Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.350
Filter
1.
PLoS Pathog ; 20(8): e1012437, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102432

ABSTRACT

The ability of Staphylococcus aureus (S. aureus) to survive within macrophages is a critical strategy for immune evasion, contributing to the pathogenesis and progression of osteomyelitis. However, the underlying mechanisms remain poorly characterized. This study discovered that inhibiting the MEK1/2 pathway reduced bacterial load and mitigated bone destruction in a mouse model of S. aureus osteomyelitis. Histological staining revealed increased phosphorylated MEK1/2 levels in bone marrow macrophages surrounding abscess in the mouse model of S. aureus osteomyelitis. Activation of MEK1/2 pathway and its roles in impairing macrophage bactericidal function were confirmed in primary mouse bone marrow-derived macrophages (BMDMs). Transcriptome analysis and in vitro experiments demonstrated that S. aureus activates the MEK1/2 pathway through EGFR signaling. Moreover, we found that excessive activation of EGFR-MEK1/2 cascade downregulates mitochondrial reactive oxygen species (mtROS) levels by suppressing Chek2 expression, thereby impairing macrophage bactericidal function. Furthermore, pharmacological inhibition of EGFR signaling prevented upregulation of phosphorylated MEK1/2 and restored Chek2 expression in macrophages, significantly enhancing S. aureus clearance and improving bone microstructure in vivo. These findings highlight the critical role of the EGFR-MEK1/2 cascade in host immune defense against S. aureus, suggesting that S. aureus may reduce mtROS levels by overactivating the EGFR-MEK1/2 cascade, thereby suppressing macrophage bactericidal function. Therefore, combining EGFR-MEK1/2 pathway blockade with antibiotics could represent an effective therapeutic approach for the treatment of S. aureus osteomyelitis.


Subject(s)
ErbB Receptors , MAP Kinase Kinase 1 , Macrophages , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Animals , Osteomyelitis/microbiology , Osteomyelitis/immunology , Osteomyelitis/metabolism , Staphylococcal Infections/immunology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Mice , Staphylococcus aureus/immunology , ErbB Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , MAP Kinase Signaling System/physiology , Mice, Inbred C57BL , Disease Models, Animal , Signal Transduction
2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000589

ABSTRACT

Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.


Subject(s)
Alanine , MAP Kinase Kinase 1 , Molecular Dynamics Simulation , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/pharmacology , Alanine/metabolism , Humans , Catalytic Domain , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Enzyme Activation/drug effects , Benzimidazoles/pharmacology , Benzimidazoles/chemistry
3.
Dis Model Mech ; 17(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38826084

ABSTRACT

Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.


Subject(s)
Axons , Cerebral Cortex , MAP Kinase Kinase 1 , Neurons , Animals , Axons/metabolism , Axons/pathology , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , Cerebral Cortex/pathology , Neurons/metabolism , Neurons/pathology , Learning , Glutamic Acid/metabolism , Enzyme Activation , Mice , MAP Kinase Signaling System , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Mutation/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Nerve Tissue Proteins/metabolism , Motor Activity , Mitogen-Activated Protein Kinase 1/metabolism
4.
Cancer Lett ; 597: 217007, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38849010

ABSTRACT

The oncogenic role of KRAS in colorectal cancer (CRC) progression is well-established. Despite this, identifying effective therapeutic targets for KRAS-mutated CRC remains a significant challenge. This study identifies pyruvate dehydrogenase phosphatase catalytic subunit 1 (PDP1) as a previously unrecognized yet crucial regulator in the progression of KRAS mutant CRC. A substantial upregulation of PDP1 expression is observed in KRAS mutant CRC cells and tissues compared to wild-type KRAS samples, which correlates with poorer prognosis. Functional experiments elucidate that PDP1 accelerates the malignance of KRAS mutant CRC cells, both in vitro and in vivo. Mechanistically, PDP1 acts as a scaffold, enhancing BRAF and MEK1 interaction and activating the MAPK signaling, thereby promoting CRC progression. Additionally, transcription factor KLF5 is identified as the key regulator for PDP1 upregulation in KRAS mutant CRC. Crucially, targeting PDP1 combined with MAPK inhibitors exhibits an obvious inhibitory effect on KRAS mutant CRC. Overall, PDP1 is underscored as a vital oncogenic driver and promising therapeutic target for KRAS mutant CRC.


