduced inflammatory cytokine responses in animals co-infected with such organisms. However, while general cytokine signatures have been examined, the impact of the different cytokine producing lymphocytes on parasite control/clearance is not fully understood. We investigated five different lymphocyte populations (NK, NKT, γδ T, CD4+ T and CD8+ T cells), five organs (small intestine, Peyer's patches, mesenteric lymph nodes, spleen and liver), and 4 cytokines (IFN©, IL-4, IL-10 and IL-13) at two different time points (days 5 and 10 post T. gondii infection). We found that co-infected animals had significantly higher mortality than either single infection. This was accompanied by transient and local changes in parasite loads and cytokine profiles. Despite the early changes in lymphocyte and cytokine profiles, severe intestinal pathology in co-infected mice likely contributed to early mortality due to significant damage by both parasites in the small intestine. Our work demonstrates the importance of taking a broad view during infection research, studying multiple cell types, organs/tissues and time points to link and/or uncouple immunological from pathological findings. Our results provide insights into how co-infection with parasites stimulating different arms of the immune system can lead to drastic changes in infection dynamics.


Subject(s)
Coinfection , Cytokines , Nematospiroides dubius , Toxoplasma , Animals , Coinfection/immunology , Coinfection/parasitology , Toxoplasma/immunology , Mice , Cytokines/metabolism , Nematospiroides dubius/immunology , Strongylida Infections/immunology , Strongylida Infections/parasitology , Strongylida Infections/mortality , Toxoplasmosis/immunology , Toxoplasmosis/mortality , Toxoplasmosis/complications , Female , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/mortality , Toxoplasmosis, Animal/parasitology , Spleen/immunology , Spleen/pathology , Spleen/parasitology , Parasite Load , Lymphoid Tissue/immunology , Lymphoid Tissue/pathology , Lymphoid Tissue/parasitology
4.
Nature ; 632(8025): 637-646, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085603

ABSTRACT

Nasal vaccination elicits a humoral immune response that provides protection from airborne pathogens1, yet the origins and specific immune niches of antigen-specific IgA-secreting cells in the upper airways are unclear2. Here we define nasal glandular acinar structures and the turbinates as immunological niches that recruit IgA-secreting plasma cells from the nasal-associated lymphoid tissues (NALTs)3. Using intact organ imaging, we demonstrate that nasal vaccination induces B cell expansion in the subepithelial dome of the NALT, followed by invasion into commensal-bacteria-driven chronic germinal centres in a T cell-dependent manner. Initiation of the germinal centre response in the NALT requires pre-expansion of antigen-specific T cells, which interact with cognate B cells in interfollicular regions. NALT ablation and blockade of PSGL-1, which mediates interactions with endothelial cell selectins, demonstrated that NALT-derived IgA-expressing B cells home to the turbinate region through the circulation, where they are positioned primarily around glandular acinar structures. CCL28 expression was increased in the turbinates in response to vaccination and promoted homing of IgA+ B cells to this site. Thus, in response to nasal vaccination, the glandular acini and turbinates provide immunological niches that host NALT-derived IgA-secreting cells. These cellular events could be manipulated in vaccine design or in the treatment of upper airway allergic responses.


Subject(s)
B-Lymphocytes , Germinal Center , Lymphoid Tissue , Turbinates , Animals , Mice , Lymphoid Tissue/immunology , Lymphoid Tissue/cytology , B-Lymphocytes/immunology , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Female , Male , Germinal Center/immunology , Germinal Center/cytology , Turbinates/cytology , Turbinates/immunology , Vaccination , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Plasma Cells/immunology , Plasma Cells/cytology , Plasma Cells/metabolism , Chemokines, CC/metabolism , Mice, Inbred C57BL , Administration, Intranasal , Cell Movement
5.
Vet Immunol Immunopathol ; 274: 110785, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861830