Subject(s)
Colorectal Neoplasms , Disease Progression , MAP Kinase Kinase 1 , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Animals , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , Mice , Cell Line, Tumor , Mutation , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Female , Cell Proliferation , Mice, Nude , Male , Up-Regulation
5.
Tumour Biol ; 46(1): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38728194

ABSTRACT

BACKGROUND: It is well established that most colorectal carcinomas arise from conventional adenomas through the adenoma-carcinoma sequence (ACS) model. mitogen-activated protein kinases (MAPKs) pathway has been reported as a crucial player in tumorigenesis. The MAPK signaling pathway is activated by different extracellular signals involving the "mitogen-activated/extracellular signal-regulated kinase 1 (MEK1)", and this induces the expression of genes involved in proliferation and cellular transformation. Diaphanous-related formin-3 (DIAPH3) acts as a potential metastasis regulator through inhibiting the cellular transition to amoeboid behavior in different cancer types. OBJECTIVE: The aim of the study was to investigate the pattern of immunohistochemical expression of MEK1 and DIAPH3 in colorectal adenoma (CRA) and corresponding colorectal carcinoma (CRC) specimens. METHODS: The immunohistochemical expression of DIAPH3 and MEK1 was examined in 43 cases of CRC and their associated adenomas using tissue microarray technique. RESULTS: MEK1 was overexpressed in 23 CRC cases (53.5%) and in 20 CRA cases (46.5%). DIAPH3 was overexpressed in 11 CRA cases (about 29%) which were significantly lower than CRC (22 cases; 58%) (P = 0.011). Both MEK1 and DIAPH3 overexpression were significantly correlated in CRC (P = 0.009) and CRA cases (P = 0.002). Tumors with MEK1 overexpression had a significantly higher tumor grade (P = 0.050) and perineural invasion (P = 0.017). CONCLUSIONS: Both MEK1 and DIAPH3 are overexpressed across colorectal ACS with strong correlation between them. This co- expression suggests a possible synergistic effect of MEK1 and DIAPH-3 in colorectal ACS. Further large-scale studies are required to investigate the potential functional aspects of MEK1 and DIAPH3 in ACS and their involvement in tumor initiation and the metastatic process.


Subject(s)
Adenoma , Colorectal Neoplasms , Formins , MAP Kinase Kinase 1 , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Formins/genetics , Formins/metabolism , Adenoma/pathology , Adenoma/genetics , Adenoma/metabolism , Female , Male , Middle Aged , Aged , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , Adult , Immunohistochemistry , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Carcinoma/pathology , Carcinoma/genetics , Carcinoma/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
6.
Nat Commun ; 15(1): 3636, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710699

ABSTRACT

Polypharmacology drugs-compounds that inhibit multiple proteins-have many applications but are difficult to design. To address this challenge we have developed POLYGON, an approach to polypharmacology based on generative reinforcement learning. POLYGON embeds chemical space and iteratively samples it to generate new molecular structures; these are rewarded by the predicted ability to inhibit each of two protein targets and by drug-likeness and ease-of-synthesis. In binding data for >100,000 compounds, POLYGON correctly recognizes polypharmacology interactions with 82.5% accuracy. We subsequently generate de-novo compounds targeting ten pairs of proteins with documented co-dependency. Docking analysis indicates that top structures bind their two targets with low free energies and similar 3D orientations to canonical single-protein inhibitors. We synthesize 32 compounds targeting MEK1 and mTOR, with most yielding >50% reduction in each protein activity and in cell viability when dosed at 1-10 µM. These results support the potential of generative modeling for polypharmacology.


Subject(s)
Molecular Docking Simulation , Humans , TOR Serine-Threonine Kinases/metabolism , Polypharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Binding , Drug Discovery/methods , Drug Design , Cell Survival/drug effects
7.
Sci Rep ; 14(1): 9550, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664461

ABSTRACT

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Replication Protein A/metabolism , Replication Protein A/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Recombination, Genetic , Homologous Recombination , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
8.
Aging (Albany NY) ; 16(5): 4224-4235, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38431286

ABSTRACT

Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.