ABSTRACT

The pig is emerging as a physiologically relevant biomedical large animal model. Delineating the functional roles of porcine adaptive T-lymphocyte subsets in health and disease is of critical significance, which facilitates mechanistic understanding of antigen-specific immune memory responses. We identified a novel T-helper/memory lymphocyte subset in pigs and performed phenotypic and functional characterization of these cells under steady state and following vaccination and infection with swine influenza A virus (SwIAV). A novel subset of CD3+CD4lowCD8α+CD8ß+ memory T-helper cells was identified in the blood of healthy adult pigs under homeostatic conditions. To understand the possible functional role/s of these cells, we characterized the antigen-specific T cell memory responses by multi-color flow cytometry in pigs vaccinated with a whole inactivated SwIAV vaccine, formulated with a phytoglycogen nanoparticle/STING agonist (ADU-S100) adjuvant (NanoS100-SwIAV). As a control, a commercial SwIAV vaccine was included in a heterologous challenge infection trial. The frequencies of antigen-specific IL-17A and IFNγ secreting CD3+CD4lowCD8α+CD8ß+ memory T-helper cells were significantly increased in the lung draining tracheobronchial lymph nodes (TBLN) of intradermal, intramuscular and intranasal inoculated NanoS100-SwIAV vaccine and commercial vaccine administered animals. While the frequencies of antigen-specific, IFNγ secreting CD3+CD4lowCD8α+CD8ß+ memory T-helper cells were significantly enhanced in the blood of intranasal and intramuscular vaccinates. These observations suggest that the CD3+CD4lowCD8α+CD8ß+ T-helper/memory cells in pigs may have a protective and/or regulatory role/s in immune responses against SwIAV infection. These observations highlight the heterogeneity and plasticity of porcine CD4+ T-helper/memory cells in response to respiratory viral infection in pigs. Comprehensive systems immunology studies are needed to further decipher the cellular lineages and functional role/s of this porcine T helper/memory cell subset.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Swine Diseases/prevention & control , T-Lymphocytes, Helper-Inducer/immunology , Respiratory System/immunology , Respiratory System/virology , Lymphoid Tissue/immunology , Immunologic Memory , Memory T Cells/immunology , T-Lymphocyte Subsets/immunology , Influenza A virus/immunology , Vaccination/veterinary
6.
Infect Immun ; 92(7): e0026323, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38899881

ABSTRACT

Because most humans resist Mycobacterium tuberculosis infection, there is a paucity of lung samples to study. To address this gap, we infected Diversity Outbred mice with M. tuberculosis and studied the lungs of mice in different disease states. After a low-dose aerosol infection, progressors succumbed to acute, inflammatory lung disease within 60 days, while controllers maintained asymptomatic infection for at least 60 days, and then developed chronic pulmonary tuberculosis (TB) lasting months to more than 1 year. Here, we identified features of asymptomatic M. tuberculosis infection by applying computational and statistical approaches to multimodal data sets. Cytokines and anti-M. tuberculosis cell wall antibodies discriminated progressors vs controllers with chronic pulmonary TB but could not classify mice with asymptomatic infection. However, a novel deep-learning neural network trained on lung granuloma images was able to accurately classify asymptomatically infected lungs vs acute pulmonary TB in progressors vs chronic pulmonary TB in controllers, and discrimination was based on perivascular and peribronchiolar lymphocytes. Because the discriminatory lesion was rich in lymphocytes and CD4 T cell-mediated immunity is required for resistance, we expected CD4 T-cell genes would be elevated in asymptomatic infection. However, the significantly different, highly expressed genes were from B-cell pathways (e.g., Bank1, Cd19, Cd79, Fcmr, Ms4a1, Pax5, and H2-Ob), and CD20+ B cells were enriched in the perivascular and peribronchiolar regions of mice with asymptomatic M. tuberculosis infection. Together, these results indicate that genetically controlled B-cell responses are important for establishing asymptomatic M. tuberculosis lung infection.