Subject(s)
Leukemia, Myeloid, Acute , Liver Diseases, Alcoholic , MicroRNAs , Humans , Animals , Mice , MAP Kinase Kinase 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hepatocytes/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Ethanol , Leukemia, Myeloid, Acute/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
9.
J Mol Biol ; 436(6): 168483, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38331211

ABSTRACT

RAF protein kinases are essential effectors in the MAPK pathway and are important cancer drug targets. Structural understanding of RAF activation is so far based on cryo-electron microscopy (cryo-EM) and X-ray structures of BRAF in different conformational states as inactive or active complexes with KRAS, 14-3-3 and MEK1. In this study, we have solved the first cryo-EM structures of CRAF2/14-3-32 at 3.4 Å resolution and CRAF2/14-3-32/MEK12 at 4.2 Å resolution using CRAF kinase domain expressed as constitutively active Y340D/Y341D mutant in insect cells. The overall architecture of our CRAF2/14-3-32 and CRAF2/14-3-32/MEK12 cryo-EM structures is highly similar to corresponding BRAF structures in complex with 14-3-3 or 14-3-3/MEK1 and represent the activated dimeric RAF conformation. Our CRAF cryo-EM structures provide additional insights into structural understanding of the activated CRAF2/14-3-32/MEK12 complex.


Subject(s)
14-3-3 Proteins , MAP Kinase Kinase 1 , Proto-Oncogene Proteins c-raf , Antineoplastic Agents/chemistry , Cryoelectron Microscopy , 14-3-3 Proteins/chemistry , MAP Kinase Kinase 1/chemistry , Proto-Oncogene Proteins c-raf/chemistry , Protein Conformation
10.
Transplantation ; 108(5): 1127-1141, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38238904

ABSTRACT

BACKGROUND: Emerging evidence has highlighted the role of macrophages in heart transplant rejection (HTR). However, the molecular signals modulating the immunometabolic phenotype of allograft-infiltrating macrophages (AIMs) during HTR remain unknown. METHODS: We analyzed single-cell RNA sequencing data from cardiac graft-infiltrating immunocytes to characterize the activation patterns and metabolic features of AIMs. We used flow cytometry to determine iNOS and PKM2 expression and MEK/ERK signaling activation levels in AIMs. We then generated macrophage-specific Mek1/2 knockout mice to determine the role of the MEK1/2-PKM2 pathway in the proinflammatory phenotype and glycolytic capacity of AIMs during HTR. RESULTS: Single-cell RNA sequencing analysis showed that AIMs had a significantly elevated proinflammatory and glycolytic phenotype. Flow cytometry analysis verified that iNOS and PKM2 expressions were significantly upregulated in AIMs. Moreover, MEK/ERK signaling was activated in AIMs and positively correlated with proinflammatory and glycolytic signatures. Macrophage-specific Mek1/2 deletion significantly protected chronic cardiac allograft rejection and inhibited the proinflammatory phenotype and glycolytic capacity of AIMs. Mek1/2 ablation also reduced the proinflammatory phenotype and glycolytic capacity of lipopolysaccharides + interferon-γ-stimulated macrophages. Mek1/2 ablation impaired nuclear translocation and PKM2 expression in macrophages. PKM2 overexpression partially restored the proinflammatory phenotype and glycolytic capacity of Mek1/2 -deficient macrophages. Moreover, trametinib, an Food and Drug Administration-approved MEK1/2 inhibitor, ameliorated chronic cardiac allograft rejection. CONCLUSIONS: These findings suggest that the MEK1/2-PKM2 pathway is essential for immunometabolic reprogramming of proinflammatory AIMs, implying that it may be a promising therapeutic target in clinical heart transplantation.