Subject(s)
B-Lymphocytes , Lung , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Animals , Mice , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Mycobacterium tuberculosis/immunology , B-Lymphocytes/immunology , Lung/microbiology , Lung/pathology , Lung/immunology , Granuloma/microbiology , Granuloma/immunology , Granuloma/pathology , Lymphoid Tissue/immunology , Lymphoid Tissue/microbiology , Lymphoid Tissue/pathology , Disease Models, Animal , Female , Asymptomatic Infections , Cytokines/metabolism , Cytokines/genetics
7.
Front Cell Infect Microbiol ; 14: 1394070, 2024.
Article in English | MEDLINE | ID: mdl-38895731

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (Map) is the etiological agent of paratuberculosis (PTB), a chronic intestinal inflammatory disease that causes high economical losses in dairy livestock worldwide. Due to the absence of widely available preventive or therapeutical treatments, new alternative therapies are needed. In this study, the effect of a probiotic alone or in combination with a commercial vaccine has been evaluated in a rabbit model. Vaccination enhanced the humoral response, exerted a training effect of peripheral polymorphonuclear neutrophils (PMNs) against homologous and heterologous stimuli, stimulated the release of pro-inflammatory cytokines by gut-associated lymphoid tissue (GALT) macrophages, and reduced the bacterial burden in GALT as well. However, the administration of the probiotic after vaccination did not affect the PMN activity, increased metabolic demand, and supressed pro-inflammatory cytokines, although humoral response and bacterial burden decrease in GALT was maintained similar to vaccination alone. The administration of the probiotic alone did not enhance the humoral response or PMN activity, and the bacterial burden in GALT was further increased compared to the only challenged group. In conclusion, the probiotic was able to modulate the immune response hampering the clearance of the infection and was also able to affect the response of innate immune cells after vaccination. This study shows that the administration of a probiotic can modulate the immune response pathways triggered by vaccination and/or infection and even exacerbate the outcome of the disease, bringing forward the importance of verifying treatment combinations in the context of each particular infectious agent.


Subject(s)
Cytokines , Mycobacterium avium subsp. paratuberculosis , Neutrophils , Paratuberculosis , Probiotics , Vaccination , Animals , Probiotics/administration & dosage , Paratuberculosis/prevention & control , Paratuberculosis/immunology , Paratuberculosis/microbiology , Mycobacterium avium subsp. paratuberculosis/immunology , Rabbits , Neutrophils/immunology , Cytokines/metabolism , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Macrophages/immunology , Disease Models, Animal , Lymphoid Tissue/immunology , Lymphoid Tissue/microbiology , Female , Immunity, Humoral , Antibodies, Bacterial/blood
8.
Front Immunol ; 15: 1400739, 2024.
Article in English | MEDLINE | ID: mdl-38863701

ABSTRACT

Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.


Subject(s)
Immunity, Mucosal , Animals , Mice , Lymphoid Tissue/immunology , Lymphoid Tissue/cytology , Humans , Epithelial Cells/immunology , Cell Differentiation , Intestinal Mucosa/immunology , Intestinal Mucosa/cytology , Stem Cell Niche , M Cells
9.
Nat Commun ; 15(1): 4051, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744839

ABSTRACT

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.


Subject(s)
B-Lymphocytes , Dendritic Cells , Endodeoxyribonucleases , Gastrointestinal Microbiome , Animals , Female , Humans , Male , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Mice, Inbred C57BL
10.
Immunol Rev ; 324(1): 78-94, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38717136

ABSTRACT

It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.


Subject(s)
B-Lymphocytes , Homeostasis , Intra-Abdominal Fat , Humans , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Intra-Abdominal Fat/immunology , Intra-Abdominal Fat/metabolism , Obesity/immunology , Obesity/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Adaptive Immunity
11.
Retrovirology ; 21(1): 8, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693565

ABSTRACT

The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.


Subject(s)
CD4-Positive T-Lymphocytes , Disease Models, Animal , HIV Infections , HIV-1 , Animals , Mice , HIV Infections/immunology , HIV Infections/virology , HIV Infections/drug therapy , HIV-1/physiology , HIV-1/drug effects , Humans , CD4-Positive T-Lymphocytes/immunology , Lymphoid Tissue/virology , Lymphoid Tissue/immunology , Viral Load/drug effects , Spleen/virology , Spleen/immunology , Lymph Nodes/immunology , Lymph Nodes/virology , Caspases/metabolism , Caspase Inhibitors/pharmacology , Anti-Retroviral Agents/therapeutic use
12.
Front Immunol ; 15: 1377913, 2024.
Article in English | MEDLINE | ID: mdl-38799420

ABSTRACT

Introduction: The atypical chemokine receptor 2 (ACKR2) is a chemokine scavenger receptor, which limits inflammation and organ damage in several experimental disease models including kidney diseases. However, potential roles of ACKR2 in reducing inflammation and tissue injury in autoimmune disorders like systemic lupus erythematosus (SLE) and lupus nephritis are unknown, as well as its effects on systemic autoimmunity. Methods: To characterize functional roles of ACKR2 in SLE, genetic Ackr2 deficiency was introduced into lupus-prone C57BL/6lpr (Ackr2-/- B6lpr) mice. Results: Upon inflammatory stimulation in vitro, secreted chemokine levels increased in Ackr2 deficient tubulointerstitial tissue but not glomeruli. Moreover, Ackr2 expression was induced in kidneys and lungs of female C57BL/6lpr mice developing SLE. However, female Ackr2-/- B6lpr mice at 28 weeks of age showed similar renal functional parameters as wildtype (WT)-B6lpr mice. Consistently, assessment of activity and chronicity indices for lupus nephritis revealed comparable renal injury. Interestingly, Ackr2-/- B6lpr mice showed significantly increased renal infiltrates of CD3+ T and B cells, but not neutrophils, macrophages or dendritic cells, with T cells predominantly accumulating in the tubulointerstitial compartment of Ackr2-/- B6lpr mice. In addition, histology demonstrated significantly increased peribronchial lung infiltrates of CD3+ T cells in Ackr2-/- B6lpr mice. Despite this, protein levels of pro-inflammatory chemokines and mRNA expression of inflammatory mediators were not different in kidneys and lungs of WT- and Ackr2-/- B6lpr mice. This data suggests compensatory mechanisms for sufficient chemokine clearance in Ackr2-deficient B6lpr mice in vivo. Analysis of systemic autoimmune responses revealed comparable levels of circulating lupus-associated autoantibodies and glomerular immunoglobulin deposition in the two genotypes. Interestingly, similar to kidney and lung CD4+ T cell numbers and activation were significantly increased in spleens of Ackr2-deficient B6lpr mice. In lymph nodes of Ackr2-/- B6lpr mice abundance of activated dendritic cells decreased, but CD4+ T cell numbers were comparable to WT. Moreover, increased plasma levels of CCL2 were present in Ackr2-/- B6lpr mice, which may facilitate T cell mobilization into spleens and peripheral organs. Discussion: In summary, we show that ACKR2 prevents expansion of T cells and formation of tertiary lymphoid tissue, but is not essential to limit autoimmune tissue injury in lupus-prone B6lpr mice.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes , Tertiary Lymphoid Structures , Animals , Mice , Female , Lupus Erythematosus, Systemic/immunology , Tertiary Lymphoid Structures/immunology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Disease Models, Animal , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Autoimmunity , Duffy Blood-Group System/genetics , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Cell Proliferation , Chemokine Receptor D6
13.
Sci Adv ; 10(22): eadn7786, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809992

ABSTRACT

Viruses, bacteria, and parasites frequently cause infections in the gastrointestinal tract, but traditional vaccination strategies typically elicit little or no mucosal antibody responses. Here, we report a strategy to effectively concentrate immunogens and adjuvants in gut-draining lymph nodes (LNs) to induce gut-associated mucosal immunity. We prepared nanoemulsions (NEs) based on biodegradable oils commonly used as vaccine adjuvants, which encapsulated a potent Toll-like receptor agonist and displayed antigen conjugated to their surface. Following intraperitoneal administration, these NEs accumulated in gut-draining mesenteric LNs, priming strong germinal center responses and promoting B cell class switching to immunoglobulin A (IgA). Optimized NEs elicited 10- to 1000-fold higher antigen-specific IgG and IgA titers in the serum and feces, respectively, compared to free antigen mixed with NE, and strong neutralizing antibody titers against severe acute respiratory syndrome coronavirus 2. Thus, robust gut humoral immunity can be elicited by exploiting the unique lymphatic collection pathways of the gut with a lymph-targeting vaccine formulation.