Subject(s)
Graft Rejection , Heart Transplantation , MAP Kinase Kinase 1 , MAP Kinase Kinase 2 , Macrophages , Mice, Knockout , Animals , Heart Transplantation/adverse effects , Graft Rejection/immunology , Graft Rejection/metabolism , Graft Rejection/pathology , Graft Rejection/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , MAP Kinase Kinase 2/metabolism , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , Thyroid Hormone-Binding Proteins , Mice, Inbred C57BL , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Signal Transduction , Carrier Proteins/metabolism , Carrier Proteins/genetics , Glycolysis , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Disease Models, Animal , Phenotype , Allografts
13.
J Vasc Res ; 60(4): 213-226, 2023.
Article in English | MEDLINE | ID: mdl-37778342

ABSTRACT

INTRODUCTION: Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases. METHODS: Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 µm) with/without PKA (PKI; 10 µm), MEK1/2 (PD98059; 10 µm), and PI3K (LY294002; 1 µm) blockade. RESULTS: PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2. DISCUSSION: Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Receptor, PAR-2 , Rats , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism , MAP Kinase Kinase 1/metabolism , Muscle, Smooth, Vascular/metabolism , Cell Proliferation , Phosphatidylinositol 3-Kinases/metabolism , DNA/metabolism , Cells, Cultured
14.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220246, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37778380

ABSTRACT

Drug resistance is still a big challenge for cancer patients. We previously demonstrated that inhibiting peptidylarginine deiminase 2 (PADI2) enzyme activity with Cl-amine increases the efficacy of docetaxel (Doc) on tamoxifen-resistant breast cancer cells with PADI2 expression. However, it is not clear whether this effect applies to other tumour cells. Here, we collected four types of tumour cells with different PADIs expression and fully evaluated the inhibitory effect of the combination of PADIs inhibitor (BB-Cla) and Doc in vitro and in vivo on tumour cell growth. Results show that inhibiting PADIs combined with Doc additively inhibits tumour cell growth across the four tumour cells. PADI2-catalysed citrullination of MEK1 Arg 189 exists in the four tumour cells, and blocking the function of MEK1 Cit189 promotes the anti-tumour effect of Doc in these tumour cells. Further analysis shows that inhibiting MEK1 Cit189 decreases the expression of cancer cell stemness factors and helps prevent cancer cell stemness maintenance. Importantly, this combined treatment can partially restore the sensitivity of chemotherapy-resistant cells to docetaxel or cisplatin in tumour cells. Thus, our study provides an experimental basis for the combined therapeutic approaches using docetaxel- and PADIs inhibitors-based strategies in tumour treatment. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Subject(s)
Antineoplastic Agents , Citrullination , Docetaxel , Drug Resistance, Neoplasm , MAP Kinase Kinase 1 , Humans , Docetaxel/pharmacology , Tamoxifen , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , Antineoplastic Agents/pharmacology
16.
Int J Mol Sci ; 24(19)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37834284

ABSTRACT

BRAF is one of the most frequently mutated oncogenes, with an overall frequency of about 50%. Targeting BRAF and its effector mitogen-activated protein kinase kinase 1/2 (MEK1/2) is now a key therapeutic strategy for BRAF-mutant tumors, and therapies based on dual BRAF/MEK inhibition showed significant efficacy in a broad spectrum of BRAF tumors. Nonetheless, BRAF/MEK inhibition therapy is not always effective for BRAF tumor suppression, and significant challenges remain to improve its clinical outcomes. First, certain BRAF tumors have an intrinsic ability to rapidly adapt to the presence of BRAF and MEK1/2 inhibitors by bypassing drug effects via rewired signaling, metabolic, and regulatory networks. Second, almost all tumors initially responsive to BRAF and MEK1/2 inhibitors eventually acquire therapy resistance via an additional genetic or epigenetic alteration(s). Overcoming these challenges requires identifying the molecular mechanism underlying tumor cell resistance to BRAF and MEK inhibitors and analyzing their specificity in different BRAF tumors. This review aims to update this information.


Subject(s)
Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins B-raf/metabolism , MAP Kinase Kinase 1/genetics , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Drug Resistance, Neoplasm/genetics , Mutation
17.
Am J Surg Pathol ; 47(12): 1438-1448, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37773074

ABSTRACT

Activating mutations in MAP2K1 can be seen in benign and intermediate-grade melanocytic neoplasms with spitzoid morphology. We analyzed the clinical, histopathologic, and genetic features for 16 cases of benign and intermediate-grade melanocytic tumors harboring activating MAP2K1 mutations. We compared them to Spitz neoplasms with characteristic Spitz fusions or HRAS mutation. We also compared the mutational pattern of benign and intermediate-grade MAP2K1 -mutated neoplasms and melanomas with activating MAP2K1 mutations. Among the 16 cases, the favored morphologic diagnosis was Spitz nevus (8/16), atypical Spitz tumors (6/16), and deep penetrating nevus (2/16). The 2 most common architectural patterns seen included a plaque-like silhouette with fibroplasia around the rete reminiscent of a dysplastic nevus (n=7) or a wedge-shaped or nodular pattern with the plexiform arrangement of the nests aggregating around the adnexa or neurovascular bundle (n=8). The cases with dysplastic architecture and spitzoid cytology resembled dysplastic Spitz nevi. Compared with true Spitz neoplasms, MAP2K1 -mutated neoplasms occurred in older age groups and had more frequent pagetosis and a lower average mitotic count. The most common type of mutation in the benign and intermediate-grade cases in the literature involves an in-frame deletion, while, in melanomas, missense mutations are predominant. Benign and intermediate-grade melanocytic neoplasms with activating mutations in MAP2K1 can have morphologic overlap with Spitz neoplasms. A significant proportion of melanomas also have activating MAP2K1 mutations. In-frame deletions are predominantly seen in the benign and intermediate-grade cases, and missense mutations are predominantly seen in melanomas.


Subject(s)
Melanoma , Nevus, Epithelioid and Spindle Cell , Nevus, Pigmented , Skin Neoplasms , Humans , Aged , Skin Neoplasms/pathology , Melanoma/pathology , Nevus, Epithelioid and Spindle Cell/genetics , Nevus, Pigmented/genetics , Mutation , Diagnosis, Differential , MAP Kinase Kinase 1/genetics
18.
J Bone Miner Res ; 38(12): 1834-1845, 2023 12.
Article in English | MEDLINE | ID: mdl-37737377

ABSTRACT

Patients with classical melorheostosis exhibit exuberant bone overgrowth in the appendicular skeleton, resulting in pain and deformity with no known treatment. Most patients have somatic, mosaic mutations in MAP2K1 (encoding the MEK1 protein) in osteoblasts and overlying skin. As with most rare bone diseases, lack of affected tissue has limited the opportunity to understand how the mutation results in excess bone formation. The aim of this study was to create a cellular model to study melorheostosis. We obtained patient skin cells bearing the MAP2K1 mutation (affected cells), and along with isogenic control normal fibroblasts reprogrammed them using the Sendai virus method into induced pluripotent stem cells (iPSCs). Pluripotency was validated by marker staining and embryoid body formation. iPSCs were then differentiated to mesenchymal stem cells (iMSCs) and validated by flow cytometry. We confirmed retention of the MAP2K1 mutation in iMSCs with polymerase chain reaction (PCR) and confirmed elevated MEK1 activity by immunofluorescence staining. Mutation-bearing iMSCs showed significantly elevated vascular endothelial growth factor (VEGF) secretion, proliferation and collagen I and IV secretion. iMSCs were then differentiated into osteoblasts, which showed increased mineralization at 21 days and increased VEGF secretion at 14 and 21 days of differentiation. Administration of VEGF to unaffected iMSCs during osteogenic differentiation was sufficient to increase mineralization. Blockade of VEGF by bevacizumab reduced mineralization in iMSC-derived affected osteoblasts and in affected primary patient-derived osteoblasts. These data indicate that patient-derived induced pluripotent stem cells recreate the elevated MEK1 activity, increased mineralization, and increased proliferation seen in melorheostosis patients. The increased bone formation is driven, in part, by abundant VEGF secretion. Modifying the activity of VEGF (a known stimulator of osteoblastogenesis) represents a promising treatment pathway to explore. iPSCs may have wide applications to other rare bone diseases. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Melorheostosis , Osteogenesis , Humans , Bone and Bones/metabolism , Cell Differentiation , MAP Kinase Kinase 1/genetics , Melorheostosis/genetics , Osteogenesis/genetics , Vascular Endothelial Growth Factor A
19.
Proc Natl Acad Sci U S A ; 120(34): e2304184120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579140