Subject(s)
Immunity, Humoral , Animals , Mice , Gastrointestinal Tract/immunology , Lymphoid Tissue/immunology , Immunity, Mucosal/drug effects , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/immunology , Lymph Nodes/immunology , Immunoglobulin A/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Female , B-Lymphocytes/immunology , Adjuvants, Vaccine , Mice, Inbred C57BL , Humans
14.
Immunol Rev ; 324(1): 68-77, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38662554

ABSTRACT

The milky spots in omentum are atypical lymphoid tissues that play a pivotal role in regulating immune responses in the peritoneal cavity. The milky spots act as central hubs for collecting antigens and particles from the peritoneal cavity, regulating lymphocyte trafficking, promoting the differentiation and self-renewal of immune cells, and supporting the local germinal centre response. In addition, the milky spots exhibit unique developmental characteristics that combine the features of secondary and tertiary lymphoid tissues. These structures are innately programmed to form during foetal development; however, they can also be formed postnatally in response to peritoneal irritation such as inflammation, infection, obesity, or tumour metastasis. In this review, I discuss emerging perspectives on homeostatic development and organization of the milky spots.


Subject(s)
Omentum , Humans , Animals , Omentum/immunology , Cell Differentiation , Homeostasis , Lymphoid Tissue/immunology , Germinal Center/immunology , Peritoneal Cavity
15.
Fish Shellfish Immunol ; 149: 109535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582231

ABSTRACT

Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.


Subject(s)
B-Lymphocytes , Ciliophora Infections , Ciliophora , Fish Diseases , Perciformes , T-Lymphocytes , Animals , Fish Diseases/immunology , Fish Diseases/parasitology , Perciformes/immunology , Ciliophora Infections/veterinary , Ciliophora Infections/immunology , B-Lymphocytes/immunology , Ciliophora/physiology , T-Lymphocytes/immunology , Immunity, Mucosal , Lymphoid Tissue/immunology , Immunoglobulin M/immunology , Immunoglobulin M/blood , Cell Proliferation
16.
Trends Immunol ; 45(5): 325-326, 2024 May.
Article in English | MEDLINE | ID: mdl-38637201

ABSTRACT

To surveil an organ for pathogens, lymphoid structures need to sample antigens locally. The full set of lymphoid structures involved in surveilling for brain-tropic pathogens has not been defined. Through comprehensive imaging of the mouse meninges, a new study by Fitzpatrick et al. describes dural-associated lymphoid tissue (DALT) and its contribution to humoral responses following intranasal viral infection.


Subject(s)
Lymphoid Tissue , Animals , Lymphoid Tissue/immunology , Lymphoid Tissue/virology , Humans , Mice , Meninges/immunology , Brain/immunology , Brain/virology , Brain/physiology , Immunity, Humoral
17.
Nature ; 628(8008): 612-619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509366

ABSTRACT

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Subject(s)
Dura Mater , Immunity, Humoral , Lymphoid Tissue , Veins , Administration, Intranasal , Antigens/administration & dosage , Antigens/immunology , Bone Marrow/immunology , Central Nervous System/blood supply , Central Nervous System/immunology , Dura Mater/blood supply , Dura Mater/immunology , Germinal Center/cytology , Germinal Center/immunology , Lymphatic Vessels/immunology , Lymphoid Tissue/blood supply , Lymphoid Tissue/immunology , Plasma Cells/immunology , Skull/blood supply , T-Lymphocytes/immunology , Veins/physiology , Humans , Male , Female , Adult , Middle Aged , Animals , Mice , Aged, 80 and over
18.
Exp Anim ; 73(3): 270-285, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38311397

ABSTRACT

Systemic autoimmune diseases (ADs) might affect the morphology and function of gut-associated lymphoid tissue (LTs) indirectly; however, their exact relationship remains unclear. Therefore, we investigated mouse LTs in the anorectal canal and morphologically compared them between MRL/MpJ-Fas+/+ and MRL/MpJ-Faslpr/lpr mice. LT aggregations, also known as rectal mucosa-associated lymphoid tissues (RMALTs), were exclusively seen in the lamina propria and submucosa of the rectum. The mean size and number of the LT aggregations both significantly increased in MRL/MpJ-Faslpr/lpr mice compared to those in MRL/MpJ-Fas+/+ mice. The distance from the anorectal junction to the first LT aggregate was significantly shorter in MRL/MpJ-Faslpr/lpr mice than that in MRL/MpJ-Fas+/+ mice. Immunostaining revealed that the RMALTs included CD3+, CD4+, and CD8+ T cells; B220+ B cells; IBA1+ macrophages; Ki67+ proliferative cells; and PNAd+ high-endothelial venules (HEVs). The numbers of macrophages, proliferative cells, CD4+ T cells, CD8+ T cells, and HEVs were significantly increased in MRL/MpJ-Faslpr/lpr mice compared to those in MRL/MpJ mice. Furthermore, the gene expression levels of chemokines (Cxcl9 and Cxcl13) and their corresponding receptors (Cxcr3 and Cxcr5) were significantly higher in MRL/MpJ-Faslpr/lpr mice than those in MRL/MpJ-Fas+/+ mice. Although the morphology of rectal epithelium was comparable between the strains, M cell number was significantly higher in MRL/MpJ-Faslpr/lpr mice than in MRL/MpJ-Fas+/+ mice. Thus, ADs could alter RMALT morphology, and quantitative changes in T-cell subsets, proliferative cells, macrophages, HEVs, chemokine expression, and M cells could affect their cell composition and development.


Subject(s)
Autoimmune Diseases , Intestinal Mucosa , Mice, Inbred MRL lpr , Rectum , Animals , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Autoimmune Diseases/pathology , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Rectum/pathology , Rectum/immunology , Mice , Female , Lymphoid Tissue/pathology , Lymphoid Tissue/immunology
19.
Nat Commun ; 15(1): 1261, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341416

ABSTRACT

While CD4+ T cells are a prerequisite for CD8+ T cell-mediated protection against intracellular hepatotropic pathogens, the mechanisms facilitating the transfer of CD4-help to intrahepatic CD8+ T cells are unknown. Here, we developed an experimental system to investigate cognate CD4+ and CD8+ T cell responses to a model-antigen expressed de novo in hepatocytes and reveal that after initial priming, effector CD4+ and CD8+ T cells migrate into portal tracts and peri-central vein regions of the liver where they cluster with type-1 conventional dendritic cells. These dendritic cells are locally licensed by CD4+ T cells and expand the number of CD8+ T cells in situ, resulting in larger effector and memory CD8+ T cell pools. These findings reveal that CD4+ T cells promote intrahepatic immunity by amplifying the CD8+ T cell response via peripheral licensing of hepatic type-1 conventional dendritic cells and identify intrahepatic perivascular compartments specialized in facilitating effector T cell-dendritic cell interactions.


Subject(s)
CD4-Positive T-Lymphocytes , Liver , Lymphoid Tissue , Antigens , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Liver/immunology , Humans , Lymphoid Tissue/immunology
20.
J Virol ; 97(6): e0176022, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37223960

ABSTRACT

CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , T Follicular Helper Cells , Animals , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV Infections/virology , Lymph Nodes/cytology , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , T Follicular Helper Cells/immunology , T Follicular Helper Cells/virology , B-Lymphocytes/immunology , B-Lymphocytes/virology , CD40 Ligand/genetics , Gene Expression/immunology , DNA, Viral/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphoid Tissue/virology
SELECTION OF CITATIONS
SEARCH DETAIL