ABSTRACT

Mutations in signal transduction pathways lead to various diseases including cancers. MEK1 kinase, encoded by the human MAP2K1 gene, is one of the central components of the MAPK pathway and more than a hundred somatic mutations in the MAP2K1 gene were identified in various tumors. Germline mutations deregulating MEK1 also lead to congenital abnormalities, such as the cardiofaciocutaneous syndrome and arteriovenous malformation. Evaluating variants associated with a disease is a challenge, and computational genomic approaches aid in this process. Establishing evolutionary history of a gene improves computational prediction of disease-causing mutations; however, the evolutionary history of MEK1 is not well understood. Here, by revealing a precise evolutionary history of MEK1, we construct a well-defined dataset of MEK1 metazoan orthologs, which provides sufficient depth to distinguish between conserved and variable amino acid positions. We matched known and predicted disease-causing and benign mutations to evolutionary changes observed in corresponding amino acid positions and found that all known and many suspected disease-causing mutations are evolutionarily intolerable. We selected several variants that cannot be unambiguously assessed by automated prediction tools but that are confidently identified as "damaging" by our approach, for experimental validation in Drosophila. In all cases, evolutionary intolerant variants caused increased mortality and severe defects in fruit fly embryos confirming their damaging nature. We anticipate that our analysis will serve as a blueprint to help evaluate known and novel missense variants in MEK1 and that our approach will contribute to improving automated tools for disease-associated variant interpretation.


Subject(s)
Ectodermal Dysplasia , Heart Defects, Congenital , Humans , Animals , Mutation , Ectodermal Dysplasia/genetics , Mutation, Missense , Heart Defects, Congenital/genetics , Amino Acids/genetics , MAP Kinase Kinase 1/genetics
20.
J Cutan Pathol ; 50(12): 1083-1093, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37565534

ABSTRACT

BACKGROUND: Melanocytic tumors driven by MAP2K1 in-frame deletions are among the most recently described class of melanocytic neoplasms. The reported range of diagnoses and associated genomic aberrations in these neoplasms is wide and includes melanomas, deep penetrating melanocytomas, and pigmented epithelioid melanocytoma. However, little is known about the characteristics of these tumors, especially in the absence of well-known second molecular "hits." Moreover, despite their frequent spitzoid cytomorphology, their potential categorization among the Spitz tumors is debatable. MATERIALS AND METHODS: We conducted a retrospective search through our molecular archives to identify sequenced melanocytic tumors with MAP2K1 in-frame deletions. We reviewed the clinical and histomorphological features of these tumors and compared them to similar neoplasms reported to date. In addition, we performed single-nucleotide polymorphism (SNP) array testing to identify structural chromosomal aberrations. RESULTS: Of 27 sequenced tumors, 6 (22%) showed a pathogenic MAP2K1 in-frame deletion (with or without insertion) and were included in this series. Five (83%) were females with lesions involving the upper limb. Histopathologically, all neoplasms were compounded with plaque-like or wedge-shaped silhouettes, spitzoid cytomorphology, and impaired cytologic maturation. All cases showed background actinic damage with sclerotic stroma replacing solar elastosis, variable pagetoid scatter, and occasional dermal mitotic figures (range 1-2/mm2 ). Five cases (83%) had a small component of nevic-looking melanocytes. Biologically, these tumors likely fall within the spectrum of unusual nevi. Five cases (83%) had a relatively high mutational burden and four (67%) showed an ultraviolet radiation signature. Four cases (67%) showed in-frame deletion involving the p.I103_K104del locus while two cases (33%) showed in-frame deletion involving the p.Q58_E62del locus. SNP array testing showed structural abnormalities ranging from 1 to 5 per case. Five of these cases showed a gain of chromosome 15 spanning the MAP2K1 gene locus. DISCUSSION AND CONCLUSION: Melanocytic tumors with MAP2K1 in-frame deletion could represent another spectrum of melanocytic tumors with close genotypic-phenotypic correlation. They are largely characterized by a spectrum that encompasses desmoplastic Spitz nevus as shown in our series and Spitz and Clark nevus as shown by others. Evolutionary, they share many similarities with tumors with BRAF V600E mutations, suggesting they are better classified along the conventional pathway rather than the Spitz pathway despite the frequent spitzoid morphology.


Subject(s)
Melanoma , Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Female , Humans , Male , Proto-Oncogene Proteins B-raf/genetics , Retrospective Studies , Ultraviolet Rays , Melanoma/pathology , Skin Neoplasms/pathology , Nevus, Epithelioid and Spindle Cell/genetics , Chromosome Aberrations , MAP Kinase Kinase 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL